Analysis types and quantification methods applied in UHPLC-MS metabolomics research: a tutorial
Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
MR/S010483/1
Medical Research Council - United Kingdom
MR/S010483/1
Medical Research Council - United Kingdom
BB/T007974/1
Biotechnology and Biological Sciences Research Council - United Kingdom
PubMed
39110307
PubMed Central
PMC11306277
DOI
10.1007/s11306-024-02155-6
PII: 10.1007/s11306-024-02155-6
Knihovny.cz E-zdroje
- Klíčová slova
- Metabolomics, Quantification, Semi-targeted, Targeted, UHPLC-MS, Untargeted, Validation,
- MeSH
- hmotnostní spektrometrie * metody MeSH
- lidé MeSH
- metabolomika * metody MeSH
- vysokoúčinná kapalinová chromatografie metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
BACKGROUND: Different types of analytical methods, with different characteristics, are applied in metabolomics and lipidomics research and include untargeted, targeted and semi-targeted methods. Ultra High Performance Liquid Chromatography-Mass Spectrometry is one of the most frequently applied measurement instruments in metabolomics because of its ability to detect a large number of water-soluble and lipid metabolites over a wide range of concentrations in short analysis times. Methods applied for the detection and quantification of metabolites differ and can either report a (normalised) peak area or an absolute concentration. AIM OF REVIEW: In this tutorial we aim to (1) define similarities and differences between different analytical approaches applied in metabolomics and (2) define how amounts or absolute concentrations of endogenous metabolites can be determined together with the advantages and limitations of each approach in relation to the accuracy and precision when concentrations are reported. KEY SCIENTIFIC CONCEPTS OF REVIEW: The pre-analysis knowledge of metabolites to be targeted, the requirement for (normalised) peak responses or absolute concentrations to be reported and the number of metabolites to be reported define whether an untargeted, targeted or semi-targeted method is applied. Fully untargeted methods can only provide (normalised) peak responses and fold changes which can be reported even when the structural identity of the metabolite is not known. Targeted methods, where the analytes are known prior to the analysis, can also report fold changes. Semi-targeted methods apply a mix of characteristics of both untargeted and targeted assays. For the reporting of absolute concentrations of metabolites, the analytes are not only predefined but optimized analytical methods should be developed and validated for each analyte so that the accuracy and precision of concentration data collected for biological samples can be reported as fit for purpose and be reviewed by the scientific community.
BioMarin Pharmaceutical Inc San Rafael CA USA
Center for Proteomics and Metabolomics Leiden University Medical Centre Leiden The Netherlands
National Center for Toxicological Research US Food and Drug Administration Jefferson AR 72079 USA
School of Biosciences and Phenome Centre Birmingham University of Birmingham Birmingham UK
Zobrazit více v PubMed
Amer, B., Deshpande, R. R., & Bird, S. S. (2023). Simultaneous quantitation and discovery (SQUAD) analysis: combining the best of targeted and untargeted mass spectrometry-based metabolomics. Metabolites,13(5), 648. PubMed PMC
Beccaria, M., & Cabooter, D. (2020). Current developments in LC–MS for pharmaceutical analysis. The Analyst,145(4), 1129–1157. PubMed
Biocrates. (2022). Targeted metabolomics, Retrieved April 17, 2022, from https://biocrates.com/
Bowden, J. A., Heckert, A., Ulmer, C. Z., Jones, C. M., Koelmel, J. P., Abdullah, L., Ahonen, L., Alnouti, Y., Armando, A. M., Asara, J. M., Bamba, T., Barr, J. R., Bergquist, J., Borchers, C. H., Brandsma, J., Breitkopf, S. B., Cajka, T., Cazenave-Gassiot, A., & Zhou, S. (2017). Harmonizing lipidomics: NIST interlaboratory comparison exercise for lipidomics using SRM 1950—metabolites in frozen human plasma. Journal of Lipid Research,58(12), 2275–2288. PubMed PMC
Broadhurst, D., Goodacre, R., Reinke, S. N., Kuligowski, J., Wilson, I. D., Lewis, M. R., & Dunn, W. B. (2018). Guidelines and considerations for the use of system suitability and quality control samples in mass spectrometry assays applied in untargeted clinical metabolomic studies. Metabolomics,14(6), 1–17. PubMed PMC
Cajka, T., & Fiehn, O. (2014). Comprehensive analysis of lipids in biological systems by liquid chromatography-mass spectrometry. TrAC Trends in Analytical Chemistry,61, 192–206. PubMed PMC
Cajka, T., & Fiehn, O. (2016). Toward merging untargeted and targeted methods in mass spectrometry-based metabolomics and lipidomics. Analytical Chemistry,88(1), 524–545. PubMed
Che, N., Ma, Y., Ruan, H., Xu, L., Wang, X., Yang, X., & Liu, X. (2018). Integrated semi-targeted metabolomics analysis reveals distinct metabolic dysregulation in pleural effusion caused by tuberculosis and malignancy. Clinica Chimica Acta,477, 81–88. PubMed
Chen, L., Zhong, F., & Zhu, J. (2020). Bridging targeted and untargeted mass spectrometry-based metabolomics via hybrid approaches. Metabolites,10(9), 348. PubMed PMC
Chetwynd, A. J., Abdul-Sada, A., Holt, S. G., & Hill, E. M. (2016). Use of a pre-analysis osmolality normalisation method to correct for variable urine concentrations and for improved metabolomic analyses. Journal of Chromatography A,1431, 103–110. PubMed
Di Guida, R., Engel, J., Allwood, J. W., Weber, R. J., Jones, M. R., Sommer, U., Viant, M. R., & Dunn, W. B. (2016). Non-targeted UHPLC-MS metabolomic data processing methods: a comparative investigation of normalization, missing value imputation, transformation and scaling. Metabolomics,12(5), 1–14. PubMed PMC
Dunn, W. B., Broadhurst, D., Begley, P., Zelena, E., Francis-McIntyre, S., Anderson, N., Brown, M., Knowles, J. D., Halsall, A., Haselden, J. N., Nicholls, A. W., Wilson, I. D., Kell, D. B., Goodacre, R., Human Serum Metabolome (HUSERMET) Consortium. (2011). Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nature Protocols,6(7), 1060–1083. PubMed
Eurachem/SITAC. (2016). Guide to quality in analytical chemistry: An aid to accreditation. Retrieved April 17, 2022, from https://www.eurachem.org/images/stories/Guides/pdf/Eurachem_CITAC_QAC_2016_EN.pdf
European Medicines Agency (EMA). (2017) Essential considerations for successful qualification of novel methodologies. Retrieved April 17, 2022, from https://www.ema.europa.eu/en/documents/other/essential-considerations-successful-qualification-novel-methodologies_en.pdf
Food and Drug Administration (FDA). (2018) Bioanalytical method validation: Guidance for industry, Retrieved April 17, 2022, from https://www.fda.gov/files/drugs/published/Bioanalytical-Method-Validation-Guidance-for-Industry.pdf
Gleichenhagen, M., Zimmermann, B. F., Herzig, B., Janzik, I., Jahnke, S., Boner, M., Stehle, P., & Galensa, R. (2013). Intrinsic isotopic 13C labelling of polyphenols. Food Chemistry,141(3), 2582–2590. PubMed
Godoy, A. T., Eberlin, M. N., & Simionato, A. V. C. (2020). Targeted metabolomics: Liquid chromatography coupled to mass spectrometry method development and validation for the identification and quantitation of modified nucleosides as putative cancer biomarkers. Talanta,210, 120640. PubMed
Gonzalez, A. (2020) Retrieved February 13, 2023, from https://chem.libretexts.org/Ancillary_Materials/Worksheets/Worksheets%3A_Analytical_Chemistry_II/Calibration_Methods_(Gonzalez)
Hall, R. D. (2018). Plant metabolomics in a nutshell: Potential and future challenges. Annual Plant Reviews Online,43, 1–24.
Han, X., & Gross, R. W. (2022). The foundations and development of lipidomics. Journal of Lipid Research,63(2), 100164. PubMed PMC
Han, Y., Liu, X., Jia, Q., Xu, J., Shi, J., Li, X., Xie, G., Zhao, X., & He, K. (2024). Longitudinal multi-omics analysis uncovers the altered landscape of gut microbiota and plasma metabolome in response to high altitude. Microbiome,12(1), 70. PubMed PMC
Hermann, G., Schwaiger, M., Volejnik, P., & Koellensperger, G. (2018). 13C-labelled yeast as internal standard for LC–MS/MS and LC high resolution MS based amino acid quantification in human plasma. Journal of Pharmaceutical and Biomedical Analysis,155, 329–334. PubMed
Hines, J. M., Bancos, I., Bancos, C., Singh, R. D., Avula, A. V., Young, W. F., Grebe, S. K., & Singh, R. J. (2017). High-resolution, accurate-mass (HRAM) mass spectrometry urine steroid profiling in the diagnosis of adrenal disorders. Clinical Chemistry,63(12), 1824–1835. PubMed
Hu, Q., Noll, R. J., Li, H., Makarov, A., Hardman, M., & Cooks, G. R. (2005). The orbitrap: A new mass spectrometer. Journal of Mass Spectrometry,40(4), 430–443. PubMed
Huan, T., Tran, T., Zheng, J., Sapkota, S., MacDonald, S. W., Camicioli, R., Dixon, R. A., & Li, L. (2018). Metabolomics analyses of saliva detect novel biomarkers of alzheimer’s disease. Journal of Alzheimer’s Disease,65(4), 1401–1416. PubMed
Huynh, K., Barlow, C. K., Jayawardana, K. S., Weir, J. M., Mellett, N. A., Cinel, M., Magliano, D. J., Shaw, J. E., Drew, B. G., & Meikle, P. J. (2019). High-throughput plasma lipidomics: Detailed mapping of the associations with cardiometabolic risk factors. Cell Chemical Biology,26(1), 71–84. PubMed
ISO. (2015), ISO/Guide 30:2015(en), Retrieved February 13, 2023, from https://www.iso.org/obp/ui/#iso:std:iso:guide:30:ed-3:v1:en
Jaber, M. A., de Falco, B., Abdelrazig, S., Ortori, C. A., Barrett, D. A., & Kim, D. H. (2023). Advantages of using biologically generated 13C-labelled multiple internal standards for stable isotope-assisted LC–MS-based lipidomics. Analytical Methods,15(24), 2925–2934. PubMed
Jia, Z., Qiu, Q., He, R., Zhou, T., & Chen, L. (2023). Identification of metabolite interference is necessary for accurate LC–MS targeted metabolomics analysis. Analytical Chemistry,95(20), 7985–7992. PubMed PMC
Kanu, A. B. (2021). Recent developments in sample preparation techniques combined with high-performance liquid chromatography: A critical review. Journal of Chromatography A,1654, 462444. PubMed
Keevil, B. G. (2016). LC–MS/MS analysis of steroids in the clinical laboratory. Clinical Biochemistry,49(13–14), 989–997. PubMed
Kell, D. B., & Oliver, S. G. (2016). The metabolome 18 years on: A concept comes of age. Metabolomics,12(9), 1–8. PubMed PMC
Kennedy, A. D., Wittmann, B. M., Evans, A. M., Miller, L. A., Toal, D. R., Lonergan, S., Elsea, S. H., & Pappan, K. L. (2018). Metabolomics in the clinic: A review of the shared and unique features of untargeted metabolomics for clinical research and clinical testing. Journal of Mass Spectrometry,53(11), 1143–1154. PubMed
Khodorova, N., Calvez, J., Pilard, S., Benoit, S., Gaudichon, C., & Rutledge, D. N. (2024). Urine metabolite profiles after the consumption of a low- and a high-digestible protein meal, and comparison of urine normalization techniques. Metabolites,14(4), 177. PubMed PMC
Klupczynska, A., Misiura, M., Miltyk, W., Oscilowska, I., Palka, J., Kokot, Z. J., & Matysiak, J. (2020). Development of an LC–MS targeted metabolomics methodology to study proline metabolism in mammalian cell cultures. Molecules,25(20), 4639. PubMed PMC
Lewis, M. R., Pearce, J. T., Spagou, K., Green, M., Dona, A. C., Yuen, A. H., Berry, D. J., Chappell, K., der Horneffer-van Sluis, V., Shaw, R., Lovestone, S., Elliott, P., Shockcor, J., Lindon, J. C., Cloarec, O., Takats, Z., Holmes, E., & Nicholson, J. K. (2016). Development and application of ultra-performance liquid chromatography-TOF MS for precision large scale urinary metabolic phenotyping. Analytical Chemistry,88(18), 9004–9013. PubMed
Li, X. S., Wang, Z., Cajka, T., Buffa, J. A., Nemet, I., Hurd, A. G., Gu, X., Skye, S. M., Roberts, A. B., Wu, Y., Li, L., Shahen, C. J., Wagner, M. A., Hartiala, J. A., Kerby, R. L., Romano, K. A., Han, Y., Obeid, S., Lüscher, T. F., … Hazen, S. L. (2018). Untargeted metabolomics identifies trimethyllysine, a TMAO-producing nutrient precursor, as a predictor of incident cardiovascular disease risk. JCI Insight.,3(6), e99096. PubMed PMC
Li, Y., Zhang, Z., Liu, X., Li, A., Hou, Z., Wang, Y., & Zhang, Y. (2015). A novel approach to the simultaneous extraction and non-targeted analysis of the small molecules metabolome and lipidome using 96-well solid phase extraction plates with column-switching technology. Journal of Chromatography A,1409, 277–281. PubMed
Lippa, K. A., Aristizabal-Henao, J. J., Beger, R. D., Bowden, J. A., Broeckling, C., Beecher, C., Clay Davis, W., Dunn, W. B., Flores, R., Goodacre, R., Gouveia, G. J., Harms, A. C., Hartung, T., Jones, C. M., Lewis, M. R., Ntai, I., Percy, A. J., Raftery, D., Schock, T. B., … Ubhi, B. K. (2022). Reference materials for MS-based untargeted metabolomics and lipidomics: A review by the metabolomics quality assurance and quality control consortium (mQACC). Metabolomics,18(4), 1–29. PubMed PMC
Lu, W., Su, X., Klein, M. S., Lewis, I. A., Fiehn, O., & Rabinowitz, J. D. (2017). Metabolite measurement: pitfalls to avoid and practices to follow. Annual Review of Biochemistry,86, 277–304. PubMed PMC
MahmoudianDehkordi, S., Arnold, M., Nho, K., Ahmad, S., Jia, W., Xie, G., Louie, G., Kueider-Paisley, A., Moseley, M. A., Thompson, J. W., St John Williams, L., Tenenbaum, J. D., Blach, C., Baillie, R., Han, X., Bhattacharyya, S., Toledo, J. B., Schafferer, S., Klein, S., … Alzheimer’s Disease Neuroimaging Initiative and the Alzheimer Disease Metabolomics Consortium. (2019). Altered bile acid profile associates with cognitive impairment in alzheimer’s disease-an emerging role for gut microbiome. Alzheimers Dementia,15(1), 76–92. PubMed PMC
McMillen, T. S., Leslie, A., Chisholm, K., Penny, S., Gallant, J., Cohen, A., Drucker, A., Fawcett, J. P., & Pinto, D. M. (2023). A large-scale, targeted metabolomics method for the analysis and quantification of metabolites in human plasma via liquid chromatography-mass spectrometry. Analytica Chimica Acta,1279, 341791. PubMed
Mendez, K. M., Pritchard, L., Reinke, S. N., & Broadhurst, D. I. (2019). Toward collaborative open data science in metabolomics using Jupyter Notebooks and cloud computing. Metabolomics,15(10), 1–16. PubMed PMC
Metabolon. (2022). Global metabolomics, Retrieved April 17, 2022, from https://www.metabolon.com/solutions/global-metabolomics/
Michopoulos, F., Lai, L., Gika, H., Theodoridis, G., & Wilson, I. (2009). UPLC-MS-based analysis of human plasma for metabonomics using solvent precipitation or solid phase extraction. Journal of Proteome Research,8(4), 2114–2121. PubMed
Milić, N., Milanović, M., Radonić, J., Turk Sekulić, M., Mandić, A., Orčić, D., Mišan, A., Milovanović, I., Grujić Letić, N., & Vojinović Miloradov, M. (2018). The occurrence of selected xenobiotics in the Danube river via LC–MS/MS. Environmental Science and Pollution Research,25(11), 11074–11083. PubMed
Misra, B. B. (2021). New software tools, databases, and resources in metabolomics: Updates from 2020. Metabolomics,17(5), 1–24. PubMed PMC
Nakhjavan, B., Bland, J., & Khosravifard, M. (2021). Optimization of a multiresidue analysis of 65 pesticides in surface water using solid-phase extraction by LC–MS/MS. Molecules,26(21), 6627. PubMed PMC
Perez de Souza, L., Alseekh, S., Scossa, F., & Fernie, A. R. (2021). Ultra-high-performance liquid chromatography high-resolution mass spectrometry variants for metabolomics research. Nature Methods,18, 733–746. PubMed
Plumb, R. S., Gethings, L. A., Rainville, P. D., Isaac, G., Trengove, R., King, A. M., & Wilson, I. D. (2023). Advances in high throughput LC/MS based metabolomics: A review. TrAC Trends in Analytical Chemistry,160, 116954.
Rampler, E., Abiead, Y. E., Schoeny, H., Rusz, M., Hildebrand, F., Fitz, V., & Koellensperger, G. (2021). Recurrent topics in mass spectrometry-based metabolomics and lipidomics-standardization, coverage, and throughput. Analytical Chemistry,93(1), 519–545. PubMed PMC
Ryan, M. J., Grant-St James, A., Lawler, N. G., Fear, M. W., Raby, E., Wood, F. M., Maker, G. L., Wist, J., Holmes, E., Nicholson, J. K., Whiley, L., & Gray, N. (2023). Comprehensive lipidomic workflow for multicohort population phenotyping using stable isotope dilution targeted liquid chromatography-mass spectrometry. Journal of Proteome Research,22(5), 1419–1433. PubMed PMC
Sarmad, S., Viant, M. R., Dunn, W. B., Goodacre, R., Wilson, I. D., Chappell, K. E., Griffin, J. L., O’Donnell, V. B., Naicker, B., Lewis, M. R., Suzuki, T., UK Consortium on Metabolic Phenotyping (MAP/UK). (2023). A proposed framework to evaluate the quality and reliability of targeted metabolomics assays from the UK consortium on metabolic phenotyping (MAP/UK). Nature Protocols,18(4), 1017–1027. PubMed
Schymanski, E. L., Jeon, J., Gulde, R., Fenner, K., Ruff, M., Singer, H. P., & Hollender, J. (2014). Identifying small molecules via high resolution mass spectrometry: Communicating confidence. Environmental Science and Technology,48(4), 2097–2098. PubMed
Sciex. (2022). Lipidyzer platform kits, Retrieved April 17, 2022, from https://sciex.com/products/consumables/lipidyzer-platform-kits
Seger, C., & Salzmann, L. (2020). After another decade: LC–MS/MS became routine in clinical diagnostics. Clinical Biochemistry,82, 2–11. PubMed
Shor, E. (2008). Quantification, Retrieved February 13, 2023, from https://www.mcgill.ca/sociology/files/sociology/2008_--_qunatification.pdf
Sitnikov, D. G., Monnin, C. S., & Vuckovic, D. (2016). Systematic assessment of seven solvent and solid-phase extraction methods for metabolomics analysis of human plasma by LC–MS. Scientific Reports,6(1), 1–11. PubMed PMC
Southam, A. D., Pursell, H., Frigerio, G., Jankevics, A., Weber, R. J., & Dunn, W. B. (2020). Characterization of monophasic solvent-based tissue extractions for the detection of polar metabolites and lipids applying ultrahigh-performance liquid chromatography-mass spectrometry clinical metabolic phenotyping assays. Journal of Proteome Research,20(1), 831–840. PubMed
Steiner, D., Malachová, A., Sulyok, M., & Krska, R. (2021). Challenges and future directions in LC–MS-based multiclass method development for the quantification of food contaminants. Analytical and Bioanalytical Chemistry,413(1), 25–34. PubMed PMC
Sumner, L. W., Amberg, A., Barrett, D., Beale, M. H., Beger, R., Daykin, C. A., Fan, T. W., Fiehn, O., Goodacre, R., Griffin, J. L., Hankemeier, T., Hardy, N., Harnly, J., Higashi, R., Kopka, J., Lane, A. N., Lindon, J. C., Marriott, P., Nicholls, A. W., … Viant, M. R. (2007). Proposed minimum reporting standards for chemical analysis chemical analysis working group (CAWG) metabolomics standards initiative (MSI). Metabolomics,3(3), 211–221. PubMed PMC
Theodoridis, G., Gika, H. G., & Wilson, I. D. (2008). LC–MS-based methodology for global metabolite profiling in metabonomics/metabolomics. TrAC Trends in Analytical Chemistry,27(3), 251–260.
Thompson, J. W., Adams, K. J., Adamski, J., Asad, Y., Borts, D., Bowden, J. A., Byram, G., Dang, V., Dunn, W. B., Fernandez, F., Fiehn, O., Gaul, D. A., Hühmer, A. F., Kalli, A., Koal, T., Koeniger, S., Mandal, R., Meier, F., Naser, F. J., … Moseley, M. A. (2019). International ring trial of a high resolution targeted metabolomics and lipidomics platform for serum and plasma analysis. Analytical Chemistry,91(22), 14407–14416. PubMed PMC
Ubhi, B. K., Davenport, P. W., Welch, M., Riley, J., Griffin, J. L., & Connor, S. C. (2013). Analysis of chloroformate-derivatised amino acids, dipeptides and polyamines by LC–MS/MS. Journal of Chromatography B, Analytical Technologies in the Biomedical and Life Sciences,934, 79–88. PubMed
Want, E., Wilson, I., Gika, H., Theodoridis, G., Plumb, R. S., Shockcor, J., Holmes, E., & Nicholson, J. K. (2010). Global metabolic profiling procedures for urine using UPLC-MS. Nature Protocols,5, 1005–1018. PubMed
Yang, Q., Zhang, A. H., Miao, J. H., Sun, H., Han, Y., Yan, G. L., Wu, F. F., & Wang, X. J. (2019). Metabolomics biotechnology, applications, and future trends: A systematic review. RSC Advances,9(64), 37245–37257. PubMed PMC
Yu, H., & Huan, T. (2021). Patterned signal ratio biases in mass spectrometry-based quantitative metabolomics. Analytical Chemistry,93(4), 2254–2262. PubMed
Zelena, E., Dunn, W. B., Broadhurst, D., Francis-McIntyre, S., Carroll, K. M., Begley, P., O’Hagan, S., Knowles, J. D., Halsall, A., HUSERMET Consortium, Wilson, I. D., & Kell, D. B. (2009). Development of a robust and repeatable UPLC−MS method for the long-term metabolomic study of human serum. Analytical Chemistry,81(4), 1357–1364. PubMed
Zheng, F., Zhao, X., Zeng, Z., Wang, L., Lv, W., Wang, Q., & Xu, G. (2020). Development of a plasma pseudotargeted metabolomics method based on ultra-high-performance liquid chromatography–mass spectrometry. Nature Protocols,15, 2519–2537. PubMed
Züllig, T., Trötzmüller, M., & Köfeler, H. C. (2020). Lipidomics from sample preparation to data analysis: A primer. Analytical and Bioanalytical Chemistry,412, 2191–2209. PubMed PMC