Visualisation of in vivo protein synthesis during mycobacterial infection through [68Ga]Ga-DOTA-puromycin µPET/MRI
Language English Country England, Great Britain Media electronic
Document type Journal Article
PubMed
39164329
PubMed Central
PMC11335739
DOI
10.1038/s41598-024-70200-4
PII: 10.1038/s41598-024-70200-4
Knihovny.cz E-resources
- Keywords
- Fluorodeoxyglucose, Gallium-68, Molecular imaging, Mycobacterium tuberculosis, Positron emission tomography/magnetic resonance imaging,
- MeSH
- Heterocyclic Compounds, 1-Ring chemistry MeSH
- Magnetic Resonance Imaging * methods MeSH
- Mycobacterium bovis * MeSH
- Mycobacterium Infections diagnostic imaging microbiology MeSH
- Mice, SCID MeSH
- Mice MeSH
- Organometallic Compounds MeSH
- Positron-Emission Tomography * methods MeSH
- Radiopharmaceuticals * chemistry MeSH
- Gallium Radioisotopes * MeSH
- Tuberculosis diagnostic imaging microbiology metabolism MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Heterocyclic Compounds, 1-Ring MeSH
- Organometallic Compounds MeSH
- Radiopharmaceuticals * MeSH
- Gallium Radioisotopes * MeSH
Radiolabelled puromycin analogues will allow the quantification of protein synthesis through nuclear medicine-based imaging. A particularly useful application could be the non-invasive longitudinal visualisation of mycobacterial activity through direct quantification of puromycin binding. This study assesses the value of [68Ga]Ga-DOTA-puromycin in the visualisation of mycobacteria through positron emission tomography combined with magnetic resonance imaging (µPET/MRI). The radiopharmaceutical was produced by previously published and validated methods. [68Ga]Ga-DOTA-Puromycin imaging was performed on severe immunodeficient mice infected with Bacille Calmette-Guérin-derived M. Bovis (BCG). Acute and chronic infection stages were examined by µPET/MRI. A follow-up group of animals acted as controls (animals bearing S. aureus-derived infection and sterile inflammation) to assess tracer selectivity. [68Ga]Ga-DOTA-puromycin-µPET/MRI images revealed the acute, widespread infection within the right upper shoulder and armpit. Also, [68Ga]Ga-DOTA-puromycin signal sensitivity measured after a 12-week period was lower than that of [18F]FDG-PET in the same animals. A suitable correlation between normalised uptake values (NUV) and gold standard histopathological analysis confirms accurate tracer accumulation in viable bacteria. The radiopharmaceutical showed infection selectivity over inflammation but accumulated in both M. Bovis and S. Aureus, lacking pathogen specificity. Overall, [68Ga]Ga-DOTA-puromycin exhibits potential as a tool for non-invasive protein synthesis visualization, albeit without pathogen selectivity.
Clinical for Nuclear Medicine University Hospital RWTH Aachen 52074 Aachen Germany
Department of Nuclear Medicine University of Pretoria Pretoria 0001 South Africa
Department of Radiopharmacy Charles University Prague 11000 Prague Czech Republic
Nuclear Medicine Research Infrastructure NPC Pretoria 0001 South Africa
See more in PubMed
Treglia, G. Diagnostic performance of 18F-FDG PET/CT in infectious and inflammatory disease according to published meta-analysis. Contrast Media Mol. Imaging.2019, 3018349. 10.1155/2019/3018349 (2019). 10.1155/2019/3018349 PubMed DOI PMC
Xu, T. & Chen, Y. Research progress of [68Ga]Citrate PET’s utility in infection and inflammation imaging: a review. Mol. Imaging Biol.22, 22–32. 10.1007/s11307-019-01366-x (2019).10.1007/s11307-019-01366-x PubMed DOI
Signore, A., Glaudemans, A. W. J. M., Galli, F. & Rouzet, F. Imaging infection and inflammation. Biomed Res. Int.615150, 1–3. 10.1155/2015/615150 (2015).10.1155/2015/615150 PubMed DOI PMC
Ito, K. et al. Imaging spectrum and pitfalls of 18F-fluorodeoxyglucose positron emission tomography/computed tomography in patients with tuberculosis. Jpn. J. Radiol.61, 511–520. 10.1007/s11604-0133-0218-4 (2013).10.1007/s11604-0133-0218-4 PubMed DOI
Sathekge, M., Maes, A. & Van de Wiele, C. FDG-PET imaging in HIV infection and tuberculosis. Sem. Nucl. Med.43(5), 349–366. 10.1053/j.semnuclmed.2013.04.008 (2013).10.1053/j.semnuclmed.2013.04.008 PubMed DOI
Subramanian, S. et al. Arterial inflammation in patients with HIV. JAMA308(4), 379–368. 10.1001/jama.2012.6698 (2012). 10.1001/jama.2012.6698 PubMed DOI PMC
MacNeil, A. et al. Global epidemiology of tuberculosis and progress towards meeting global targets–worldwide. MMWR69(11), 281–285. 10.15585/mmwr.mm6911a2 (2020). 10.15585/mmwr.mm6911a2 PubMed DOI PMC
Yarmolinsky, M. B. & De la Haba, G. B. Inhibition by puromycin of amino acid incorporation into protein. Proc. Natl. Acad. Sci. U.S.A.45(12), 1721–1729. 10.1073/pnas.45.12.1721 (1959). 10.1073/pnas.45.12.1721 PubMed DOI PMC
Nathans, D. Puromycin inhibition of protein synthesis: incorporation of puromycin into peptide chains. Proc. Natl. Acad. Sci. U.S.A.51(4), 585–592. 10.1073/pnas.51.4.585 (1964). 10.1073/pnas.51.4.585 PubMed DOI PMC
Miyamoto-Sato, E., Nemoto, N., Kobayashi, K. & Yanagawa, H. Spesific bonding of puromycin to full-length protein at the C-terminus. Nucle. Acids Res.28(5), 1176–1182. 10.1093/nar/28.5.1176 (2000).10.1093/nar/28.5.1176 PubMed DOI PMC
Starck, S. R. & Roberts, R. W. Puromycin oligonucleotides reveal steric restrictions for ribosome entry and multiple modes of translation inhibition. RNA8(7), 890–903. 10.1017/s1355838202022069 (2002). 10.1017/s1355838202022069 PubMed DOI PMC
Eigner, S. et al. Measurement of protein synthesis: In vitro comparison of [68]Ga-DOTA-puromycin, [(3)H]tyrosine, and 2-flouro-[(3)H]tyrosine. Recent Results Cancer Res.194, 269–283. 10.1007/978-3-642-27994-2_14 (2013). 10.1007/978-3-642-27994-2_14 PubMed DOI
Septhaon, S. M. & Aibgirhio, F. I. Radiosynthesis of carbon-11 labeled puromycin as a potential PET candidate for imaging protein synthesis in vivo. ACS Med. Chem. Lett.7(6), 647–651. 10.1021/acsmedchemlett.6b00093 (2016). 10.1021/acsmedchemlett.6b00093 PubMed DOI PMC
Betts, H. M. et al. Synthesis, in vitro evaluation, and radiolabeling of fluorinated pyromycin analogues: Potential candidates for PET imaging of protein synthesis. J. Med. Chem.59(20), 9422–9430. 10.1021/acs.jmedchem.6b00968 (2016). 10.1021/acs.jmedchem.6b00968 PubMed DOI
Eigner, S. et al. Imaging of protein synthesis: In vitro and in vivo evaluation of 44Sc-DOTA-puromycin. Mol. Imaging Biol.15(1), 79–86. 10.1007/s11307-012-0561-3 (2012).10.1007/s11307-012-0561-3 PubMed DOI
Velikyan, I. Prospective of 68Ga-Radiopharmaceutical development. Theranostics4(1), 47–80. 10.7140/thno.7447 (2014).10.7140/thno.7447 PubMed DOI PMC
Lambrecht, F. Y. Evaluation of 99mTc-labeled antibiotics for infection detection. Ann. Nucl. Med.25, 1–6. 10.1007/s12149-010-0417-3 (2011). 10.1007/s12149-010-0417-3 PubMed DOI
Eigner, S., Vera, D. B., Lebeda, O. & Henke, K. E. 68Ga-DOTA-Puromycin: In vivo imaging of bacterial infection. J. Nucl. Med.52(S2), 1218 (2013).
Bashyal, N. et al. Assessment of risks and benefits of using antibiotic resistance genes in mescenchymal stem cell-based ex-vivo therapy. Int. J. Stem Cells.16(4), 438–447. 10.15283/ijsc23053 (2023). 10.15283/ijsc23053 PubMed DOI PMC
Aviner, R. The science of puromycin: From studies of ribosome function to applications in biotechnology. Comput. Struct. Biotechnol. J.18, 1074–1083. 10.1016/j.csbj.2020.04.014 (2020). 10.1016/j.csbj.2020.04.014 PubMed DOI PMC
Liu, J., Yangquing, X., Stoleru, D. & Salic, A. Imaging protein synthesis in cells and tissues with an alkyne analog of puromycin. Proc. Natl. Acad. Sci. U.S.A.109, 413–418. 10.1073/pnas.11115611 (2012). 10.1073/pnas.11115611 PubMed DOI PMC
Enam, S. U. E. et al. Puromucyin reactivity does not accurately localize translation at the subcellular level. ELife9, e60303. 10.7554/eLife.60303 (2020). 10.7554/eLife.60303 PubMed DOI PMC
Liao, S., Eickelberg, O., Schmidt, E. P. & Yang, Y. Direct intrabronchial administration to improve the selective agent deposition within the mouse lung. J. Vis. Exp.147, e59450. 10.3791/59450 (2019).10.3791/59450 PubMed DOI
Vorster, M., Maes, A., Van de Wiele, C. & Sathekge, M. 68Ga-citrate PET/CT in tuberculosis: a pilot study. Q J Nucl Med Mol Imaging.63(1), 48–55. 10.23736/S1824-4785.16.02680-7 (2019). 10.23736/S1824-4785.16.02680-7 PubMed DOI
Szöllösi, D. et al. Evaluation of brain nuclear medicine imaging tracers in a murine model of sepsis-associated encephalophaty. Mol. Imaging Biol.20(6), 952–962. 10.1007/s11307-018-1201-3 (2018). 10.1007/s11307-018-1201-3 PubMed DOI PMC
Pénzes, M. et al. Direct myosin-2 inhibition enhances cerebral perfusion resulting in functional improvement after ischemic stroke. Theranostics10(12), 5341–5356. 10.7150/thno.42077 (2020). 10.7150/thno.42077 PubMed DOI PMC
Kaplan, G. et al.Infect. Immun.71(12), 7099–7108. 10.1128/IAI/71.12.7099-7108.2003 (2003). 10.1128/IAI/71.12.7099-7108.2003 PubMed DOI PMC
Subbian, S. et al. Chronic pulmonary cavitary tuberculosis in rabbits: A failed host immune response. Open Biol.1(4), 110016. 10.1098/rsob.110016 (2011). 10.1098/rsob.110016 PubMed DOI PMC
Mackie and Mc Cartney Practical Medical Microbiology. Editors: J.G. Colle, A.G. Fraser, B.P. Marmion, A. Simmous, 4th ed, Publisher Churchill Living Stone, New York, Melborne, Sans Franscisco 1996.