Analysis types and quantification methods applied in UHPLC-MS metabolomics research: a tutorial

. 2024 Aug 07 ; 20 (5) : 95. [epub] 20240807

Jazyk angličtina Země Spojené státy americké Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid39110307

Grantová podpora
MR/S010483/1 Medical Research Council - United Kingdom
MR/S010483/1 Medical Research Council - United Kingdom
BB/T007974/1 Biotechnology and Biological Sciences Research Council - United Kingdom

Odkazy

PubMed 39110307
PubMed Central PMC11306277
DOI 10.1007/s11306-024-02155-6
PII: 10.1007/s11306-024-02155-6
Knihovny.cz E-zdroje

BACKGROUND: Different types of analytical methods, with different characteristics, are applied in metabolomics and lipidomics research and include untargeted, targeted and semi-targeted methods. Ultra High Performance Liquid Chromatography-Mass Spectrometry is one of the most frequently applied measurement instruments in metabolomics because of its ability to detect a large number of water-soluble and lipid metabolites over a wide range of concentrations in short analysis times. Methods applied for the detection and quantification of metabolites differ and can either report a (normalised) peak area or an absolute concentration. AIM OF REVIEW: In this tutorial we aim to (1) define similarities and differences between different analytical approaches applied in metabolomics and (2) define how amounts or absolute concentrations of endogenous metabolites can be determined together with the advantages and limitations of each approach in relation to the accuracy and precision when concentrations are reported. KEY SCIENTIFIC CONCEPTS OF REVIEW: The pre-analysis knowledge of metabolites to be targeted, the requirement for (normalised) peak responses or absolute concentrations to be reported and the number of metabolites to be reported define whether an untargeted, targeted or semi-targeted method is applied. Fully untargeted methods can only provide (normalised) peak responses and fold changes which can be reported even when the structural identity of the metabolite is not known. Targeted methods, where the analytes are known prior to the analysis, can also report fold changes. Semi-targeted methods apply a mix of characteristics of both untargeted and targeted assays. For the reporting of absolute concentrations of metabolites, the analytes are not only predefined but optimized analytical methods should be developed and validated for each analyte so that the accuracy and precision of concentration data collected for biological samples can be reported as fit for purpose and be reviewed by the scientific community.

Zobrazit více v PubMed

Amer, B., Deshpande, R. R., & Bird, S. S. (2023). Simultaneous quantitation and discovery (SQUAD) analysis: combining the best of targeted and untargeted mass spectrometry-based metabolomics. Metabolites,13(5), 648. PubMed PMC

Beccaria, M., & Cabooter, D. (2020). Current developments in LC–MS for pharmaceutical analysis. The Analyst,145(4), 1129–1157. PubMed

Biocrates. (2022). Targeted metabolomics, Retrieved April 17, 2022, from https://biocrates.com/

Bowden, J. A., Heckert, A., Ulmer, C. Z., Jones, C. M., Koelmel, J. P., Abdullah, L., Ahonen, L., Alnouti, Y., Armando, A. M., Asara, J. M., Bamba, T., Barr, J. R., Bergquist, J., Borchers, C. H., Brandsma, J., Breitkopf, S. B., Cajka, T., Cazenave-Gassiot, A., & Zhou, S. (2017). Harmonizing lipidomics: NIST interlaboratory comparison exercise for lipidomics using SRM 1950—metabolites in frozen human plasma. Journal of Lipid Research,58(12), 2275–2288. PubMed PMC

Broadhurst, D., Goodacre, R., Reinke, S. N., Kuligowski, J., Wilson, I. D., Lewis, M. R., & Dunn, W. B. (2018). Guidelines and considerations for the use of system suitability and quality control samples in mass spectrometry assays applied in untargeted clinical metabolomic studies. Metabolomics,14(6), 1–17. PubMed PMC

Cajka, T., & Fiehn, O. (2014). Comprehensive analysis of lipids in biological systems by liquid chromatography-mass spectrometry. TrAC Trends in Analytical Chemistry,61, 192–206. PubMed PMC

Cajka, T., & Fiehn, O. (2016). Toward merging untargeted and targeted methods in mass spectrometry-based metabolomics and lipidomics. Analytical Chemistry,88(1), 524–545. PubMed

Che, N., Ma, Y., Ruan, H., Xu, L., Wang, X., Yang, X., & Liu, X. (2018). Integrated semi-targeted metabolomics analysis reveals distinct metabolic dysregulation in pleural effusion caused by tuberculosis and malignancy. Clinica Chimica Acta,477, 81–88. PubMed

Chen, L., Zhong, F., & Zhu, J. (2020). Bridging targeted and untargeted mass spectrometry-based metabolomics via hybrid approaches. Metabolites,10(9), 348. PubMed PMC

Chetwynd, A. J., Abdul-Sada, A., Holt, S. G., & Hill, E. M. (2016). Use of a pre-analysis osmolality normalisation method to correct for variable urine concentrations and for improved metabolomic analyses. Journal of Chromatography A,1431, 103–110. PubMed

Di Guida, R., Engel, J., Allwood, J. W., Weber, R. J., Jones, M. R., Sommer, U., Viant, M. R., & Dunn, W. B. (2016). Non-targeted UHPLC-MS metabolomic data processing methods: a comparative investigation of normalization, missing value imputation, transformation and scaling. Metabolomics,12(5), 1–14. PubMed PMC

Dunn, W. B., Broadhurst, D., Begley, P., Zelena, E., Francis-McIntyre, S., Anderson, N., Brown, M., Knowles, J. D., Halsall, A., Haselden, J. N., Nicholls, A. W., Wilson, I. D., Kell, D. B., Goodacre, R., Human Serum Metabolome (HUSERMET) Consortium. (2011). Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nature Protocols,6(7), 1060–1083. PubMed

Eurachem/SITAC. (2016). Guide to quality in analytical chemistry: An aid to accreditation. Retrieved April 17, 2022, from https://www.eurachem.org/images/stories/Guides/pdf/Eurachem_CITAC_QAC_2016_EN.pdf

European Medicines Agency (EMA). (2017) Essential considerations for successful qualification of novel methodologies. Retrieved April 17, 2022, from https://www.ema.europa.eu/en/documents/other/essential-considerations-successful-qualification-novel-methodologies_en.pdf

Food and Drug Administration (FDA). (2018) Bioanalytical method validation: Guidance for industry, Retrieved April 17, 2022, from https://www.fda.gov/files/drugs/published/Bioanalytical-Method-Validation-Guidance-for-Industry.pdf

Gleichenhagen, M., Zimmermann, B. F., Herzig, B., Janzik, I., Jahnke, S., Boner, M., Stehle, P., & Galensa, R. (2013). Intrinsic isotopic 13C labelling of polyphenols. Food Chemistry,141(3), 2582–2590. PubMed

Godoy, A. T., Eberlin, M. N., & Simionato, A. V. C. (2020). Targeted metabolomics: Liquid chromatography coupled to mass spectrometry method development and validation for the identification and quantitation of modified nucleosides as putative cancer biomarkers. Talanta,210, 120640. PubMed

Gonzalez, A. (2020) Retrieved February 13, 2023, from https://chem.libretexts.org/Ancillary_Materials/Worksheets/Worksheets%3A_Analytical_Chemistry_II/Calibration_Methods_(Gonzalez)

Hall, R. D. (2018). Plant metabolomics in a nutshell: Potential and future challenges. Annual Plant Reviews Online,43, 1–24.

Han, X., & Gross, R. W. (2022). The foundations and development of lipidomics. Journal of Lipid Research,63(2), 100164. PubMed PMC

Han, Y., Liu, X., Jia, Q., Xu, J., Shi, J., Li, X., Xie, G., Zhao, X., & He, K. (2024). Longitudinal multi-omics analysis uncovers the altered landscape of gut microbiota and plasma metabolome in response to high altitude. Microbiome,12(1), 70. PubMed PMC

Hermann, G., Schwaiger, M., Volejnik, P., & Koellensperger, G. (2018). 13C-labelled yeast as internal standard for LC–MS/MS and LC high resolution MS based amino acid quantification in human plasma. Journal of Pharmaceutical and Biomedical Analysis,155, 329–334. PubMed

Hines, J. M., Bancos, I., Bancos, C., Singh, R. D., Avula, A. V., Young, W. F., Grebe, S. K., & Singh, R. J. (2017). High-resolution, accurate-mass (HRAM) mass spectrometry urine steroid profiling in the diagnosis of adrenal disorders. Clinical Chemistry,63(12), 1824–1835. PubMed

Hu, Q., Noll, R. J., Li, H., Makarov, A., Hardman, M., & Cooks, G. R. (2005). The orbitrap: A new mass spectrometer. Journal of Mass Spectrometry,40(4), 430–443. PubMed

Huan, T., Tran, T., Zheng, J., Sapkota, S., MacDonald, S. W., Camicioli, R., Dixon, R. A., & Li, L. (2018). Metabolomics analyses of saliva detect novel biomarkers of alzheimer’s disease. Journal of Alzheimer’s Disease,65(4), 1401–1416. PubMed

Huynh, K., Barlow, C. K., Jayawardana, K. S., Weir, J. M., Mellett, N. A., Cinel, M., Magliano, D. J., Shaw, J. E., Drew, B. G., & Meikle, P. J. (2019). High-throughput plasma lipidomics: Detailed mapping of the associations with cardiometabolic risk factors. Cell Chemical Biology,26(1), 71–84. PubMed

ISO. (2015), ISO/Guide 30:2015(en), Retrieved February 13, 2023, from https://www.iso.org/obp/ui/#iso:std:iso:guide:30:ed-3:v1:en

Jaber, M. A., de Falco, B., Abdelrazig, S., Ortori, C. A., Barrett, D. A., & Kim, D. H. (2023). Advantages of using biologically generated 13C-labelled multiple internal standards for stable isotope-assisted LC–MS-based lipidomics. Analytical Methods,15(24), 2925–2934. PubMed

Jia, Z., Qiu, Q., He, R., Zhou, T., & Chen, L. (2023). Identification of metabolite interference is necessary for accurate LC–MS targeted metabolomics analysis. Analytical Chemistry,95(20), 7985–7992. PubMed PMC

Kanu, A. B. (2021). Recent developments in sample preparation techniques combined with high-performance liquid chromatography: A critical review. Journal of Chromatography A,1654, 462444. PubMed

Keevil, B. G. (2016). LC–MS/MS analysis of steroids in the clinical laboratory. Clinical Biochemistry,49(13–14), 989–997. PubMed

Kell, D. B., & Oliver, S. G. (2016). The metabolome 18 years on: A concept comes of age. Metabolomics,12(9), 1–8. PubMed PMC

Kennedy, A. D., Wittmann, B. M., Evans, A. M., Miller, L. A., Toal, D. R., Lonergan, S., Elsea, S. H., & Pappan, K. L. (2018). Metabolomics in the clinic: A review of the shared and unique features of untargeted metabolomics for clinical research and clinical testing. Journal of Mass Spectrometry,53(11), 1143–1154. PubMed

Khodorova, N., Calvez, J., Pilard, S., Benoit, S., Gaudichon, C., & Rutledge, D. N. (2024). Urine metabolite profiles after the consumption of a low- and a high-digestible protein meal, and comparison of urine normalization techniques. Metabolites,14(4), 177. PubMed PMC

Klupczynska, A., Misiura, M., Miltyk, W., Oscilowska, I., Palka, J., Kokot, Z. J., & Matysiak, J. (2020). Development of an LC–MS targeted metabolomics methodology to study proline metabolism in mammalian cell cultures. Molecules,25(20), 4639. PubMed PMC

Lewis, M. R., Pearce, J. T., Spagou, K., Green, M., Dona, A. C., Yuen, A. H., Berry, D. J., Chappell, K., der Horneffer-van Sluis, V., Shaw, R., Lovestone, S., Elliott, P., Shockcor, J., Lindon, J. C., Cloarec, O., Takats, Z., Holmes, E., & Nicholson, J. K. (2016). Development and application of ultra-performance liquid chromatography-TOF MS for precision large scale urinary metabolic phenotyping. Analytical Chemistry,88(18), 9004–9013. PubMed

Li, X. S., Wang, Z., Cajka, T., Buffa, J. A., Nemet, I., Hurd, A. G., Gu, X., Skye, S. M., Roberts, A. B., Wu, Y., Li, L., Shahen, C. J., Wagner, M. A., Hartiala, J. A., Kerby, R. L., Romano, K. A., Han, Y., Obeid, S., Lüscher, T. F., … Hazen, S. L. (2018). Untargeted metabolomics identifies trimethyllysine, a TMAO-producing nutrient precursor, as a predictor of incident cardiovascular disease risk. JCI Insight.,3(6), e99096. PubMed PMC

Li, Y., Zhang, Z., Liu, X., Li, A., Hou, Z., Wang, Y., & Zhang, Y. (2015). A novel approach to the simultaneous extraction and non-targeted analysis of the small molecules metabolome and lipidome using 96-well solid phase extraction plates with column-switching technology. Journal of Chromatography A,1409, 277–281. PubMed

Lippa, K. A., Aristizabal-Henao, J. J., Beger, R. D., Bowden, J. A., Broeckling, C., Beecher, C., Clay Davis, W., Dunn, W. B., Flores, R., Goodacre, R., Gouveia, G. J., Harms, A. C., Hartung, T., Jones, C. M., Lewis, M. R., Ntai, I., Percy, A. J., Raftery, D., Schock, T. B., … Ubhi, B. K. (2022). Reference materials for MS-based untargeted metabolomics and lipidomics: A review by the metabolomics quality assurance and quality control consortium (mQACC). Metabolomics,18(4), 1–29. PubMed PMC

Lu, W., Su, X., Klein, M. S., Lewis, I. A., Fiehn, O., & Rabinowitz, J. D. (2017). Metabolite measurement: pitfalls to avoid and practices to follow. Annual Review of Biochemistry,86, 277–304. PubMed PMC

MahmoudianDehkordi, S., Arnold, M., Nho, K., Ahmad, S., Jia, W., Xie, G., Louie, G., Kueider-Paisley, A., Moseley, M. A., Thompson, J. W., St John Williams, L., Tenenbaum, J. D., Blach, C., Baillie, R., Han, X., Bhattacharyya, S., Toledo, J. B., Schafferer, S., Klein, S., … Alzheimer’s Disease Neuroimaging Initiative and the Alzheimer Disease Metabolomics Consortium. (2019). Altered bile acid profile associates with cognitive impairment in alzheimer’s disease-an emerging role for gut microbiome. Alzheimers Dementia,15(1), 76–92. PubMed PMC

McMillen, T. S., Leslie, A., Chisholm, K., Penny, S., Gallant, J., Cohen, A., Drucker, A., Fawcett, J. P., & Pinto, D. M. (2023). A large-scale, targeted metabolomics method for the analysis and quantification of metabolites in human plasma via liquid chromatography-mass spectrometry. Analytica Chimica Acta,1279, 341791. PubMed

Mendez, K. M., Pritchard, L., Reinke, S. N., & Broadhurst, D. I. (2019). Toward collaborative open data science in metabolomics using Jupyter Notebooks and cloud computing. Metabolomics,15(10), 1–16. PubMed PMC

Metabolon. (2022). Global metabolomics, Retrieved April 17, 2022, from https://www.metabolon.com/solutions/global-metabolomics/

Michopoulos, F., Lai, L., Gika, H., Theodoridis, G., & Wilson, I. (2009). UPLC-MS-based analysis of human plasma for metabonomics using solvent precipitation or solid phase extraction. Journal of Proteome Research,8(4), 2114–2121. PubMed

Milić, N., Milanović, M., Radonić, J., Turk Sekulić, M., Mandić, A., Orčić, D., Mišan, A., Milovanović, I., Grujić Letić, N., & Vojinović Miloradov, M. (2018). The occurrence of selected xenobiotics in the Danube river via LC–MS/MS. Environmental Science and Pollution Research,25(11), 11074–11083. PubMed

Misra, B. B. (2021). New software tools, databases, and resources in metabolomics: Updates from 2020. Metabolomics,17(5), 1–24. PubMed PMC

Nakhjavan, B., Bland, J., & Khosravifard, M. (2021). Optimization of a multiresidue analysis of 65 pesticides in surface water using solid-phase extraction by LC–MS/MS. Molecules,26(21), 6627. PubMed PMC

Perez de Souza, L., Alseekh, S., Scossa, F., & Fernie, A. R. (2021). Ultra-high-performance liquid chromatography high-resolution mass spectrometry variants for metabolomics research. Nature Methods,18, 733–746. PubMed

Plumb, R. S., Gethings, L. A., Rainville, P. D., Isaac, G., Trengove, R., King, A. M., & Wilson, I. D. (2023). Advances in high throughput LC/MS based metabolomics: A review. TrAC Trends in Analytical Chemistry,160, 116954.

Rampler, E., Abiead, Y. E., Schoeny, H., Rusz, M., Hildebrand, F., Fitz, V., & Koellensperger, G. (2021). Recurrent topics in mass spectrometry-based metabolomics and lipidomics-standardization, coverage, and throughput. Analytical Chemistry,93(1), 519–545. PubMed PMC

Ryan, M. J., Grant-St James, A., Lawler, N. G., Fear, M. W., Raby, E., Wood, F. M., Maker, G. L., Wist, J., Holmes, E., Nicholson, J. K., Whiley, L., & Gray, N. (2023). Comprehensive lipidomic workflow for multicohort population phenotyping using stable isotope dilution targeted liquid chromatography-mass spectrometry. Journal of Proteome Research,22(5), 1419–1433. PubMed PMC

Sarmad, S., Viant, M. R., Dunn, W. B., Goodacre, R., Wilson, I. D., Chappell, K. E., Griffin, J. L., O’Donnell, V. B., Naicker, B., Lewis, M. R., Suzuki, T., UK Consortium on Metabolic Phenotyping (MAP/UK). (2023). A proposed framework to evaluate the quality and reliability of targeted metabolomics assays from the UK consortium on metabolic phenotyping (MAP/UK). Nature Protocols,18(4), 1017–1027. PubMed

Schymanski, E. L., Jeon, J., Gulde, R., Fenner, K., Ruff, M., Singer, H. P., & Hollender, J. (2014). Identifying small molecules via high resolution mass spectrometry: Communicating confidence. Environmental Science and Technology,48(4), 2097–2098. PubMed

Sciex. (2022). Lipidyzer platform kits, Retrieved April 17, 2022, from https://sciex.com/products/consumables/lipidyzer-platform-kits

Seger, C., & Salzmann, L. (2020). After another decade: LC–MS/MS became routine in clinical diagnostics. Clinical Biochemistry,82, 2–11. PubMed

Shor, E. (2008). Quantification, Retrieved February 13, 2023, from https://www.mcgill.ca/sociology/files/sociology/2008_--_qunatification.pdf

Sitnikov, D. G., Monnin, C. S., & Vuckovic, D. (2016). Systematic assessment of seven solvent and solid-phase extraction methods for metabolomics analysis of human plasma by LC–MS. Scientific Reports,6(1), 1–11. PubMed PMC

Southam, A. D., Pursell, H., Frigerio, G., Jankevics, A., Weber, R. J., & Dunn, W. B. (2020). Characterization of monophasic solvent-based tissue extractions for the detection of polar metabolites and lipids applying ultrahigh-performance liquid chromatography-mass spectrometry clinical metabolic phenotyping assays. Journal of Proteome Research,20(1), 831–840. PubMed

Steiner, D., Malachová, A., Sulyok, M., & Krska, R. (2021). Challenges and future directions in LC–MS-based multiclass method development for the quantification of food contaminants. Analytical and Bioanalytical Chemistry,413(1), 25–34. PubMed PMC

Sumner, L. W., Amberg, A., Barrett, D., Beale, M. H., Beger, R., Daykin, C. A., Fan, T. W., Fiehn, O., Goodacre, R., Griffin, J. L., Hankemeier, T., Hardy, N., Harnly, J., Higashi, R., Kopka, J., Lane, A. N., Lindon, J. C., Marriott, P., Nicholls, A. W., … Viant, M. R. (2007). Proposed minimum reporting standards for chemical analysis chemical analysis working group (CAWG) metabolomics standards initiative (MSI). Metabolomics,3(3), 211–221. PubMed PMC

Theodoridis, G., Gika, H. G., & Wilson, I. D. (2008). LC–MS-based methodology for global metabolite profiling in metabonomics/metabolomics. TrAC Trends in Analytical Chemistry,27(3), 251–260.

Thompson, J. W., Adams, K. J., Adamski, J., Asad, Y., Borts, D., Bowden, J. A., Byram, G., Dang, V., Dunn, W. B., Fernandez, F., Fiehn, O., Gaul, D. A., Hühmer, A. F., Kalli, A., Koal, T., Koeniger, S., Mandal, R., Meier, F., Naser, F. J., … Moseley, M. A. (2019). International ring trial of a high resolution targeted metabolomics and lipidomics platform for serum and plasma analysis. Analytical Chemistry,91(22), 14407–14416. PubMed PMC

Ubhi, B. K., Davenport, P. W., Welch, M., Riley, J., Griffin, J. L., & Connor, S. C. (2013). Analysis of chloroformate-derivatised amino acids, dipeptides and polyamines by LC–MS/MS. Journal of Chromatography B, Analytical Technologies in the Biomedical and Life Sciences,934, 79–88. PubMed

Want, E., Wilson, I., Gika, H., Theodoridis, G., Plumb, R. S., Shockcor, J., Holmes, E., & Nicholson, J. K. (2010). Global metabolic profiling procedures for urine using UPLC-MS. Nature Protocols,5, 1005–1018. PubMed

Yang, Q., Zhang, A. H., Miao, J. H., Sun, H., Han, Y., Yan, G. L., Wu, F. F., & Wang, X. J. (2019). Metabolomics biotechnology, applications, and future trends: A systematic review. RSC Advances,9(64), 37245–37257. PubMed PMC

Yu, H., & Huan, T. (2021). Patterned signal ratio biases in mass spectrometry-based quantitative metabolomics. Analytical Chemistry,93(4), 2254–2262. PubMed

Zelena, E., Dunn, W. B., Broadhurst, D., Francis-McIntyre, S., Carroll, K. M., Begley, P., O’Hagan, S., Knowles, J. D., Halsall, A., HUSERMET Consortium, Wilson, I. D., & Kell, D. B. (2009). Development of a robust and repeatable UPLC−MS method for the long-term metabolomic study of human serum. Analytical Chemistry,81(4), 1357–1364. PubMed

Zheng, F., Zhao, X., Zeng, Z., Wang, L., Lv, W., Wang, Q., & Xu, G. (2020). Development of a plasma pseudotargeted metabolomics method based on ultra-high-performance liquid chromatography–mass spectrometry. Nature Protocols,15, 2519–2537. PubMed

Züllig, T., Trötzmüller, M., & Köfeler, H. C. (2020). Lipidomics from sample preparation to data analysis: A primer. Analytical and Bioanalytical Chemistry,412, 2191–2209. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...