Autosomal dominant stromal corneal dystrophy associated with a SPARCL1 missense variant
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
Wellcome Trust - United Kingdom
PubMed
39169229
PubMed Central
PMC11607396
DOI
10.1038/s41431-024-01687-8
PII: 10.1038/s41431-024-01687-8
Knihovny.cz E-zdroje
- MeSH
- dědičné dystrofie rohovky * genetika patologie MeSH
- dekorin genetika metabolismus MeSH
- dospělí MeSH
- extracelulární matrix - proteiny * genetika MeSH
- heterozygot MeSH
- lidé středního věku MeSH
- lidé MeSH
- missense mutace * MeSH
- proteiny vázající vápník * genetika MeSH
- rodokmen * MeSH
- senioři MeSH
- stroma rohovky patologie metabolismus MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- dekorin MeSH
- extracelulární matrix - proteiny * MeSH
- proteiny vázající vápník * MeSH
- SPARCL1 protein, human MeSH Prohlížeč
Corneal dystrophies are phenotypically and genetically heterogeneous, often resulting in visual impairment caused by corneal opacification. We investigated the genetic cause of an autosomal dominant corneal stromal dystrophy in a pedigree with eight affected individuals in three generations. Affected individuals had diffuse central stromal opacity, with reduced visual acuity in older family members. Histopathology of affected cornea tissue removed during surgery revealed mild stromal textural alterations with alcianophilic deposits. Whole genome sequence data were generated for four affected individuals. No rare variants (MAF < 0.001) were identified in established corneal dystrophy genes. However, a novel heterozygous missense variant in exon 4 of SPARCL1, NM_004684: c.334G > A; p.(Glu112Lys), which is predicted to be damaging, segregated with disease. SPARC-like protein 1 (SPARCL1) is a secreted matricellular protein involved in cell migration, cell adhesion, tissue repair, and remodelling. Interestingly, SPARCL1 has been shown to regulate decorin. Heterozygous variants in DCN, encoding decorin, cause autosomal dominant congenital stromal corneal dystrophy, suggesting a common pathogenic pathway. Therefore, we performed immunohistochemistry to compare SPARCL1 and decorin localisation in corneal tissue from an affected family member and an unaffected control. Strikingly, the level of decorin was significantly decreased in the corneal stroma of the affected tissue, and SPARCL1 appeared to be retained in the epithelium. In summary, we describe a novel autosomal dominant corneal stromal dystrophy associated with a missense variant in SPARCL1, extending the phenotypic and genetic heterogeneity of inherited corneal disease.
Department of Corneal and External Eye Disease Moorfields Eye Hospital London UK
Structural Biophysics Group School of Optometry and Vision Sciences Cardiff University Cardiff UK
UCL Institute of Ophthalmology University College London London UK
Zobrazit více v PubMed
Eghrari AO, Riazuddin SA, Gottsch JD. Overview of the cornea: structure, function, and development. Prog Mol Biol Transl Sci. 2015;134:7–23. PubMed
DelMonte DW, Kim T. Anatomy and physiology of the cornea. J Cataract Refract Surg. 2011;37:588–98. PubMed
Weiss JS, Rapuano CJ, Seitz B, Busin M, Kivelä TT, Bouheraoua N, et al. IC3D classification of corneal dystrophies-edition 3. Cornea. 2024;43:466–527. PubMed PMC
Klintworth GK. Corneal dystrophies. Orphanet J Rare Dis. 2009;4:7. PubMed PMC
Bredrup C, Knappskog PM, Majewski J, Rødahl E, Boman H. Congenital stromal dystrophy of the cornea caused by a mutation in the decorin gene. Investig Ophthalmol Vis Sci. 2005;46:420–6. PubMed
Rødahl E, Van Ginderdeuren R, Knappskog PM, Bredrup C, Boman H. A second decorin frame shift mutation in a family with congenital stromal corneal dystrophy. Am J Ophthalmol. 2006;142:520–1. PubMed
Kim J-H, Ko JM, Lee I, Kim JY, Kim MJ, Tchah H. A novel mutation of the decorin gene identified in a Korean family with congenital hereditary stromal dystrophy. Cornea. 2011;30:1473–7. PubMed
Lee JH, Ki C-S, Chung E-S, Chung T-Y. A novel decorin gene mutation in congenital hereditary stromal dystrophy: a Korean family. Korean J Ophthalmol. 2012;26:301–5. PubMed PMC
Jing Y, Kumar PR, Zhu L, Edward DP, Tao S, Wang L, et al. Novel decorin mutation in a Chinese family with congenital stromal corneal dystrophy. Cornea. 2014;33:288–93. PubMed
Williams D, Chung DD, Hovakimyan A, Davtyan A, Glasgow BJ, Aldave AJ. Novel DCN mutation in Armenian family with congenital stromal corneal dystrophy. Cornea. 2023;42:464–9. PubMed
Gómez-Calleja V, Burgos-Blasco B, Méndez-Fernández R, Pérez-García P, Ariño-Gutiérrez M, Borrego-Sanz L, et al. Congenital stromal corneal dystrophy in a Spanish family: clinical, genetic and histological analysis. J Fr Ophtalmol. 2024;47:104138. PubMed
Morikawa H, Nishina S, Torii K, Hosono K, Yokoi T, Shigeyasu C, et al. A pediatric case of congenital stromal corneal dystrophy caused by the novel variant c.953del of the DCN gene. Hum Genome Var. 2023;10:9. PubMed PMC
Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics. 2010;26:589–95. PubMed PMC
DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011;43:491–8. PubMed PMC
Boeva V, Popova T, Bleakley K, Chiche P, Cappo J, Schleiermacher G, et al. Control-FREEC: a tool for assessing copy number and allelic content using next-generation sequencing data. Bioinformatics. 2012;28:423–5. PubMed PMC
Rausch T, Zichner T, Schlattl A, Stütz AM, Benes V, Korbel JO. DELLY: structural variant discovery by integrated paired-end and split-read analysis. Bioinformatics. 2012;28:i333–9. PubMed PMC
Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38:e164. PubMed PMC
Rentzsch P, Witten D, Cooper GM, Shendure J, Kircher M. CADD: predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res. 2019;47:D886–94. PubMed PMC
Chen Y, Huang K, Nakatsu MN, Xue Z, Deng SX, Fan G. Identification of novel molecular markers through transcriptomic analysis in human fetal and adult corneal endothelial cells. Hum Mol Genet. 2013;22:1271–9. PubMed PMC
Bath C, Muttuvelu D, Emmersen J, Vorum H, Hjortdal J, Zachar V. Transcriptional dissection of human limbal niche compartments by massive parallel sequencing. PLoS ONE. 2013;8:e64244. PubMed PMC
Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10:R25. PubMed PMC
Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–30. PubMed
Wagner GP, Kin K, Lynch VJ. Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theory Biosci. 2012;131:281–5. PubMed
Sullivan MM, Barker TH, Funk SE, Karchin A, Seo NS, Höök M, et al. Matricellular hevin regulates decorin production and collagen assembly. J Biol Chem. 2006;281:27621–32. PubMed
Akama TO, Nishida K, Nakayama J, Watanabe H, Ozaki K, Nakamura T, et al. Macular corneal dystrophy type I and type II are caused by distinct mutations in a new sulphotransferase gene. Nat Genet. 2000;26:237–41. PubMed
Munier FL, Korvatska E, Djemaï A, Le Paslier D, Zografos L, et al. Kerato-epithelin mutations in four 5q31-linked corneal dystrophies. Nat Genet. 1997;15:247–51. PubMed
Li S, Tiab L, Jiao X, Munier FL, Zografos L, Frueh BE, et al. Mutations in PIP5K3 are associated with François-Neetens mouchetée fleck corneal dystrophy. Am J Hum Genet. 2005;77:54–63. PubMed PMC
Weiss JS, Wiaux C, Yellore V, Raber I, Eagle R, Mequio M, et al. Newly reported p.Asp240Asn mutation in UBIAD1 suggests central discoid corneal dystrophy is a variant of Schnyder corneal dystrophy. Cornea. 2010;29:777–80. PubMed
Kamma-Lorger CS, Pinali C, Martínez JC, Harris J, Young RD, Bredrup C, et al. Role of decorin core protein in collagen organisation in congenital stromal corneal dystrophy (CSCD). PLoS ONE. 2016;11:e0147948. PubMed PMC
Li J, Zhao T, Zhang Y, Zhang K, Shi L, Chen Y, et al. Performance evaluation of pathogenicity-computation methods for missense variants. Nucleic Acids Res. 2018;46:7793–804. PubMed PMC
Gunning AC, Fryer V, Fasham J, Crosby AH, Ellard S, Baple EL, et al. Assessing performance of pathogenicity predictors using clinically relevant variant datasets. J Med Genet. 2021;58:547–55. PubMed PMC
Laskowski RA, Stephenson JD, Sillitoe I, Orengo CA, Thornton JM. VarSite: disease variants and protein structure. Protein Sci. 2020;29:111. PubMed PMC
Chaurasia SS, Perera PR, Poh R, Lim RR, Wong TT, Mehta JS. Hevin plays a pivotal role in corneal wound healing. PLoS ONE. 2013;8:e81544. PubMed PMC
Mellgren AEC, Bruland O, Vedeler A, Saraste J, Schönheit J, Bredrup C, et al. Development of congenital stromal corneal dystrophy is dependent on export and extracellular deposition of truncated decorin. Investig Ophthalmol Vis Sci. 2015;56:2909–15. PubMed