Proton-triggered rearrangement of the AMPA receptor N-terminal domains impacts receptor kinetics and synaptic localization

. 2024 Oct ; 31 (10) : 1601-1613. [epub] 20240813

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39138332

Grantová podpora
S10 OD032234 NIH HHS - United States
MC_U105174197 Medical Research Council - United Kingdom
Wellcome Trust - United Kingdom
S10 OD030292 NIH HHS - United States
R01 MH123474 NIMH NIH HHS - United States
R56 MH123474 NIMH NIH HHS - United States

Odkazy

PubMed 39138332
PubMed Central PMC11479944
DOI 10.1038/s41594-024-01369-5
PII: 10.1038/s41594-024-01369-5
Knihovny.cz E-zdroje

AMPA glutamate receptors (AMPARs) are ion channel tetramers that mediate the majority of fast excitatory synaptic transmission. They are composed of four subunits (GluA1-GluA4); the GluA2 subunit dominates AMPAR function throughout the forebrain. Its extracellular N-terminal domain (NTD) determines receptor localization at the synapse, ensuring reliable synaptic transmission and plasticity. This synaptic anchoring function requires a compact NTD tier, stabilized by a GluA2-specific NTD interface. Here we show that low pH conditions, which accompany synaptic activity, rupture this interface. All-atom molecular dynamics simulations reveal that protonation of an interfacial histidine residue (H208) centrally contributes to NTD rearrangement. Moreover, in stark contrast to their canonical compact arrangement at neutral pH, GluA2 cryo-electron microscopy structures exhibit a wide spectrum of NTD conformations under acidic conditions. We show that the consequences of this pH-dependent conformational control are twofold: rupture of the NTD tier slows recovery from desensitized states and increases receptor mobility at mouse hippocampal synapses. Therefore, a proton-triggered NTD switch will shape both AMPAR location and kinetics, thereby impacting synaptic signal transmission.

Zobrazit více v PubMed

Hansen, K. B. et al. Structure, function, and pharmacology of glutamate receptor ion channels. Pharmacol. Rev.73, 298–487 (2021). PubMed PMC

Sukumaran, M., Penn, A. C. & Greger, I. H. AMPA receptor assembly: atomic determinants and built-in modulators. Adv. Exp. Med Biol.970, 241–264 (2012). PubMed

Isaac, J. T., Nicoll, R. A. & Malenka, R. C. Evidence for silent synapses: implications for the expression of LTP. Neuron15, 427–434 (1995). PubMed

Liao, D., Hessler, N. A. & Malinow, R. Activation of postsynaptically silent synapses during pairing-induced LTP in CA1 region of hippocampal slice. Nature375, 400–404 (1995). PubMed

Choquet, D. Linking nanoscale dynamics of AMPA receptor organization to plasticity of excitatory synapses and learning. J. Neurosci.38, 9318–9329 (2018). PubMed PMC

Droogers, W. J. & MacGillavry, H. D. Plasticity of postsynaptic nanostructure. Mol. Cell Neurosci.124, 103819 (2023). PubMed

Biederer, T., Kaeser, P. S. & Blanpied, T. A. Transcellular nanoalignment of synaptic function. Neuron96, 680–696 (2017). PubMed PMC

Lisman, J. E., Raghavachari, S. & Tsien, R. W. The sequence of events that underlie quantal transmission at central glutamatergic synapses. Nat. Rev. Neurosci.8, 597–609 (2007). PubMed

Borgdorff, A. J. & Choquet, D. Regulation of AMPA receptor lateral movements. Nature417, 649–653 (2002). PubMed

Chen, L. et al. Stargazin regulates synaptic targeting of AMPA receptors by two distinct mechanisms. Nature408, 936–943 (2000). PubMed

Opazo, P., Sainlos, M. & Choquet, D. Regulation of AMPA receptor surface diffusion by PSD-95 slots. Curr. Opin. Neurobiol.22, 453–460 (2012). PubMed

Tang, A. H. et al. A trans-synaptic nanocolumn aligns neurotransmitter release to receptors. Nature536, 210–214 (2016). PubMed PMC

Yuzaki, M. Two classes of secreted synaptic organizers in the central nervous system. Annu. Rev. Physiol.80, 243–262 (2018). PubMed

Stockwell, I., Watson, J. F. & Greger, I. H. Tuning synaptic strength by regulation of AMPA glutamate receptor localization. Bioessays46, e2400006 (2024). PubMed PMC

Sobolevsky, A. I., Rosconi, M. P. & Gouaux, E. X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor. Nature462, 745–756 (2009). PubMed PMC

Ayalon, G. & Stern-Bach, Y. Functional assembly of AMPA and kainate receptors is mediated by several discrete protein–protein interactions. Neuron31, 103–113 (2001). PubMed

Herguedas, B., Krieger, J. & Greger, I. H. Receptor heteromeric assembly—how it works and why it matters: the case of ionotropic glutamate receptors. Prog. Mol. Biol. Transl. Sci.117, 361–386 (2013). PubMed

Rossmann, M. et al. Subunit-selective N-terminal domain associations organize the formation of AMPA receptor heteromers. EMBO J.30, 959–971 (2011). PubMed PMC

Diaz-Alonso, J. & Nicoll, R. A. AMPA receptor trafficking and LTP: carboxy-termini, amino-termini and TARPs. Neuropharmacology197, 108710 (2021). PubMed PMC

Diaz-Alonso, J. et al. Subunit-specific role for the amino-terminal domain of AMPA receptors in synaptic targeting. Proc. Natl Acad. Sci. USA114, 7136–7141 (2017). PubMed PMC

Jiang, C. H., Wei, M., Zhang, C. & Shi, Y. S. The amino-terminal domain of GluA1 mediates LTP maintenance via interaction with neuroplastin-65. Proc. Natl Acad. Sci. USA118, e2019194118 (2021). PubMed PMC

Watson, J. F., Ho, H. & Greger, I. H. Synaptic transmission and plasticity require AMPA receptor anchoring via its N-terminal domain. eLife14, e23024 (2017). PubMed PMC

Watson, J. F., Pinggera, A., Ho, H. & Greger, I. H. AMPA receptor anchoring at CA1 synapses is determined by N-terminal domain and TARPγ8 interactions. Nat. Commun.12, 5083 (2021). PubMed PMC

Garcia-Nafria, J., Herguedas, B., Watson, J. F. & Greger, I. H. The dynamic AMPA receptor extracellular region: a platform for synaptic protein interactions. J. Physiol.594, 5449–5458 (2016). PubMed PMC

Herguedas, B. et al. Architecture of the heteromeric GluA1/2 AMPA receptor in complex with the auxiliary subunit TARPγ8. Science364, eaav9011 (2019). PubMed PMC

Zhao, Y., Chen, S., Swensen, A. C., Qian, W. J. & Gouaux, E. Architecture and subunit arrangement of native AMPA receptors elucidated by cryo-EM. Science364, 355–362 (2019). PubMed PMC

Zhang, D. et al. Structural mobility tunes signalling of the GluA1 AMPA glutamate receptor. Nature621, 877–882 (2023). PubMed PMC

Chesler, M. Regulation and modulation of pH in the brain. Physiol. Rev.83, 1183–1221 (2003). PubMed

Cho, S. & von Gersdorff, H. Proton-mediated block of Ca2+ channels during multivesicular release regulates short-term plasticity at an auditory hair cell synapse. J. Neurosci.34, 15877–15887 (2014). PubMed PMC

DeVries, S. H. Exocytosed protons feedback to suppress the Ca2+ current in mammalian cone photoreceptors. Neuron32, 1107–1117 (2001). PubMed

Edwards, R. H. The neurotransmitter cycle and quantal size. Neuron55, 835–858 (2007). PubMed

Kweon, H. J. & Suh, B. C. Acid-sensing ion channels (ASICs): therapeutic targets for neurological diseases and their regulation. BMB Rep.46, 295–304 (2013). PubMed PMC

Zha, X. M., Wemmie, J. A., Green, S. H. & Welsh, M. J. Acid-sensing ion channel 1a is a postsynaptic proton receptor that affects the density of dendritic spines. Proc. Natl Acad. Sci. USA103, 16556–16561 (2006). PubMed PMC

Traynelis, S. F. & Cull-Candy, S. G. Proton inhibition of N-methyl-d-aspartate receptors in cerebellar neurons. Nature345, 347–350 (1990). PubMed

Ihle, E. C. & Patneau, D. K. Modulation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor desensitization by extracellular protons. Mol. Pharmacol.58, 1204–1212 (2000). PubMed

Lei, S., Orser, B. A., Thatcher, G. R., Reynolds, J. N. & MacDonald, J. F. Positive allosteric modulators of AMPA receptors reduce proton-induced receptor desensitization in rat hippocampal neurons. J. Neurophysiol.85, 2030–2038 (2001). PubMed

Baranovic, J. & Plested, A. J. Auxiliary subunits keep AMPA receptors compact during activation and desensitization. eLife7, e40548 (2018). PubMed PMC

Herguedas, B. et al. Mechanisms underlying TARP modulation of the GluA1/2–γ8 AMPA receptor. Nat. Commun.13, 734 (2022). PubMed PMC

Nakagawa, T. Structures of the AMPA receptor in complex with its auxiliary subunit cornichon. Science366, 1259–1263 (2019). PubMed PMC

Twomey, E. C., Yelshanskaya, M. V., Grassucci, R. A., Frank, J. & Sobolevsky, A. I. Structural bases of desensitization in AMPA receptor–auxiliary subunit complexes. Neuron94, 569–580.e5 (2017). PubMed PMC

Zhao, H. et al. Preferential assembly of heteromeric kainate and AMPA receptor amino terminal domains. eLife6, e32056 (2017). PubMed PMC

Jin, R. et al. Crystal structure and association behaviour of the GluR2 amino-terminal domain. EMBO J.28, 1812–1823 (2009). PubMed PMC

Clayton, A. et al. Crystal structure of the GluR2 amino-terminal domain provides insights into the architecture and assembly of ionotropic glutamate receptors. J. Mol. Biol.392, 1125–1132 (2009). PubMed

Fukata, Y. et al. Molecular constituents of neuronal AMPA receptors. J. Cell Biol.169, 399–404 (2005). PubMed PMC

Jackson, A. C. & Nicoll, R. A. The expanding social network of ionotropic glutamate receptors: TARPs and other transmembrane auxiliary subunits. Neuron70, 178–199 (2011). PubMed PMC

Meyerson, J. R. et al. Structural mechanism of glutamate receptor activation and desensitization. Nature514, 328–334 (2014). PubMed PMC

Evans, R. et al. Protein complex prediction with AlphaFold-Multimer. Preprint at bioRxiv10.1101/2021.10.04.463034 (2021).

Rodrigues, C. H. M., Pires, D. E. V. & Ascher, D. B. DynaMut2: assessing changes in stability and flexibility upon single and multiple point missense mutations. Protein Sci.30, 60–69 (2021). PubMed PMC

Mercadante, D., Grater, F. & Daday, C. CONAN: a tool to decode dynamical information from molecular interaction maps. Biophys. J.114, 1267–1273 (2018). PubMed PMC

Nakagawa, T., Wang, X. T., Miguez-Cabello, F. J. & Bowie, D. The open gate of the AMPA receptor forms a Ca2+ binding site critical in regulating ion transport. Nat. Struct. Mol. Biol.31, 688–700 (2024). PubMed PMC

Shanks, N. F., Maruo, T., Farina, A. N., Ellisman, M. H. & Nakagawa, T. Contribution of the global subunit structure and Stargazin on the maturation of AMPA receptors. J. Neurosci.30, 2728–2740 (2010). PubMed PMC

Zhang, D., Watson, J. F., Matthews, P. M., Cais, O. & Greger, I. H. Gating and modulation of a hetero-octameric AMPA glutamate receptor. Nature594, 454–458 (2021). PubMed PMC

Durr, K. L. et al. Structure and dynamics of AMPA receptor GluA2 in resting, pre-open, and desensitized states. Cell158, 778–792 (2014). PubMed PMC

Miesenbock, G., De Angelis, D. A. & Rothman, J. E. Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature394, 192–195 (1998). PubMed

Chen, S. et al. Activation and desensitization mechanism of AMPA receptor-TARP complex by cryo-EM. Cell170, 1234–1246 (2017). PubMed PMC

Nakagawa, T., Cheng, Y., Ramm, E., Sheng, M. & Walz, T. Structure and different conformational states of native AMPA receptor complexes. Nature433, 545–549 (2005). PubMed

Heine, M. et al. Surface mobility of postsynaptic AMPARs tunes synaptic transmission. Science320, 201–205 (2008). PubMed PMC

Penn, A. C. et al. Hippocampal LTP and contextual learning require surface diffusion of AMPA receptors. Nature549, 384–388 (2017). PubMed PMC

Heine, M. et al. Activity-independent and subunit-specific recruitment of functional AMPA receptors at neurexin/neuroligin contacts. Proc. Natl Acad. Sci. USA105, 20947–20952 (2008). PubMed PMC

Constals, A. et al. Glutamate-induced AMPA receptor desensitization increases their mobility and modulates short-term plasticity through unbinding from Stargazin. Neuron85, 787–803 (2015). PubMed

Boudkkazi, S. et al. A Noelin-organized extracellular network of proteins required for constitutive and context-dependent anchoring of AMPA-receptors. Neuron111, 2544–2556 (2023). PubMed PMC

Matthews, P. M., Pinggera, A., Kampjut, D. & Greger, I. H. Biology of AMPA receptor interacting proteins—from biogenesis to synaptic plasticity. Neuropharmacology197, 108709 (2021). PubMed

Sia, G. M. et al. Interaction of the N-terminal domain of the AMPA receptor GluR4 subunit with the neuronal pentraxin NP1 mediates GluR4 synaptic recruitment. Neuron55, 87–102 (2007). PubMed

Feghhi, T. et al. Computational modeling predicts ephemeral acidic microdomains in the glutamatergic synaptic cleft. Biophys. J.120, 5575–5591 (2021). PubMed PMC

Tong, C. K., Chen, K. & Chesler, M. Kinetics of activity-evoked pH transients and extracellular pH buffering in rat hippocampal slices. J. Neurophysiol.95, 3686–3697 (2006). PubMed

Malinow, R. & Malenka, R. C. AMPA receptor trafficking and synaptic plasticity. Annu. Rev. Neurosci.25, 103–126 (2002). PubMed

Trussell, L. O. Synaptic mechanisms for coding timing in auditory neurons. Annu. Rev. Physiol.61, 477–496 (1999). PubMed

Larsen, A. H., Perozzo, A. M., Biggin, P. C., Bowie, D. & Kastrup, J. S. Recovery from desensitization in GluA2 AMPA receptors is affected by a single mutation in the N-terminal domain interface. J. Biol. Chem.300, 105717 (2024). PubMed PMC

Farina, A. N. et al. Separation of domain contacts is required for heterotetrameric assembly of functional NMDA receptors. J. Neurosci.31, 3565–3579 (2011). PubMed PMC

Gangwar, S. P. et al. Modulation of GluA2–γ5 synaptic complex desensitization, polyamine block and antiepileptic perampanel inhibition by auxiliary subunit cornichon-2. Nat. Struct. Mol. Biol.30, 1481–1494 (2023). PubMed PMC

Kimanius, D., Dong, L., Sharov, G., Nakane, T. & Scheres, S. H. W. New tools for automated cryo-EM single-particle analysis in RELION-4.0. Biochem. J.478, 4169–4185 (2021). PubMed PMC

Kimanius, D. et al. Data-driven regularization lowers the size barrier of cryo-EM structure determination. Nat. Methods21, 1216–1221 (2024). PubMed PMC

Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods14, 331–332 (2017). PubMed PMC

Rohou, A. & Grigorieff, N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol.192, 216–221 (2015). PubMed PMC

Ramlaul, K., Palmer, C. M., Nakane, T. & Aylett, C. H. S. Mitigating local over-fitting during single particle reconstruction with SIDESPLITTER. J. Struct. Biol.211, 107545 (2020). PubMed PMC

Kucukelbir, A., Sigworth, F. J. & Tagare, H. D. Quantifying the local resolution of cryo-EM density maps. Nat. Methods11, 63–65 (2014). PubMed PMC

Rosenthal, P. B. & Henderson, R. Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J. Mol. Biol.333, 721–745 (2003). PubMed

Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem.25, 1605–1612 (2004). PubMed

Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr.66, 486–501 (2010). PubMed PMC

Afonine, P. V. et al. Real-space refinement in Phenix for cryo-EM and crystallography. Acta Crystallogr. D Struct. Biol.74, 531–544 (2018). PubMed PMC

Brown, A. et al. Tools for macromolecular model building and refinement into electron cryo-microscopy reconstructions. Acta Crystallogr. D Biol. Crystallogr.71, 136–153 (2015). PubMed PMC

Garcia-Nafria, J., Watson, J. F. & Greger, I. H. IVA cloning: a single-tube universal cloning system exploiting bacterial in vivo assembly. Sci. Rep.6, 27459 (2016). PubMed PMC

Salazar, H., Mischke, S. & Plested, A. J. R. Measurements of the timescale and conformational space of AMPA receptor desensitization. Biophys. J.119, 206–218 (2020). PubMed PMC

Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Methods19, 679–682 (2022). PubMed PMC

Beaudoin, G. M. et al. Culturing pyramidal neurons from the early postnatal mouse hippocampus and cortex. Nat. Protoc.7, 1741–1754 (2012). PubMed

Koulouras, G. et al. EasyFRAP-web: a web-based tool for the analysis of fluorescence recovery after photobleaching data. Nucleic Acids Res.46, W467–W472 (2018). PubMed PMC

Benkert, P., Biasini, M. & Schwede, T. Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics27, 343–350 (2011). PubMed PMC

Studer, G. et al. QMEANDisCo—distance constraints applied on model quality estimation. Bioinformatics36, 2647 (2020). PubMed PMC

Olsson, M. H., Søndergaard, C. R., Rostkowski, M. & Jensen, J. H. PROPKA3: consistent treatment of internal and surface residues in empirical pKa predictions. J. Chem. Theory Comput.7, 525–537 (2011). PubMed

Søndergaard, C. R., Olsson, M. H., Rostkowski, M. & Jensen, J. H. Improved treatment of ligands and coupling effects in empirical calculation and rationalization of pKa values. J. Chem. Theory Comput.7, 2284–2295 (2011). PubMed

Berendsen, H., Postma, J., van Gunsteren, W. & Hermans, J. Interaction models for water in relation to protein hydration. In Intermolecular Forces. The 14th Jerusalem Symposia on Quantum Chemistry and Biochemistry (ed. Pullman, A.) 331–342 (Springer, 1981).

Bekker, H. et al. GROMACS—a parallel computer for molecular dynamics simulations. In Physics Computing '92 (eds DeGroot, R. A. & Nadrchal, J.) (World Scientific Publishing, 1993).

Berendsen, H. J. C., van der Spoel, D. & van Drunen, R.GROMACS: a message-passing parallel molecular dynamics implementation. Comput. Phys. Commun.91, 43–56 (1995).

van der Spoel, D. et al. GROMACS: fast, flexible, and free. J. Comput. Chem.26, 1701–1718 (2005). PubMed

Ivica, J. et al. Proton-triggered rearrangement of the AMPA receptor N-terminal domains impacts receptor kinetics and synaptic localization. Zenodo10.5281/zenodo.11654386 (2024). PubMed PMC

Armon, A., Graur, D. & Ben-Tal, N. ConSurf: an algorithmic tool for the identification of functional regions in proteins by surface mapping of phylogenetic information. J. Mol. Biol.307, 447–463 (2001). PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...