Functional redundancy and niche specialization in honeybee and Varroa microbiomes
Jazyk angličtina Země Švýcarsko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39172274
DOI
10.1007/s10123-024-00582-y
PII: 10.1007/s10123-024-00582-y
Knihovny.cz E-zdroje
- Klíčová slova
- Apis mellifera, Varroa destructor, Community assembly, Microbiomes, Networks,
- MeSH
- Bacteria * klasifikace genetika izolace a purifikace MeSH
- mikrobiota * MeSH
- RNA ribozomální 16S genetika MeSH
- Varroidae * mikrobiologie MeSH
- včely mikrobiologie parazitologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- RNA ribozomální 16S MeSH
The honeybee (Apis mellifera) is a key pollinator critical to global agriculture, facing threats from various stressors, including the ectoparasitic Varroa mite (Varroa destructor). Previous studies have identified shared bacteria between Varroa mites and honeybees, yet it remains unclear if these bacteria assemble similarly in both species. This study builds on existing knowledge by investigating co-occurrence patterns in the microbiomes of both Varroa mites and honeybees, shedding light on potential interactions. Leveraging 16S rRNA datasets, we conducted co-occurrence network analyses, explored Core Association Networks (CAN) and assess network robustness. Comparative network analyses revealed structural differences between honeybee and mite microbiomes, along with shared core features and microbial motifs. The mite network exhibited lower robustness, suggesting less resistance to taxa extension compared to honeybees. Furthermore, analyses of predicted functional profiling and taxa contribution revealed that common central pathways in the metabolic networks have different taxa contributing to Varroa mites and honeybee microbiomes. The results show that while both microbial systems exhibit functional redundancy, in which different taxa contribute to the functional stability and resilience of the ecosystem, there is evidence for niche specialization resulting in unique contributions to specific pathways in each part of this host-parasite system. The specificity of taxa contribution to key pathways offers targeted approaches to Varroa microbiome management and preserving honeybee microbiome. Our findings provide valuable insights into microbial interactions, aiding farmers and beekeepers in maintaining healthy and resilient bee colonies amid increasing Varroa mite infestations.
EA 7310 Laboratoire de Virologie Université de Corse 20250 Corte France
INRAE UR 0045 Laboratoire de Recherches Sur Le Développement de L'Elevage 20250 Corte France
School of Environmental Sciences University of Guelph Guelph ON N1G 2W1 Canada
University of South Bohemia Faculty of Science České Budějovice 37005 Czech Republic
Zobrazit více v PubMed
Aderem A (2005) Systems biology: its practice and challenges. Cell 121:511–513. https://doi.org/10.1016/j.cell.2005.04.020 PubMed DOI
Agarwal N, Raghuwanshi SK, Upadhyay DN, Shukla PK, Ram VJ (2000) Suitably functionalised pyrimidines as potential antimycotic agents. Bioorg Med Chem Lett 10:703–706. https://doi.org/10.1016/S0960-894X(00)00091-3 PubMed DOI
Allaire JJ, Gandrud C, Russell K, Yetman CJ, Ellis P, Kuo K, Lewis BW, Owen J, Rogers J, Sese C (2017) NetworkD3: D3 JavaScript Network Graphs from R (Version 0.4) [R package]. CRAN. https://CRAN.Rproject.org/package=networkD3
Anaconda Software Distribution (2023) Anaconda documentation. Anaconda Inc. https://Docs.Anaconda.Com .
Bajić D, Rebolleda-Gómez M, Muñoz MM, Sánchez Á (2021) The macroevolutionary consequences of niche construction in microbial metabolism. Front Microbiol 12:718082. https://doi.org/10.3389/fmicb.2021.718082 PubMed DOI PMC
Balzarini J (2002) Bicyclic pyrimidine nucleoside analogues (BCNAs) as highly selective and potent inhibitors of varicella-zoster virus replication. J Antimicrob Chemother 50:5–9. https://doi.org/10.1093/jac/dkf037 PubMed DOI
Bastian M, Heymann S, Jacomy M (2009) Gephi: an open source software for exploring and manipulating networks. Proc Int AAAI Conf Web Soc Media 3:361–362. https://doi.org/10.1609/icwsm.v3i1.13937 DOI
Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E, Knight R, Huttley GA, Gregory Caporaso J (2018) Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6:90. https://doi.org/10.1186/s40168-018-0470-z PubMed DOI PMC
Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F, Bai Y, Bisanz JE, Bittinger K, Brejnrod A, Brislawn CJ, Brown CT, Callahan BJ, Caraballo-Rodríguez AM, Chase J, Cope EK, Da Silva R, Diener C, Dorrestein PC, Douglas GM, Durall DM, Duvallet C, Edwardson CF, Ernst M, Estaki M, Fouquier J, Gauglitz JM, Gibbons SM, Gibson DL, Gonzalez A, Gorlick K, Guo J, Hillmann B, Holmes S, Holste H, Huttenhower C, Huttley GA, Janssen S, Jarmusch AK, Jiang L, Kaehler BD, Kang KB, Keefe CR, Keim P, Kelley ST, Knights D, Koester I, Kosciolek T, Kreps J, Langille MGI, Lee J, Ley R, Liu Y-X, Loftfield E, Lozupone C, Maher M, Marotz C, Martin BD, McDonald D, McIver LJ, Melnik AV, Metcalf JL, Morgan SC, Morton JT, Naimey AT, Navas-Molina JA, Nothias LF, Orchanian SB, Pearson T, Peoples SL, Petras D, Preuss ML, Pruesse E, Rasmussen LB, Rivers A, Robeson MS, Rosenthal P, Segata N, Shaffer M, Shiffer A, Sinha R, Song SJ, Spear JR, Swafford AD, Thompson LR, Torres PJ, Trinh P, Tripathi A, Turnbaugh PJ, Ul-Hasan S, Van Der Hooft JJJ, Vargas F, Vázquez-Baeza Y, Vogtmann E, Von Hippel M, Walters W, Wan Y, Wang M, Warren J, Weber KC, Williamson CHD, Willis AD, Xu ZZ, Zaneveld JR, Zhang Y, Zhu Q, Knight R, Caporaso JG (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37:852–857. https://doi.org/10.1038/s41587-019-0209-9 PubMed DOI PMC
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP (2016) DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583. https://doi.org/10.1038/nmeth.3869 PubMed DOI PMC
Caspi R, Billington R, Fulcher CA, Keseler IM, Kothari A, Krummenacker M, Latendresse M, Midford PE, Ong Q, Ong WK, Paley S, Subhraveti P, Karp PD (2018) The MetaCyc database of metabolic pathways and enzymes. Nucleic Acids Res 46:D633–D639. https://doi.org/10.1093/nar/gkx935 PubMed DOI
Chazdon RL, Chao A, Colwell RK, Lin S-Y, Norden N, Letcher SG, Clark DB, Finegan B, Arroyo JP (2011) A novel statistical method for classifying habitat generalists and specialists. Ecol 92:1332–1343. https://doi.org/10.1890/10-1345.1 DOI
Chen Y, Pettis JS, Evans JD, Kramer M, Feldlaufer MF (2004) Transmission of Kashmir bee virus by the ectoparasitic mite Varroa destructor. Apidologie 35:441–448. https://doi.org/10.1051/apido:2004031 DOI
DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. App Environ Microbiol 72:5069–5072. https://doi.org/10.1128/AEM.03006-05 DOI
Di Prisco G, Pennacchio F, Caprio E, Boncristiani HF, Evans JD, Chen Y (2011) Varroa destructor is an effective vector of Israeli acute paralysis virus in the honeybee Apis mellifera. J Gen Virol 92:151–155. https://doi.org/10.1099/vir.0.023853-0 PubMed DOI
Donovan BJ, Paul F (2005) Pseudoscorpions: the forgotten beneficials inside beehives and their potential for management for control of Varroa and other arthropod pests. Bee World 86:83–87. https://doi.org/10.1080/0005772X.2005.11417322 DOI
Douglas GM, Maffei VJ, Zaneveld JR, Yurgel SN, Brown JR, Taylor CM, Huttenhower C, Langille MGI (2020) PICRUSt2 for prediction of metagenome functions. Nat Biotechnol 38:685–688. https://doi.org/10.1038/s41587-020-0548-6 PubMed DOI PMC
Faust K, Raes J (2012) Microbial interactions: from networks to models. Nat Rev Microbiol 10:538–550. https://doi.org/10.1038/nrmicro2832 PubMed DOI
Fischhoff IR, Huang T, Hamilton SK, Han BA, LaDeau SL, Ostfeld RS, Rosi EJ, & Solomon CT (2020). Parasite and pathogen effects on ecosystem processes: a quantitative review. Ecosphere, 11(5). https://doi.org/10.1002/ecs2.3057
Freitas S, Yang D, Kumar S, Tong H, Chau DH (2021) Evaluating graph vulnerability and robustness using TIGER. In ‘Proc. 30th ACM Int. Conf. Inf. Knowl. Manag.’, virtual event Queensland Australia. 4495–4503. (ACM: virtual event Queensland Australia) https://doi.org/10.1145/3459637.3482002 .
Friedman J, Alm EJ (2012) Inferring correlation networks from genomic survey data (C Von Mering, Ed.). PLoS Comput Biol 8, e1002687. https://doi.org/10.1371/journal.pcbi.1002687 .
Gliński Z, & Jarosz J (1992). Varroa jacobsoni as a carrier of bacterial infections to a recipient bee host. Apidologie 23(1):25–31. https://doi.org/10.1051/apido:19920103
Han B, Wu J, Wei Q, Liu F, Cui L, Rueppell O, Xu S. Life-history stage determines the diet of ectoparasitic mites on their honey bee hosts. Nat Commun. 2024 Jan 25;15(1):725. https://doi.org/10.1038/s41467-024-44915-x
Hammer O, Harper D, Ryan P (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontologia electronica 1–9.
Hou Y, Zhang X, Zhou Q, Hong W, Wang Y (2021) Hierarchical microbial functions prediction by graph aggregated embedding. Front Genet 11:608512. https://doi.org/10.3389/fgene.2020.608512 PubMed DOI PMC
Hristov P, Shumkova R, Palova N, Neov B (2020) Factors associated with honey bee colony losses: a mini-review. Vet Sci 7:166. https://doi.org/10.3390/vetsci7040166 PubMed DOI PMC
Huang Q, Evans JD (2024) Host switch by honey bee parasitic mites leads to symbiont diversification. J Invertebr Pathol 203:108068. https://doi.org/10.1016/j.jip.2024.108068 PubMed DOI
Hubert J, Bicianova M, Ledvinka O, Kamler M, Lester PJ, Nesvorna M, Kopecky J, Erban T (2017) Changes in the bacteriome of honey bees associated with the parasite Varroa destructor, and pathogens Nosema and Lotmaria passim. Microb Ecol 73:685–698. https://doi.org/10.1007/s00248-016-0869-7 PubMed DOI
Hubert J, Kamler M, Nesvorna M, Ledvinka O, Kopecky J, Erban T (2016) Comparison of Varroa destructor and worker honeybee microbiota within hives indicates shared bacteria. Microb Ecol 72:448–459. https://doi.org/10.1007/s00248-016-0776-y PubMed DOI
Kakumanu ML, Reeves AM, Anderson TD, Rodrigues RR, Williams MA (2016) Honey bee gut microbiome is altered by in-hive pesticide exposures. Front Microbiol 7:1255. https://doi.org/10.3389/fmicb.2016.01255 PubMed DOI PMC
Kanbar G, Engels W (2003) Ultrastructure and bacterial infection of wounds in honey bee (Apis mellifera) pupae punctured by Varroa mites. Parasitol Res 90:349–354. https://doi.org/10.1007/s00436-003-0827-4 PubMed DOI
Kanehisa M (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30. https://doi.org/10.1093/nar/28.1.27 PubMed DOI PMC
Kang S, Niu J, Zhang Q, Zhang X, Han G, Zhao M (2020) Niche differentiation is the underlying mechanism maintaining the relationship between community diversity and stability under grazing pressure. Glob Ecol Conserv 24:e01246. https://doi.org/10.1016/j.gecco.2020.e01246 DOI
Klotz A, Kaczmarczyk A, Jenal U (2023) A synthetic cumate-inducible promoter for graded and homogenous gene expression in Pseudomonas aeruginosa (PI Nikel, Ed.). App Environ Microbiol 89:e00211-e223. https://doi.org/10.1128/aem.00211-23 DOI
Kralj J, Fuchs S (2006) Parasitic Varroa destructor mites influence flight duration and homing ability of infested Apis mellifera foragers. Apidologie 37(5):577–587. https://doi.org/10.1051/apido:2006040 DOI
Kuster RD, Boncristiani HF, Rueppell O (2014) Immunogene and viral transcript dynamics during parasitic Varroa destructor mite infection of developing honey bee ( Apis mellifera ) pupae. J Exp Biol 217(10):1710–1718. https://doi.org/10.1242/jeb.097766 PubMed DOI
Larson NR, Nega M, Zhang A, Feldlaufer M (2021) Toxicity of methyl benzoate and analogs to adult Aedes aegypti. J Am Mosq Control Assoc 37:83–86. https://doi.org/10.2987/19-6896.1 PubMed DOI
Layeghifard M, Hwang DM, Guttman DS (2017) Disentangling interactions in the microbiome: a network perspective. Trends Microbiol 25:217–228. https://doi.org/10.1016/j.tim.2016.11.008 PubMed DOI
Lhomme S (2015) Analyse spatiale de la structure des réseaux techniques dans un contexte de risques. Cybergeo. https://doi.org/10.4000/cybergeo.26763 DOI
Liu H, Hall MA, Brettell LE, Wang J, Halcroft M, Nacko S, Spooner-Hart R, Cook JM, Riegler M, Singh BK (2023) Microbial diversity in stingless bee gut is linked to host wing size and influenced by the environment. J Invertebr Pathol 198:107909. https://doi.org/10.1016/j.jip.2023.107909 PubMed DOI
Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550. https://doi.org/10.1186/s13059-014-0550-8 PubMed DOI PMC
Malard LA, Guisan A (2023) Into the microbial niche. Trends Ecol Evol 38:936–945. https://doi.org/10.1016/j.tree.2023.04.015 PubMed DOI
Mostafiz MM, Shim J, Hwang H, Bunch H, Lee K (2020) Acaricidal effects of methyl benzoate against Tetranychus urticae Koch (Acari: Tetranychidae) on common crop plants. Pest Manag Sci 76:2347–2354. https://doi.org/10.1002/ps.5770 PubMed DOI
Oksanen J, Simpson G, Blanchet FG, Kindt R, Legendre P, Minchin P, O’Hara RB, Solymos P, Stevens MHH, Szoecs E, Wagner H, Barbour M, Bedward M, Bolker B, Borcard D, Carvalho G, Chirico M, De Caceres M, Durand S, Evangelista HBA, FitzJohn R, Friendly M, Furneaux B, Hannigan G, Hill MO, Lahti L, McGlinn D, Ouellette M-H, Cunha ER, Smith T, Stier A, Braak CJFT, Weedon J (2022) vegan: Community Ecology Package (Version 2.6-6) [R package]. CRAN. https://github.com/vegandevs/vegan
Pakwan C, Kaltenpoth M, Weiss B, Chantawannakul P, Jun G, Disayathanoowat T (2018) Bacterial communities associated with the ectoparasitic mites Varroa destructor and Tropilaelaps mercedesae of the honey bee (Apis mellifera). FEMS Microbiol Ecol 93(12). https://doi.org/10.1093/femsec/fix160 .
Peschel S, Müller CL, Von Mutius E, Boulesteix A-L, Depner M (2021) NetCoMi: network construction and comparison for microbiome data in R. Brief Bioinform 22(4):bbaa290. https://doi.org/10.1093/bib/bbaa290 PubMed DOI
Pielou EC (1966) The measurement of diversity in different types of biological collections. J Theor Biol 13:131–144. https://doi.org/10.1016/0022-5193(66)90013-0 DOI
Piou V, Schurr F, Dubois E, Vétillard A (2022) Transmission of deformed wing virus between Varroa destructor foundresses, mite offspring and infested honey bees. Parasit Vectors 15:333. https://doi.org/10.1186/s13071-022-05463-9 PubMed DOI PMC
Poletto J, Da Silva MJV, Jacomini AP, Bidóia DL, Volpato H, Nakamura CV, Rosa FA (2021) Antiparasitic activities of novel pyrimidine N-acylhydrazone hybrids. Drug Dev Res 82:230–240. https://doi.org/10.1002/ddr.21745 PubMed DOI
Ramsey SD, Ochoa R, Bauchan G, Gulbronson C, Mowery JD, Cohen A, Lim D, Joklik J, Cicero JM, Ellis JD, Hawthorne D, vanEngelsdorp D (2019) Varroa destructor feeds primarily on honey bee fat body tissue and not hemolymph. Proc Nat Acad Sci 116:1792–1801. https://doi.org/10.1073/pnas.1818371116 PubMed DOI PMC
Raymann K, Coon KL, Shaffer Z, Salisbury S, Moran NA, McFall-Ngai MJ (2018) Pathogenicity of Serratia marcescens strains in honey bees. Mbio 9(5):e01649-e1718. https://doi.org/10.1128/mBio.01649-18 PubMed DOI PMC
Rosenkranz P, Aumeier P, Ziegelmann B (2010) Biology and control of Varroa destructor. J Invertebr Pathol 103:S96–S119. https://doi.org/10.1016/j.jip.2009.07.016 PubMed DOI
Röttjers L, Faust K (2018) From hairballs to hypotheses–biological insights from microbial networks. FEMS Microbiol Rev 42:761–780. https://doi.org/10.1093/femsre/fuy030 PubMed DOI PMC
Röttjers L, Vandeputte D, Raes J, Faust K (2021) Null-model-based network comparison reveals core associations. ISME Communications 1:36. https://doi.org/10.1038/s43705-021-00036-w PubMed DOI PMC
RStudio Team (2020) RStudio: integrated development for R. https://www.rstudio.com/
Ruan Y-L (2014) Sucrose metabolism: gateway to diverse carbon use and sugar signaling. Annu Rev Plant Biol 65:33–67. https://doi.org/10.1146/annurev-arplant-050213-040251 PubMed DOI
Ruano MV, Fernandez FM, Ochoa AC (1991) Varroasis disturbs the orientation of bees: Its influence on parasitosis development. Vida Apícola 3:55–57
Sandionigi A, Vicario S, Prosdocimi EM, Galimberti A, Ferri E, Bruno A, Balech B, Mezzasalma V, Casiraghi M (2015) Towards a better understanding of Apis mellifera and Varroa destructor microbiomes: introducing ‘PHYLOH’ as a novel phylogenetic diversity analysis tool. Mol Ecol Res 15:697–710. https://doi.org/10.1111/1755-0998.12341 DOI
Seo S-O, Schmidt-Dannert C (2019) Development of a synthetic cumate-inducible gene expression system for Bacillus. App Microbiol Biotechnol 103:303–313. https://doi.org/10.1007/s00253-018-9485-4 DOI
Sharma P, Rane N, Gurram VK (2004) Synthesis and QSAR studies of pyrimido[4,5-d]pyrimidine-2,5-dione derivatives as potential antimicrobial agents. Bioorg Med Chem Lett 14:4185–4190. https://doi.org/10.1016/j.bmcl.2004.06.014 PubMed DOI
Sharma V, Chitranshi N, Agarwal AK (2014) Significance and biological importance of pyrimidine in the microbial world. Internat J Med Chem 2014:1–31. https://doi.org/10.1155/2014/202784 DOI
Su X (2021) Elucidating the beta-diversity of the microbiome: from global alignment to local alignment. mSystems 6:e00363-e421. https://doi.org/10.1128/mSystems.00363-21 PubMed DOI PMC
Svobodová K, Maitre A, Obregón D, Wu-Chuang A, Thaduri S, Locke B, De Miranda JR, Mateos-Hernández L, Krejčí AB, Cabezas-Cruz A (2023) Gut microbiota assembly of Gotland varroa-surviving honey bees excludes major viral pathogens. Microbiol Res 274:127418. https://doi.org/10.1016/j.micres.2023.127418 PubMed DOI
Tantillo G, Bottaro M, Di Pinto A, Martella V, Di Pinto P, Terio V (2015) Virus infections of honeybees Apis mellifera. Ital J Food Safety 4(3):157–168. https://doi.org/10.4081/ijfs.2015.5364 DOI
Traynor KS, Mondet F, De Miranda JR, Techer M, Kowallik V, Oddie MAY, Chantawannakul P, McAfee A (2020) Varroa destructor: a complex parasite, crippling honey bees worldwide. Trends Parasitol 36:592–606. https://doi.org/10.1016/j.pt.2020.04.004 PubMed DOI
Vaidyanathan R, Xie Y, Allaire J, Cheng J, Sievert C, Russell K (2023) Htmlwidgets: HTML widgets for R (Version 1.6.4) [R package]. CRAN. https://github.com/ramnathv/htmlwidgets .
Wang L, Mao Y, Wang Z, Ma H, Chen T (2021) Advances in biotechnological production of β-alanine. World J Microbiol and Biotechnol 37:79. https://doi.org/10.1007/s11274-021-03042-1 DOI
Yachi S, Loreau M (1999) Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc Nat Acad Sci 96:1463–1468. https://doi.org/10.1073/pnas.96.4.1463 PubMed DOI PMC
Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W, Schleifer K-H, Whitman WB, Euzéby J, Amann R, Rosselló-Móra R (2014) Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 12:635–645. https://doi.org/10.1038/nrmicro3330 PubMed DOI
Ziemski M, Adamov A, Kim L, Flörl L, Bokulich NA (2022) Reproducible acquisition, management and meta-analysis of nucleotide sequence (meta)data using q2-fondue (J Wren, Ed.). Bioinform 38:5081–5091. https://doi.org/10.1093/bioinformatics/btac639 DOI
Zingg J (2019) Vitamin E: regulatory role on signal transduction. IUBMB Life 71:456–478. https://doi.org/10.1002/iub.1986 PubMed DOI