MetDecode: methylation-based deconvolution of cell-free DNA for noninvasive multi-cancer typing
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
1S74420N
Research Foundation-Flanders
PubMed
39177091
PubMed Central
PMC11379469
DOI
10.1093/bioinformatics/btae522
PII: 7739698
Knihovny.cz E-zdroje
- MeSH
- algoritmy * MeSH
- lidé MeSH
- metylace DNA * MeSH
- nádorové biomarkery * krev MeSH
- nádory * genetika MeSH
- volné cirkulující nukleové kyseliny * krev MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- nádorové biomarkery * MeSH
- volné cirkulující nukleové kyseliny * MeSH
MOTIVATION: Circulating-cell free DNA (cfDNA) is widely explored as a noninvasive biomarker for cancer screening and diagnosis. The ability to decode the cells of origin in cfDNA would provide biological insights into pathophysiological mechanisms, aiding in cancer characterization and directing clinical management and follow-up. RESULTS: We developed a DNA methylation signature-based deconvolution algorithm, MetDecode, for cancer tissue origin identification. We built a reference atlas exploiting de novo and published whole-genome methylation sequencing data for colorectal, breast, ovarian, and cervical cancer, and blood-cell-derived entities. MetDecode models the contributors absent in the atlas with methylation patterns learnt on-the-fly from the input cfDNA methylation profiles. In addition, our model accounts for the coverage of each marker region to alleviate potential sources of noise. In-silico experiments showed a limit of detection down to 2.88% of tumor tissue contribution in cfDNA. MetDecode produced Pearson correlation coefficients above 0.95 and outperformed other methods in simulations (P < 0.001; T-test; one-sided). In plasma cfDNA profiles from cancer patients, MetDecode assigned the correct tissue-of-origin in 84.2% of cases. In conclusion, MetDecode can unravel alterations in the cfDNA pool components by accurately estimating the contribution of multiple tissues, while supplied with an imperfect reference atlas. AVAILABILITY AND IMPLEMENTATION: MetDecode is available at https://github.com/JorisVermeeschLab/MetDecode.
Department of Gynaecologic Oncology Netherlands Cancer Institute Amsterdam 1066 CX The Netherlands
Department of Oncology GZA Ziekenhuis Antwerp 2610 Belgium
Digestive Oncology Unit University Hospital Gasthuisberg Leuven 3000 Belgium
Gynaecological Oncology Department of Oncology KU Leuven Leuven 3000 Belgium
Gynaecology and Obstetrics University Hospitals KU Leuven Leuven 3000 Belgium
Multidisciplinary Breast Centre University Hospitals Leuven Leuven 3000 Belgium
Translational Cell and Tissue Research Department of Pathology KU Leuven Leuven 3000 Belgium
Zobrazit více v PubMed
Abbosh C, Birkbak NJ, Wilson GA. et al. PEACE Consortium. Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution. Nature 2017;545:446–51. PubMed PMC
Adalsteinsson VA, Ha G, Freeman SS. et al. Scalable whole-exome sequencing of cell-free DNA reveals high concordance with metastatic tumors. Nat Commun 2017;8:1324. PubMed PMC
Arneson D, Yang X, Wang K.. MethylResolver-a method for deconvoluting bulk DNA methylation profiles into known and unknown cell contents. Commun Biol 2020;3:422. 10.1038/S42003-020-01146-2 PubMed DOI PMC
Aucamp J, Bronkhorst AJ, Badenhorst CPS. et al. The diverse origins of circulating cell-free DNA in the human body: a critical re-evaluation of the literature. Biol Rev Camb Philos Soc 2018;93:1649–83. PubMed
Bianchi DW, Chudova D, Sehnert AJ. et al. Noninvasive prenatal testing and incidental detection of occult maternal malignancies. JAMA 2015;314:162–9. PubMed
Boons G, Vandamme T, Mariën L. et al. Longitudinal copy-number alteration analysis in plasma cell-free DNA of neuroendocrine neoplasms is a novel specific biomarker for diagnosis, prognosis, and follow-up. Clin Cancer Res 2022;28:338–49. PubMed PMC
Caggiano C, Celona B, Garton F. et al. Comprehensive cell type decomposition of circulating cell-free DNA with CelFiE. Nat Commun 202112:2717. PubMed PMC
Chan KCA, Jiang P, Zheng YWL. et al. Cancer genome scanning in plasma: detection of tumor-associated copy number aberrations, single-nucleotide variants, and tumoral heterogeneity by massively parallel sequencing. Clin Chem 2013;59:211–24. PubMed
Chen D, Xu T, Wang S. et al. Liquid biopsy applications in the clinic. Mol Diagn Ther 2020;24:125–32. PubMed
De Ridder K, Che H, Leroy K. et al. Benchmarking of methods for DNA methylome deconvolution. Nat Commun 2024;15:4134. PubMed PMC
Doherty JA, Peres LC, Wang C. et al. Challenges and opportunities in studying the epidemiology of ovarian cancer subtypes. Curr Epidemiol Rep 2017;4:211–20. PubMed PMC
Dor Y, Cedar H.. Principles of DNA methylation and their implications for biology and medicine. Lancet 2018;392:777–86. PubMed
Erger F, Nörling D, Borchert D. et al. CfNOMe—a single assay for comprehensive epigenetic analyses of cell-free DNA. Genome Med 2020;12:54. 10.1186/s13073-020-00750-5 PubMed DOI PMC
Etzioni R, Urban N, Ramsey S. et al. The case for early detection. Nat Rev Cancer 2003;3:243–52. PubMed
Fernández JM, de la Torre V, Richardson D. et al.; BLUEPRINT Consortium. The BLUEPRINT data analysis portal. Cell Syst 2016;3:491–5.e5. PubMed PMC
Filipski K, Scherer M, Zeiner KN. et al. DNA methylation-based prediction of response to immune checkpoint inhibition in metastatic melanoma. J Immunother Cancer 2021;9:e002226. 10.1136/JITC-2020-002226 PubMed DOI PMC
Fox-Fisher I, Piyanzin S, Ochana BL. et al. Remote immune processes revealed by immune-derived circulating cell-free DNA. Elife 2021;10:e70520. 10.7554/eLife.70520 PubMed DOI PMC
Gao Q, Zeng Q, Wang Z. et al. Circulating cell-free DNA for cancer early detection. Innovation (Camb) 2022;3:100259. 10.1016/J.XINN.2022.100259 PubMed DOI PMC
Gerstung M, Jolly C, Leshchiner I. et al.; PCAWG Consortium. The evolutionary history of 2,658 cancers. Nature 2020;578:122–8. PubMed PMC
Heim D, Budczies J, Stenzinger A. et al. Cancer beyond organ and tissue specificity: next-generation-sequencing gene mutation data reveal complex genetic similarities across major cancers. Int J Cancer 2014;135:2362–9. PubMed
Kang S, Li Q, Chen Q. et al. CancerLocator: non-invasive cancer diagnosis and tissue-of-origin prediction using methylation profiles of cell-free DNA. Genome Biol 2017;18:53. 10.1186/s13059-017-1191-5 PubMed DOI PMC
Keukeleire PIA, Makrodimitris S, Reinders M.. Cell type deconvolution of methylated cell-free DNA AT THE resolution of individual reads. NAR Genom Bioinform 2023;5:lqad048. 10.1093/nargab/lqad048. PubMed DOI PMC
Khemka S, Sehar U, Manna PR. et al. Cell-free DNA as peripheral biomarker of Alzheimer’s disease. Aging Dis 2024; 10.14336/AD.2024.0329; Epub ahead of print. PubMed DOI PMC
Köbel M, Kalloger SE, Boyd N. et al. Ovarian carcinoma subtypes are different diseases: implications for biomarker studies. PLoS Med 2008;5:e232. PubMed PMC
Lehmann-Werman R, Neiman D, Zemmour H. et al. Identification of tissue-specific cell death using methylation patterns of circulating DNA. Proc Natl Acad Sci USA 2016;113:E1826–34. PubMed PMC
Lenaerts L, Tuveri S, Jatsenko T. et al. Detection of incipient tumours by screening of circulating plasma DNA: hype or hope? Acta Clin Belg 2020;75:9–18. PubMed
Lenaerts L, Vandenberghe P, Brison N. et al. Genomewide copy number alteration screening of circulating plasma DNA: potential for the detection of incipient tumors. Ann Oncol 2019;30:85–95. PubMed
Li W, Li Q, Kang S. et al. CancerDetector: ultrasensitive and non-invasive cancer detection at the resolution of individual reads using cell-free DNA methylation sequencing data. Nucleic Acids Res 2018;46:E89. PubMed PMC
Loyfer N, Magenheim J, Peretz A. et al. A DNA methylation atlas of normal human cell types. Nature 2023;613:355–64. PubMed PMC
Lutsik P, Slawski M, Gasparoni G. et al. MeDeCom: discovery and quantification of latent components of heterogeneous methylomes. Genome Biol 2017;18:55. 10.1186/S13059-017-1182-6 PubMed DOI PMC
McMahon KW, Karunasena E, Ahuja N.. The roles of DNA methylation in the stages of cancer. Cancer J 2017;23:257–61. PubMed PMC
Mendioroz M, Martínez-Merino L, Blanco-Luquin I. et al. Liquid biopsy: a new source of candidate biomarkers in amyotrophic lateral sclerosis. Ann Clin Transl Neurol 2018;5:763–8. PubMed PMC
Meng Z, Ren Q, Zhong G. et al. Noninvasive detection of hepatocellular carcinoma with circulating tumor DNA features and α-Fetoprotein. J Mol Diagn 2021;23:1174–84. PubMed
Mondelo-Macía P, Castro-Santos P, Castillo-García A. et al. Circulating free DNA and its emerging role in autoimmune diseases. J Pers Med 2021;11:1–14. PubMed PMC
Morrison J, Koeman JM, Johnson BK. et al. Evaluation of whole-genome DNA methylation sequencing library preparation protocols. Epigenet Chromatin 2021;14:28. 10.1186/s13072-021-00401-y PubMed DOI PMC
Moss J, Magenheim J, Neiman D. et al. Comprehensive human cell-type methylation atlas reveals origins of circulating cell-free DNA in health and disease. Nat Commun 2018;9:5068. PubMed PMC
Qaseem A, Usman N, Jayaraj JS. et al. Cancer of unknown primary: a review on clinical guidelines in the development and targeted management of patients with the unknown primary Site. Cureus 2019;11:e5552. 10.7759/cureus.5552 PubMed DOI PMC
Rengifo LY, Michaux L, Maertens J. et al. Noninvasive prenatal testing detected acute myeloid leukemia in paucisymptomatic pregnant patient. Clin Case Rep 2020;8:1924–7. PubMed PMC
Rosales C. Neutrophil: a cell with many roles in inflammation or several cell types? Front Physiol 2018;9:113. PubMed PMC
Schwarzenbach H, Hoon DSB, Pantel K.. Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer 2011;11:426–37. PubMed
Snyder MW, Kircher M, Hill AJ. et al. Cell-free DNA comprises an in vivo nucleosome footprint that informs its tissues-of-origin. Cell 2016;164:57–68. PubMed PMC
Song P, Wu LR, Yan YH. et al. Limitations and opportunities of technologies for the analysis of cell-free DNA in cancer diagnostics. Nat Biomed Eng 2022;6:232–45. PubMed PMC
Stanley KE, Jatsenko T, Tuveri S. et al. Cell type signatures in cell-free DNA fragmentation profiles reveal disease biology. Nat Commun 2024;15:2220–13. PubMed PMC
Sun K, Jiang P, Chan KCA. et al. Plasma DNA tissue mapping by genome-wide methylation sequencing for noninvasive prenatal, cancer, and transplantation assessments. Proc Natl Acad Sci USA 2015;112:E5503–12. PubMed PMC
Terekhanova NV, Karpova A, Liang WW. et al. Epigenetic regulation during cancer transitions across 11 tumour types. Nature 2023;623:432–41. PubMed PMC
Vaisvila R, Ponnaluri VKC, Sun Z. et al. Enzymatic methyl sequencing detects DNA methylation at single-base resolution from picograms of DNA. Genome Res 2021;31:1280–9. PubMed PMC
Zhang W, Xu H, Qiao R. et al. ARIC: accurate and robust inference of cell type proportions from bulk gene expression or DNA methylation data. Brief Bioinform 2022;23(1). PubMed