Recent Advances in Food Waste Transformations into Essential Bioplastic Materials

. 2024 Aug 13 ; 29 (16) : . [epub] 20240813

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid39202917

Grantová podpora
(NGRCZX-22-03 Start up funding

Lignocellulose is a major biopolymer in plant biomass with a complex structure and composition. It consists of a significant amount of high molecular aromatic compounds, particularly vanillin, syringeal, ferulic acid, and muconic acid, that could be converted into intracellular metabolites such as polyhydroxyalkanoates (PHA) and hydroxybutyrate (PHB), a key component of bioplastic production. Several pre-treatment methods were utilized to release monosaccharides, which are the precursors of the relevant pathway. The consolidated bioprocessing of lignocellulose-capable microbes for biomass depolymerization was discussed in this study. Carbon can be stored in a variety of forms, including PHAs, PHBs, wax esters, and triacylglycerides. From a biotechnology standpoint, these compounds are quite adaptable due to their precursors' utilization of hydrogen energy. This study lays the groundwork for the idea of lignocellulose valorization into value-added products through several significant dominant pathways.

Zobrazit více v PubMed

Negri C., Ricci M., Zilio M., D’Imporzano G., Qiao W., Dong R., Adani F. Anaerobic digestion of food waste for bio-energy production in China and Southeast Asia: A review. Renew. Sustain. Energy Rev. 2020;133:110138. doi: 10.1016/j.rser.2020.110138. DOI

Chhandama M.V.L., Chetia A.C., Satyan K.B., Ruatpuia J.V., Rokhum S.L. Valorisation of food waste to sustainable energy and other value-added products: A review. Bioresour. Technol. Rep. 2022;17:100945. doi: 10.1016/j.biteb.2022.100945. DOI

Li C., Bremer P., Harder M.K., Lee M.S., Parker K., Gaugler E.C., Mirosa M. A systematic review of food loss and waste in China: Quantity, impacts and mediators. J. Environ. Manag. 2022;303:114092. doi: 10.1016/j.jenvman.2021.114092. PubMed DOI

Pramanik S.K., Suja F.B., Zain S.M., Pramanik B.K. The anaerobic digestion process of biogas production from food waste: Prospects and constraints. Bioresour. Technol. Rep. 2019;8:100310. doi: 10.1016/j.biteb.2019.100310. DOI

Slorach P.C., Jeswani H.K., Cuéllar-Franca R., Azapagic A. Environmental sustainability in the food-energy-water-health nexus: A new methodology and an application to food waste in a circular economy. Waste Manag. 2020;113:359–368. doi: 10.1016/j.wasman.2020.06.012. PubMed DOI

Yaashikaa P., Kumar P.S., Varjani S. Valorization of agro-industrial wastes for biorefinery process and circular bioeconomy: A critical review. Bioresour. Technol. 2022;343:126126. doi: 10.1016/j.biortech.2021.126126. PubMed DOI

Rohini C., Geetha P., Vijayalakshmi R., Mini M., Pasupathi E. Global effects of food waste. J. Pharmacogn. Phytochem. 2020;9:690–699.

Wang J., Liu S., Huang J., Qu Z. A review on polyhydroxyalkanoate production from agricultural waste Biomass: Development, Advances, circular Approach, and challenges. Bioresour. Technol. 2021;342:126008. doi: 10.1016/j.biortech.2021.126008. PubMed DOI

Hathi Z.J., Haque M.A., Priya A., Qin Z.-H., Huang S., Lam C.H., Ladakis D., Pateraki C., Mettu S., Koutinas A. Fermentative bioconversion of food waste into biopolymer poly (3-hydroxybutyrate-co-3-hydroxyvalerate) using Cupriavidus necator. Environ. Res. 2022;215:114323. doi: 10.1016/j.envres.2022.114323. PubMed DOI

Priya A., Hathi Z., Haque M.A., Kumar S., Kumar A., Singh E., Lin C.S. Effect of levulinic acid on production of polyhydroxyalkanoates from food waste by Haloferax mediterranei. Environ. Res. 2022;214:114001. doi: 10.1016/j.envres.2022.114001. PubMed DOI

Liu H., Kumar V., Jia L., Sarsaiya S., Kumar D., Juneja A., Zhang Z., Sindhu R., Binod P., Bhatia S.K. Biopolymer poly-hydroxyalkanoates (PHA) production from apple industrial waste residues: A review. Chemosphere. 2021;284:131427. doi: 10.1016/j.chemosphere.2021.131427. PubMed DOI

Huang S.-W., Chen C.-Y., Hasunuma T., Kondo A., Chang J.-S. Bioethanol production using carbohydrate-rich microalgae biomass as feedstock. Bioresour. Technol. 2013;135:191–198. PubMed

Vavouraki A.I., Volioti V., Kornaros M.E. Optimization of thermo-chemical pretreatment and enzymatic hydrolysis of kitchen wastes. Waste Manag. 2014;34:167–173. doi: 10.1016/j.wasman.2013.09.027. PubMed DOI

Iacovidou E., Ohandja D.-G., Gronow J., Voulvoulis N. The household use of food waste disposal units as a waste management option: A review. Crit. Rev. Environ. Sci. Technol. 2012;42:1485–1508. doi: 10.1080/10643389.2011.556897. DOI

Hafid H.S., Shah U.K.M., Baharuddin A.S., Ariff A.B. Feasibility of using kitchen waste as future substrate for bioethanol production: A review. Renew. Sustain. Energy Rev. 2017;74:671–686. doi: 10.1016/j.rser.2017.02.071. DOI

Li Y., Jin Y., Li J., Chen Y., Gong Y., Li Y., Zhang J. Current situation and development of kitchen waste treatment in China. Procedia Environ. Sci. 2016;31:40–49. doi: 10.1016/j.proenv.2016.02.006. DOI

Herszenhorn E., Quested T., Easteal S., Prowse G., Lomax J., Bucatariu C. Prevention and Reduction of Food and Drink Waste in Businesses and Households: Guidance for Governments, Local Authorities, Businesses and other Organisations. United Nations Environment Programme; Rome, Italy: 2014.

Canali M., Amani P., Aramyan L., Gheoldus M., Moates G., Östergren K., Silvennoinen K., Waldron K., Vittuari M. Food Waste Drivers in Europe, from Identification to Possible Interventions. Sustainability. 2017;9:37. doi: 10.3390/su9010037. DOI

Vavouraki A.I., Angelis E.M., Kornaros M. Optimization of thermo-chemical hydrolysis of kitchen wastes. Waste Manag. 2013;33:740–745. doi: 10.1016/j.wasman.2012.07.012. PubMed DOI

Pleissner D., Lin C.S.K. Valorisation of food waste in biotechnological processes. Sustain. Chem. Process. 2013;1:1–6. doi: 10.1186/2043-7129-1-21. DOI

Garnida Y., Rudiansyah M., Yasin G., Mahmudiono T., Kadhim A.J., Sharma S., Hussein H.A., Shichiyakh R.A., Abdelbasset W.K., Iswanto A.H. Investigation of parameters in restaurant food waste for use as poultry rations. Food Sci. Technol. 2022;42:e118621. doi: 10.1590/fst.118621. DOI

Dietrich K., Dumont M.-J., Del Rio L.F., Orsat V. Producing PHAs in the bioeconomy—Towards a sustainable bioplastic. Sustain. Prod. Consum. 2017;9:58–70. doi: 10.1016/j.spc.2016.09.001. DOI

Chavan S., Yadav B., Tyagi R., Drogui P. A review on production of polyhydroxyalkanoate (PHA) biopolyesters by thermophilic microbes using waste feedstocks. Bioresour. Technol. 2021;341:125900. doi: 10.1016/j.biortech.2021.125900. PubMed DOI

Chavan S., Yadav B., Atmakuri A., Tyagi R.D., Wong J.W.C., Drogui P. Bioconversion of organic wastes into value-added products: A review. Bioresour. Technol. 2021;344:126398. doi: 10.1016/j.biortech.2021.126398. PubMed DOI

Koller M., Maršálek L., de Sousa Dias M.M., Braunegg G. Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. N. Biotechnol. 2017;37:24–38. doi: 10.1016/j.nbt.2016.05.001. PubMed DOI

Yoon J., Oh M.-K. Strategies for Biosynthesis of C1 Gas-derived Polyhydroxyalkanoates: A review. Bioresour. Technol. 2022;344:126307. doi: 10.1016/j.biortech.2021.126307. PubMed DOI

Crutchik D., Franchi O., Caminos L., Jeison D., Belmonte M., Pedrouso A., Val del Rio A., Mosquera-Corral A., Campos J.L. Polyhydroxyalkanoates (PHAs) Production: A Feasible Economic Option for the Treatment of Sewage Sludge in Municipal Wastewater Treatment Plants? Water. 2020;12:1118. doi: 10.3390/w12041118. DOI

Briassoulis D., Giannoulis A. Evaluation of the functionality of bio-based food packaging films. Polym. Test. 2018;69:39–51. doi: 10.1016/j.polymertesting.2018.05.003. DOI

Sharma B., Vaish B., Singh U.K., Singh P., Singh R.P. Recycling of organic wastes in agriculture: An environmental perspective. Int. J. Environ. Res. 2019;13:409–429. doi: 10.1007/s41742-019-00175-y. DOI

Colombo B., Favini F., Scaglia B., Sciarria T.P., D’Imporzano G., Pognani M., Alekseeva A., Eisele G., Cosentino C., Adani F. Enhanced polyhydroxyalkanoate (PHA) production from the organic fraction of municipal solid waste by using mixed microbial culture. Biotechnol. Biofuels. 2017;10:1–15. doi: 10.1186/s13068-017-0888-8. PubMed DOI PMC

Ojha S., Bußler S., Schlüter O.K. Food waste valorisation and circular economy concepts in insect production and processing. Waste Manag. 2020;118:600–609. doi: 10.1016/j.wasman.2020.09.010. PubMed DOI

Cruz M.V., Paiva A., Lisboa P., Freitas F., Alves V.D., Simões P., Barreiros S., Reis M.A. Production of polyhydroxyalkanoates from spent coffee grounds oil obtained by supercritical fluid extraction technology. Bioresour. Technol. 2014;157:360–363. doi: 10.1016/j.biortech.2014.02.013. PubMed DOI

Obruca S., Petrik S., Benesova P., Svoboda Z., Eremka L., Marova I. Utilization of oil extracted from spent coffee grounds for sustainable production of polyhydroxyalkanoates. Appl. Microbiol. Biotechnol. 2014;98:5883–5890. doi: 10.1007/s00253-014-5653-3. PubMed DOI

Cruz M.V., Sarraguça M.C., Freitas F., Lopes J.A., Reis M.A. Online monitoring of P (3HB) produced from used cooking oil with near-infrared spectroscopy. J. Biotechnol. 2015;194:1–9. doi: 10.1016/j.jbiotec.2014.11.022. PubMed DOI

Możejko J., Ciesielski S. Saponified waste palm oil as an attractive renewable resource for mcl-polyhydroxyalkanoate synthesis. J. Biosci. Bioeng. 2013;116:485–492. doi: 10.1016/j.jbiosc.2013.04.014. PubMed DOI

Verlinden R.A., Hill D.J., Kenward M.A., Williams C.D., Piotrowska-Seget Z., Radecka I.K. Production of polyhydroxyalkanoates from waste frying oil by Cupriavidus necator. AMB Express. 2011;1:1–8. doi: 10.1186/2191-0855-1-11. PubMed DOI PMC

Hafuka A., Sakaida K., Satoh H., Takahashi M., Watanabe Y., Okabe S. Effect of feeding regimens on polyhydroxybutyrate production from food wastes by Cupriavidus necator. Bioresour. Technol. 2011;102:3551–3553. doi: 10.1016/j.biortech.2010.09.018. PubMed DOI

Eshtaya M.K., Nor ‘Aini A.R., Hassan M.A. Bioconversion of restaurant waste into Polyhydroxybutyrate (PHB) by recombinant E. coli through anaerobic digestion. Int. J. Environ. Waste Manag. 2013;11:27–37. doi: 10.1504/IJEWM.2013.050521. DOI

Vijay R., Tarika K. Microbial production of polyhydroxyalkanoates (PHAs) using kitchen waste as an inexpensive carbon source. Biosci. Biotechnol. Res. Asia. 2019;16:155–166. doi: 10.13005/bbra/2733. DOI

Omar F.N., Rahman A.A., Hafid H.S., Mumtaz T., Yee P.L., Hassan M.A. Utilization of kitchen waste for the production of green thermoplastic polyhydroxybutyrate (PHB) by Cupriavidus necator CCGUG 52238. Afr. J. Microbiol. Res. 2011;5:2873–2879.

Song J.-H., Jeon C.-O., Choi M.-H., Yoon S.-C., Park W.-J. Polyhydroxyalkanoate (PHA) production using waste vegetable oil by Pseudomonas sp. strain DR2. J. Microbiol. Biotechnol. 2008;18:1408–1415. PubMed

Nielsen C., Rahman A., Rehman A.U., Walsh M.K., Miller C.D. Food waste conversion to microbial polyhydroxyalkanoates. Microb. Biotechnol. 2017;10:1338–1352. doi: 10.1111/1751-7915.12776. PubMed DOI PMC

Amulya K., Jukuri S., Mohan S.V. Sustainable multistage process for enhanced productivity of bioplastics from waste remediation through aerobic dynamic feeding strategy: Process integration for up-scaling. Bioresour. Technol. 2015;188:231–239. doi: 10.1016/j.biortech.2015.01.070. PubMed DOI

Reddy M.V., Mohan S.V. Influence of aerobic and anoxic microenvironments on polyhydroxyalkanoates (PHA) production from food waste and acidogenic effluents using aerobic consortia. Bioresour. Technol. 2012;103:313–321. doi: 10.1016/j.biortech.2011.09.040. PubMed DOI

Santhanam A., Sasidharan S. Microbial production of polyhydroxy alkanotes (PHA) from Alcaligens spp. and Pseudomonas oleovorans using different carbon sources. Afr. J. Biotechnol. 2010;9:3144–3150.

Yan S., Yao J., Yao L., Zhi Z., Chen X., Wu J. Fed batch enzymatic saccharification of food waste improves the sugar concentration in the hydrolysates and eventually the ethanol fermentation by Saccharomyces cerevisiae H058. Braz. Arch. Biol. Technol. 2012;55:183–192. doi: 10.1590/S1516-89132012000200002. DOI

Malakahmad A., Basri N.E.A., Zain S.M. Production of renewable energy by transformation of kitchen waste to biogas, case study of Malaysia; Proceedings of the 2011 IEEE Symposium on Business, Engineering and Industrial Applications (ISBEIA); Langkawi, Malaysia. 25–28 September 2011; pp. 219–223.

Cheng S.-S., Chao Y.-C., Wong S.-C., Chen C.-C., Yang K.-H., Yang Y.-F. Study on hydrogen production potential utilizing leachate from aerobic bio-leaching bed fed with napiergrass and kitchen waste. Energy Procedia. 2012;29:72–81. doi: 10.1016/j.egypro.2012.09.010. DOI

Wang Q., Wang X., Wang X., Ma H. Glucoamylase production from food waste by Aspergillus niger under submerged fermentation. Process Biochem. 2008;43:280–286. doi: 10.1016/j.procbio.2007.12.010. DOI

WHO . Food Systems for Health: Information Brief. World Health Organization; Geneva, Switzerland: 2021.

Preethi R., Sasikala P., Aravind J. Microbial production of polyhydroxyalkanoate (PHA) utilizing fruit waste as a substrate. Res. Biotechnol. 2012;3:61–69.

Follonier S., Goyder M.S., Silvestri A.-C., Crelier S., Kalman F., Riesen R., Zinn M. Fruit pomace and waste frying oil as sustainable resources for the bioproduction of medium-chain-length polyhydroxyalkanoates. Int. J. Biol. Macromol. 2014;71:42–52. doi: 10.1016/j.ijbiomac.2014.05.061. PubMed DOI

Muhr A., Rechberger E.M., Salerno A., Reiterer A., Schiller M., Kwiecień M., Adamus G., Kowalczuk M., Strohmeier K., Schober S. Biodegradable latexes from animal-derived waste: Biosynthesis and characterization of mcl-PHA accumulated by Ps. citronellolis. React. Funct. Polym. 2013;73:1391–1398. doi: 10.1016/j.reactfunctpolym.2012.12.009. DOI

Mirabella N., Castellani V., Sala S. Current options for the valorization of food manufacturing waste: A review. J. Clean. Prod. 2014;65:28–41. doi: 10.1016/j.jclepro.2013.10.051. DOI

Albuquerque M., Torres C., Reis M. Polyhydroxyalkanoate (PHA) production by a mixed microbial culture using sugar molasses: Effect of the influent substrate concentration on culture selection. Water Res. 2010;44:3419–3433. doi: 10.1016/j.watres.2010.03.021. PubMed DOI

Ahn J., Jho E.H., Kim M., Nam K. Increased 3HV concentration in the bacterial production of 3-hydroxybutyrate (3HB) and 3-hydroxyvalerate (3HV) copolymer with acid-digested rice straw waste. J. Polym. Environ. 2016;24:98–103. doi: 10.1007/s10924-015-0749-0. DOI

Ryu B.-G., Kim J., Kim K., Choi Y.-E., Han J.-I., Yang J.-W. High-cell-density cultivation of oleaginous yeast Cryptococcus curvatus for biodiesel production using organic waste from the brewery industry. Bioresour. Technol. 2013;135:357–364. doi: 10.1016/j.biortech.2012.09.054. PubMed DOI

Wang Y., Hua F., Tsang Y.F., Chan S., Sin S., Chua H., Yu P., Ren N. Synthesis of PHAs from waster under various C: N ratios. Bioresour. Technol. 2007;98:1690–1693. doi: 10.1016/j.biortech.2006.05.039. PubMed DOI

Esteban-Lustres R., Torres M.D., Piñeiro B., Enjamio C., Domínguez H. Intensification and biorefinery approaches for the valorization of kitchen wastes–A review. Bioresour. Technol. 2022;360:127652. doi: 10.1016/j.biortech.2022.127652. PubMed DOI

Melikoglu M. Solid-state fermentation of wheat pieces by Aspergillus oryzae: Effects of microwave pretreatment on enzyme production in a Biorefinery. Int. J. Green Energy. 2012;9:529–539. doi: 10.1080/15435075.2011.622026. DOI

Shana A.D., Ouki S., Asaadi M., Pearce P. Influence of an intermediate thermal hydrolysis process (ITHP) on the kinetics of anaerobic digestion of sewage sludge. Chem. Eng. 2012;29

Ganesan B., Seefeldt K., Weimer B.C. Fatty acid production from amino acids and α-keto acids by Brevibacterium linens BL2. Appl. Environ. Microbiol. 2004;70:6385–6393. doi: 10.1128/AEM.70.11.6385-6393.2004. PubMed DOI PMC

Tang Z., Li W., Tam V.W., Xue C. Advanced progress in recycling municipal and construction solid wastes for manufacturing sustainable construction materials. Resour. Conserv. Recycl. X. 2020;6:100036. doi: 10.1016/j.rcrx.2020.100036. DOI

Li Y., Jin Y. Effects of thermal pretreatment on acidification phase during twophase batch anaerobic digestion of kitchen waste. Renew. Energy. 2015;77:550–557. doi: 10.1016/j.renene.2014.12.056. DOI

Dors G., Mendes A.A., Pereira E.B., de Castro H.F., Furigo A. Simultaneous enzymatic hydrolysis and anaerobic biodegradation of lipid-rich wastewater from poultry industry. Appl. Water Sci. 2013;3:343–349. doi: 10.1007/s13201-012-0075-9. DOI

Thongdumyu P., Intrasungkha N., Sompong O. Optimization of ethanol production from food waste hydrolysate by co-culture of Zymomonas mobilis and Candida shehatae under non-sterile condition. Afr. J. Biotechnol. 2014;13:866–873.

Kumar M., Turner S. Plant cellulose synthesis: CESA proteins crossing kingdoms. Phytochemistry. 2015;112:91–99. doi: 10.1016/j.phytochem.2014.07.009. PubMed DOI

Hong Y.S., Yoon H.H. Ethanol production from food residues. Biomass Bioenergy. 2011;35:3271–3275. doi: 10.1016/j.biombioe.2011.04.030. DOI

Yang X., Lee J.H., Yoo H.Y., Shin H.Y., Thapa L.P., Park C., Kim S.W. Production of bioethanol and biodiesel using instant noodle waste. Bioprocess Biosyst. Eng. 2014;37:1627–1635. doi: 10.1007/s00449-014-1135-3. PubMed DOI

Moon H.C., Song I.S., Kim J.C., Shirai Y., Lee D.H., Kim J.K., Chung S.O., Kim D.H., Oh K.K., Cho Y.S. Enzymatic hydrolysis of food waste and ethanol fermentation. Int. J. Energy Res. 2009;33:164–172. doi: 10.1002/er.1432. DOI

Agbor V.B., Cicek N., Sparling R., Berlin A., Levin D.B. Biomass pretreatment: Fundamentals toward application. Biotechnol. Adv. 2011;29:675–685. doi: 10.1016/j.biotechadv.2011.05.005. PubMed DOI

Izumi K., Okishio Y.-K., Nagao N., Niwa C., Yamamoto S., Toda T. Effects of particle size on anaerobic digestion of food waste. Int. Biodeterior. Biodegrad. 2010;64:601–608. doi: 10.1016/j.ibiod.2010.06.013. DOI

Kuo W.-C., Cheng K.-Y. Use of respirometer in evaluation of process and toxicity of thermophilic anaerobic digestion for treating kitchen waste. Bioresour. Technol. 2007;98:1805–1811. doi: 10.1016/j.biortech.2006.06.016. PubMed DOI

Ballesteros M., Sáez F., Ballesteros I., Manzanares P., Negro M.J., Martínez J.M., Castañeda R., Oliva Dominguez J.M. Ethanol production from the organic fraction obtained after thermal pretreatment of municipal solid waste. Appl. Biochem. Biotechnol. 2010;161:423–431. doi: 10.1007/s12010-009-8877-4. PubMed DOI

Strazzera G., Battista F., Garcia N.H., Frison N., Bolzonella D. Volatile fatty acids production from food wastes for biorefinery platforms: A review. J. Environ. Manag. 2018;226:278–288. doi: 10.1016/j.jenvman.2018.08.039. PubMed DOI

Tsang Y.F., Kumar V., Samadar P., Yang Y., Lee J., Ok Y.S., Song H., Kim K.-H., Kwon E.E., Jeon Y.J. Production of bioplastic through food waste valorization. Environ. Int. 2019;127:625–644. doi: 10.1016/j.envint.2019.03.076. PubMed DOI

Kover A., Kraljić D., Marinaro R., Rene E.R. Processes for the valorization of food and agricultural wastes to value-added products: Recent practices and perspectives. Syst. Microbiol. Biomanuf. 2021;2:50–66. doi: 10.1007/s43393-021-00042-y. DOI

Banu J.R., Merrylin J., Usman T.M., Kannah R.Y., Gunasekaran M., Kim S.-H., Kumar G. Impact of pretreatment on food waste for biohydrogen production: A review. Int. J. Hydrogen Energy. 2020;45:18211–18225. doi: 10.1016/j.ijhydene.2019.09.176. DOI

Ma Y., Yin Y., Liu Y. New insights into co-digestion of activated sludge and food waste: Biogas versus biofertilizer. Bioresour. Technol. 2017;241:448–453. doi: 10.1016/j.biortech.2017.05.154. PubMed DOI

Zhou S., Runge T.M. Validation of lignocellulosic biomass carbohydrates determination via acid hydrolysis. Carbohydr. Polym. 2014;112:179–185. doi: 10.1016/j.carbpol.2014.05.088. PubMed DOI

Singh A., Bishnoi N.R. Ethanol production from pretreated wheat straw hydrolyzate by Saccharomyces cerevisiae via sequential statistical optimization. Ind. Crop. Prod. 2013;41:221–226. doi: 10.1016/j.indcrop.2012.04.036. DOI

Campbell-Platt G. Food Science and Technology. John Wiley & Sons; Hoboken, NJ, USA: 2017.

Girisuta B., Dussan K., Haverty D., Leahy J., Hayes M. A kinetic study of acid catalysed hydrolysis of sugar cane bagasse to levulinic acid. Chem. Eng. J. 2013;217:61–70. doi: 10.1016/j.cej.2012.11.094. DOI

Hoseinpour H., Karimi K., Zilouei H., Taherzadeh M.J. Simultaneous pretreatment of lignocellulose and hydrolysis of starch in mixtures to sugars. BioResources. 2010;5:2457–2469. doi: 10.15376/biores.5.4.2457-2469. DOI

El-Tayeb T., Abdelhafez A., Ali S., Ramadan E. Effect of acid hydrolysis and fungal biotreatment on agro-industrial wastes for obtainment of free sugars for bioethanol production. Braz. J. Microbiol. 2012;43:1523–1535. doi: 10.1590/S1517-83822012000400037. PubMed DOI PMC

Wikandari R., Millati R., Syamsiyah S., Muriana R., Ayuningsih Y. Effect of furfural, hydroxymethylfurfural and acetic acid on indigeneous microbial isolate for bioethanol production. Agric. J. 2010;5:105–109. doi: 10.3923/aj.2010.105.109. DOI

Allen S.A., Clark W., McCaffery J.M., Cai Z., Lanctot A., Slininger P.J., Liu Z.L., Gorsich S.W. Furfural induces reactive oxygen species accumulation and cellular damage in Saccharomyces cerevisiae. Biotechnol. Biofuels. 2010;3:2. doi: 10.1186/1754-6834-3-2. PubMed DOI PMC

Iwaki A., Kawai T., Yamamoto Y., Izawa S. Biomass conversion inhibitors furfural and 5-hydroxymethylfurfural induce formation of messenger RNP granules and attenuate translation activity in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2013;79:1661–1667. doi: 10.1128/AEM.02797-12. PubMed DOI PMC

Yang S., Franden M.A., Yang Q., Chou Y.-C., Zhang M., Pienkos P.T. Identification of inhibitors in lignocellulosic slurries and determination of their effect on hydrocarbon-producing microorganisms. Front. Bioeng. Biotechnol. 2018;6:23. doi: 10.3389/fbioe.2018.00023. PubMed DOI PMC

Lyra Colombi B., Silva Zanoni P.R., Tavares B.B.L. Effect of phenolic compounds on bioconversion of glucose to ethanol by yeast Saccharomyces cerevisiae PE-2. Can. J. Chem. Eng. 2018;96:1444–1450. doi: 10.1002/cjce.23114. DOI

Radhika D., Murugesan A. Bioproduction, statistical optimization and characterization of microbial plastic (poly 3-hydroxy butyrate) employing various hydrolysates of water hyacinth (Eichhornia crassipes) as sole carbon source. Bioresour. Technol. 2012;121:83–92. doi: 10.1016/j.biortech.2012.06.107. PubMed DOI

Loan T.T., Trang D.T.Q., Huy P.Q., Ninh P.X., Van Thuoc D. A fermentation process for the production of poly (3-hydroxybutyrate) using waste cooking oil or waste fish oil as inexpensive carbon substrate. Biotechnol. Rep. 2022;33:e00700. doi: 10.1016/j.btre.2022.e00700. PubMed DOI PMC

Vastano M., Corrado I., Sannia G., Solaiman D.K., Pezzella C. Conversion of no/low value waste frying oils into biodiesel and polyhydroxyalkanoates. Sci. Rep. 2019;9:1–8. doi: 10.1038/s41598-019-50278-x. PubMed DOI PMC

Yadav B., Pandey A., Kumar L.R., Tyagi R.D. Bioconversion of waste (water)/residues to bioplastics-A circular bioeconomy approach. Bioresour. Technol. 2020;298:122584. doi: 10.1016/j.biortech.2019.122584. PubMed DOI

Rao U., Sridhar R., Sehgal P. Biosynthesis and biocompatibility of poly (3-hydroxybutyrate-co-4-hydroxybutyrate) produced by Cupriavidus necator from spent palm oil. Biochem. Eng. J. 2010;49:13–20. doi: 10.1016/j.bej.2009.11.005. DOI

Tsuge T., Saito Y., Kikkawa Y., Hiraishi T., Doi Y. Biosynthesis and compositional regulation of poly [(3-hydroxybutyrate)-co-(3-hydroxyhexanoate)] in recombinant Ralstonia eutropha expressing mutated polyhydroxyalkanoate synthase genes. Macromol. Biosci. 2004;4:238–242. doi: 10.1002/mabi.200300077. PubMed DOI

Kamilah H., Tsuge T., Yang T.A., Sudesh K. Waste cooking oil as substrate for biosynthesis of poly (3-hydroxybutyrate) and poly (3-hydroxybutyrate-co-3-hydroxyhexanoate): Turning waste into a value-added product. Malays. J. Microbiol. 2013;9:51–59. doi: 10.21161/mjm.45012. DOI

Obruca S., Marova I., Snajdar O., Mravcova L., Svoboda Z. Production of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) by Cupriavidus necator from waste rapeseed oil using propanol as a precursor of 3-hydroxyvalerate. Biotechnol. Lett. 2010;32:1925–1932. doi: 10.1007/s10529-010-0376-8. PubMed DOI

Pernicova I., Kucera D., Nebesarova J., Kalina M., Novackova I., Koller M., Obruca S. Production of polyhydroxyalkanoates on waste frying oil employing selected Halomonas strains. Bioresour. Technol. 2019;292:122028. doi: 10.1016/j.biortech.2019.122028. PubMed DOI

Andler R., Valdées C., Urtuvia V., Andreeßen C., Díaz-Barrera A. Fruit residues as a sustainable feedstock for the production of bacterial polyhydroxyalkanoates. J. Cleaner Prod. 2021;307:127236. doi: 10.1016/j.jclepro.2021.127236. DOI

Kovalcik A., Pernicova I., Obruca S., Szotkowski M., Enev V., Kalina M., Marova I. Grape winery waste as a promising feedstock for the production of polyhydroxyalkanoates and other value-added products. Food Bioprod. Process. 2020;124:1–10. doi: 10.1016/j.fbp.2020.08.003. DOI

Pereira J.R., Araujo D., Freitas P., Marques A.C., Alves V.D., Sevrin C., Grandfils C., Fortunato E., Reis M.A., Freitas F. Production of medium-chain-length polyhydroxyalkanoates by Pseudomonas chlororaphis subsp. aurantiaca: Cultivation on fruit pulp waste and polymer characterization. Int. J. Biol. Macromol. 2021;167:85–92. doi: 10.1016/j.ijbiomac.2020.11.162. PubMed DOI

Santimano M., Prabhu N.N., Garg S. PHA production using low-cost agroindustrial wastes by Bacillus sp. strain COL1/A6. 2009. Res. J. Microbiol. 2009;4:89–96. doi: 10.3923/jm.2009.89.96. DOI

Low T.J., Mohammad S., Sudesh K., Baidurah S. Utilization of banana (Musa sp.) fronds extract as an alternative carbon source for poly (3-hydroxybutyrate) production by Cupriavidus necator H16. Biocatal. Agric. Biotechnol. 2021;34:102048. doi: 10.1016/j.bcab.2021.102048. DOI

Hidayat N., Alamsyah R., Roslan A.M., Hermansyah H., Gozan M. Production of polyhydroxybutyrate from oil palm empty fruit bunch (OPEFB) hydrolysates by Bacillus cereus suaeda B-001. Biocatal. Agric. Biotechnol. 2019;18:101019

Alsafadi D., Ibrahim M.I., Alamry K.A., Hussein M.A., Mansour A. Utilizing the crop waste of date palm fruit to biosynthesize polyhydroxyalkanoate bioplastics with favorable properties. Sci. Total. Environ. 2020;737:139716. doi: 10.1016/j.scitotenv.2020.139716. PubMed DOI

Choudhary P., Suriyamoorthy P., Moses J., Anandharamakrishnan C. Composites for Environmental Engineering. Wiley; Hoboken, NJ, USA: 2019. Biocomposites from food wastes; pp. 319–345.

Alcaraz-Zapata W., Acosta-Cárdenas A., Villa-Restrepo A.F. Evaluation of polyhydroxyalkanoate (PHAs) production with a bacterial isolate using cassava flour hydrolysates as an alternative substrate. Dyna. 2019;86:75–81. doi: 10.15446/dyna.v86n208.72019. DOI

Mohapatra S., Sarkar B., Samantaray D., Daware A., Maity S., Pattnaik S., Bhattacharjee S. Bioconversion of fish solid waste into PHB using Bacillus subtilis based submerged fermentation process. Environ. Technol. 2017;38:3201–3208. doi: 10.1080/09593330.2017.1291759. PubMed DOI

Palareti G., Legnani C., Cosmi B., Antonucci E., Erba N., Poli D., Testa S., Tosetto A., Investigators D., De Micheli V. Comparison between different D-D imer cutoff values to assess the individual risk of recurrent venous thromboembolism: Analysis of results obtained in the DULCIS study. Int. J. Lab. Hematol. 2016;38:42–49. doi: 10.1111/ijlh.12426. PubMed DOI

Modig T., Liden G., Taherzadeh M.J. Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase. Biochem. J. 2002;363:769–776. doi: 10.1042/bj3630769. PubMed DOI PMC

Aditiya H., Mahlia T., Chong W., Nur H., Sebayang A. Second generation bioethanol production: A critical review. Renew. Sustain. Energy Rev. 2016;66:631–653. doi: 10.1016/j.rser.2016.07.015. DOI

Karmee S.K. Liquid biofuels from food waste: Current trends, prospect and limitation. Renew. Sustain. Energy Rev. 2016;53:945–953. doi: 10.1016/j.rser.2015.09.041. DOI

Woon K.S., Lo I.M. A proposed framework of food waste collection and recycling for renewable biogas fuel production in Hong Kong. Waste Manag. 2016;47:3–10. doi: 10.1016/j.wasman.2015.03.022. PubMed DOI

Osman N.B., Othman H.T., Karim R.A., Mazlan M.A.F. Biomass in Malaysia: Forestry-based residues. Int. J. Biomass Renew. 2014;3:7–14. doi: 10.61762/ijbrvol3iss1art13872. DOI

Moh Y.C., Abd Manaf L. Overview of household solid waste recycling policy status and challenges in Malaysia. Resour. Conserv. Recycl. 2014;82:50–61. doi: 10.1016/j.resconrec.2013.11.004. DOI

Giwa A.S., Ali N., Akhter M.S. Cellulose Degradation Enzymes in Filamentous Fungi, A Bioprocessing Approach Towards Biorefinery. Mol. Biotechnol. 2023 doi: 10.1007/s12033-023-00900-1. PubMed DOI

Giwa A.S., Nasir A., Izhar A., Muhammad A., Rong-Bo G., Fu-Li L., Ming L. Prospects of China’s biogas: Fundamentals, challenges and considerations. Energy Rep. 2020;6:2973–2987. doi: 10.1016/j.egyr.2020.10.027. DOI

Giwa A.S., Ali N., Asif M. Swine manure valorization in fabrication of nutrition and energy. Appl. Microbiol. Biotechnol. 2020;104:9921–9933. doi: 10.1007/s00253-020-10963-8. PubMed DOI

Ali N., Hamed I.H., Hang S., Jie F., Zi-Yong L., Ming L., Fu-Li L. A two-stage anaerobic bioconversion of corn stover: Impact of pure bacterial pretreatment on methane production. Environ. Technol. Innov. 2020;20:101141. doi: 10.1016/j.eti.2020.101141. DOI

Hamouda H.I., Ali N., Su H., Feng J., Lu M., Li F.L. Exploration of Two Pectate Lyases from Caldicellulosiruptor Bescii Reveals that the CBM66 Module Has a Crucial Role in Pectic Biomass Degradation. Appl. Environ. Microbiol. 2020;86:16. doi: 10.1128/AEM.00787-20. PubMed DOI PMC

Ali N., Hamed I.H., Hang S., Fu-Li L., Ming L. Combinations of alkaline hydrogen peroxide and lithium chloride/N,N-dimethylacetamide pretreatments of corn stalk for improved biomethanation. Environ. Res. 2020;186:109563. doi: 10.1016/j.envres.2020.109563. PubMed DOI

Ali N., Zhang Q., Liu Z.Y. Emerging technologies for the pretreatment of lignocellulosic materials for bio-based products. Appl. Microbiol. Biotechnol. 2020;104:455–473. doi: 10.1007/s00253-019-10158-w. PubMed DOI

Ali N., Gong H., Liu X., Giwa A.S., Wang K. Evaluation of bacterial association in methane generation pathways of an anaerobic digesting sludge via metagenomic sequencing. Arch. Microbiol. 2020;202:31–41. doi: 10.1007/s00203-019-01716-x. PubMed DOI

Ali N., Gong H., Giwa A.S., Yuan QWang K.J. Metagenomic analysis and characterization of acidogenic microbiome and effect of pH on organic acid production. Arch. Microbiol. 2019;201:1163–1171. doi: 10.1007/s00203-019-01676-2. PubMed DOI

Ali N., Giwa A.S., Abdalla MLiu X. Alkaline hydrogen peroxide pretreatment of bamboo culm for improved enzymatic release of reducing sugars using recombinant cellulases. Cellulose. 2020;27:769–779. doi: 10.1007/s10570-019-02829-8. DOI

Ali N., Xue Y., Gan L., Liu J., Long M. Purification, characterization, gene cloning and sequencing of a new β-glucosidase from Aspergillus niger BE-2. Appl. Biochem. Microbiol. 2016;52:564–571. doi: 10.1134/S0003683816050045. DOI

Ali N., Ting Z., Li H., Xue Y., Gan L., Liu J., Long M. Heterogeneous Expression and Functional Characterization of Cellulose-Degrading Enzymes from Aspergillus niger for Enzymatic Hydrolysis of Alkali Pretreated Bamboo Biomass. Mol. Biotechnol. 2015;57:859–867. doi: 10.1007/s12033-015-9878-x. PubMed DOI

Gong H., Jiarui X., Quan Y., Qibin W., Nasir A., Kaijun W. Carbon-nitrogen nexus was changed by improved organic carbon pre-concentration and autotrophic deammonification to improve energy self-sufficiency for wastewater treatment. J. Water Process Eng. 2021;44:102432. doi: 10.1016/j.jwpe.2021.102432. DOI

Yuan Q., Hui G., Hao X., Heng X., Zhengyu J., Nasir A., Kaijun W. Strategies to improve aerobic granular sludge stability and nitrogen removal based on feeding mode and substrate. Environ. Sci. 2021;84:144–154. doi: 10.1016/j.jes.2019.04.006. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace