Clinical and molecular response to alpha1-oleate treatment in patients with bladder cancer

. 2024 Sep ; 13 (17) : e70149.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu klinické zkoušky, fáze I, klinické zkoušky, fáze II, časopisecké články, randomizované kontrolované studie

Perzistentní odkaz   https://www.medvik.cz/link/pmid39254154

Grantová podpora
Swedish Research Council (Vetenskapsrådet)
Swedish Cancer Society (Cancerfonden)
Royal Physiographic Society in Lund
954360 Horizon 2020 Framework Programme
HAMLET BioPharma AB, Lund, Sweden

BACKGROUND: The tumoricidal complex alpha1-oleate targets bladder cancer cells, triggering rapid, apoptosis-like tumor cell death. Clinical effects of alpha1-oleate were recently observed in patients with non-muscle invasive bladder cancer (NMIBC), using a randomized, placebo-controlled study protocol. AIMS: To investigate if there are dose-dependent effects of alpha1-oleate. MATERIALS AND METHODS: Here, patients with NMIBC were treated by intravesical instillation of increasing concentrations of alpha1-oleate (1.7, 8.5, or 17 mM) and the treatment response was defined relative to a placebo group. RESULTS: Strong, dose-dependent anti-tumor effects were detected in alpha1-oleate treated patients for a combination of molecular and clinical indicators; a complete or partial response was detected in 88% of tumors treated with 8.5 mM compared to 47% of tumors treated with 1.7 mM of alpha1-oleate. Uptake of alpha1-oleate by the tumor triggered rapid shedding of tumor cells into the urine and cell death by an apoptosis-like mechanism. RNA sequencing of tissue biopsies confirmed the activation of apoptotic cell death and strong inhibition of cancer gene networks, including bladder cancer related genes. Drug-related side effects were not recorded, except for local irritation at the site of instillation. DISCUSSION AND CONCLUSIONS: These dose-dependent anti-tumor effects of alpha1-oleate are promising and support the potential of alpha1-oleate treatment in patients with NMIBC.

Zobrazit více v PubMed

Antoni S, Ferlay J, Soerjomataram I, Znaor A, Jemal A, Bray F. Bladder cancer incidence and mortality: a global overview and recent trends. Eur Urol. 2017;71(1):96‐108. doi:10.1016/j.eururo.2016.06.010 PubMed DOI

Colombo R, Da Pozzo LF, Salonia A, et al. Multicentric study comparing intravesical chemotherapy alone and with local microwave hyperthermia for prophylaxis of recurrence of superficial transitional cell carcinoma. J Clin Oncol. 2003;21(23):4270‐4276. doi:10.1200/JCO.2003.01.089 PubMed DOI

van Rhijn BW, Burger M, Lotan Y, et al. Recurrence and progression of disease in non‐muscle‐invasive bladder cancer: from epidemiology to treatment strategy. Eur Urol. 2009;56(3):430‐442. doi:10.1016/j.eururo.2009.06.028 PubMed DOI

Sharma P, Allison JP. Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell. 2015;161(2):205‐214. doi:10.1016/j.cell.2015.03.030 PubMed DOI PMC

Hu Q, Sun W, Wang C, Gu Z. Recent advances of cocktail chemotherapy by combination drug delivery systems. Adv Drug Deliv Rev. 2016;98:19‐34. doi:10.1016/j.addr.2015.10.022 PubMed DOI PMC

Arends TJ, Nativ O, Maffezzini M, et al. Results of a randomised controlled trial comparing Intravesical Chemohyperthermia with Mitomycin C versus bacillus Calmette‐Guerin for adjuvant treatment of patients with intermediate‐ and high‐risk non‐muscle‐invasive bladder cancer. Eur Urol. 2016;69(6):1046‐1052. doi:10.1016/j.eururo.2016.01.006 PubMed DOI

de Jong JJ, Hendricksen K, Rosier M, Mostafid H, Boormans JL. Hyperthermic Intravesical chemotherapy for BCG unresponsive non‐muscle invasive bladder cancer patients. Bladder Cancer. 2018;4(4):395‐401. doi:10.3233/BLC-180191 PubMed DOI PMC

Ourfali S, Ohannessian R, Fassi‐Fehri H, Pages A, Badet L, Colombel M. Recurrence rate and cost consequence of the shortage of bacillus Calmette‐Guerin Connaught strain for bladder cancer patients. Eur Urol Focus. 2021;7(1):111‐116. doi:10.1016/j.euf.2019.04.002 PubMed DOI

Hakansson A, Zhivotovsky B, Orrenius S, Sabharwal H, Svanborg C. Apoptosis induced by a human milk protein. Proc Natl Acad Sci USA. 1995;92(17):8064‐8068. doi:10.1073/pnas.92.17.8064 PubMed DOI PMC

Svensson M, Hakansson A, Mossberg AK, Linse S, Svanborg C. Conversion of alpha‐lactalbumin to a protein inducing apoptosis. Proc Natl Acad Sci USA. 2000;97(8):4221‐4226. doi:10.1073/pnas.97.8.4221 PubMed DOI PMC

Pettersson‐Kastberg J, Mossberg AK, Trulsson M, et al. Alpha‐Lactalbumin, engineered to be nonnative and inactive, kills tumor cells when in complex with oleic acid: a new biological function resulting from partial unfolding. J Mol Biol. 2009;394(5):994‐1010. doi:10.1016/j.jmb.2009.09.026 PubMed DOI

Fischer W, Gustafsson L, Mossberg AK, et al. Human alpha‐lactalbumin made lethal to tumor cells (HAMLET) kills human glioblastoma cells in brain xenografts by an apoptosis‐like mechanism and prolongs survival. Cancer Res. 2004;64(6):2105‐2112. doi:10.1158/0008-5472.can-03-2661 PubMed DOI

Gustafsson L, Leijonhufvud I, Aronsson A, Mossberg AK, Svanborg C. Treatment of skin papillomas with topical alpha‐lactalbumin‐oleic acid. N Engl J Med. 2004;350(26):2663‐2672. doi:10.1056/NEJMoa032454 PubMed DOI

Mossberg AK, Wullt B, Gustafsson L, Mansson W, Ljunggren E, Svanborg C. Bladder cancers respond to intravesical instillation of HAMLET (human alpha‐lactalbumin made lethal to tumor cells). Int J Cancer. 2007;121(6):1352‐1359. doi:10.1002/ijc.22810 PubMed DOI

Mossberg AK, Hou Y, Svensson M, Holmqvist B, Svanborg C. HAMLET treatment delays bladder cancer development. J Urol. 2010;183(4):1590‐1597. doi:10.1016/j.juro.2009.12.008 PubMed DOI

Puthia M, Storm P, Nadeem A, Hsiung S, Svanborg C. Prevention and treatment of colon cancer by peroral administration of HAMLET (human alpha‐lactalbumin made lethal to tumour cells). Gut. 2014;63(1):131‐142. doi:10.1136/gutjnl-2012-303715 PubMed DOI PMC

Tran HT, Ambite I, Butler D, et al. Bladder cancer therapy without toxicity‐a dose‐escalation study of alpha1‐oleate. Int J Cancer. 2020;147(9):2479‐2492. doi:10.1002/ijc.33019 PubMed DOI

Ho CS, Rydstrom A, Manimekalai MS, Svanborg C, Gruber G. Low resolution solution structure of HAMLET and the importance of its alpha‐domains in tumoricidal activity. PLoS One. 2012;7(12):e53051. doi:10.1371/journal.pone.0053051 PubMed DOI PMC

Brisuda A, Ho JCS, Kandiyal PS, et al. Bladder cancer therapy using a conformationally fluid tumoricidal peptide complex. Nat Commun. 2021;12(1):3427. doi:10.1038/s41467-021-23748-y PubMed DOI PMC

Ahmadi S, Ambite I, Brisuda A, et al. Similar immune responses to alpha1‐oleate and bacillus Calmette‐Guerin treatment in patients with bladder cancer. Cancer Med. 2024;13(7):e7091. doi:10.1002/cam4.7091 PubMed DOI PMC

Babjuk M, Bohle A, Burger M, et al. EAU guidelines on non‐muscle‐invasive urothelial carcinoma of the bladder: update 2016. Eur Urol. 2017;71(3):447‐461. doi:10.1016/j.eururo.2016.05.041 PubMed DOI

Liu D, Evans I, Britton G, Zachary I. The zinc‐finger transcription factor, early growth response 3, mediates VEGF‐induced angiogenesis. Oncogene. 2008;27(21):2989‐2998. doi:10.1038/sj.onc.1210959 PubMed DOI

Feng J, He W, Song Y, et al. Platelet‐derived growth factor receptor beta: a novel urinary biomarker for recurrence of non‐muscle‐invasive bladder cancer. PLoS One. 2014;9(5):e96671. doi:10.1371/journal.pone.0096671 PubMed DOI PMC

Wang Y, Wu J, Luo W, et al. ALPK2 acts as tumor promotor in development of bladder cancer through targeting DEPDC1A. Cell Death Dis. 2021;12(7):661. doi:10.1038/s41419-021-03947-7 PubMed DOI PMC

Bejrananda T, Saetang J, Sangkhathat S. Molecular subtyping in muscle‐invasive bladder cancer on predicting survival and response of treatment. Biomedicine. 2022;11(1):69. doi:10.3390/biomedicines11010069 PubMed DOI PMC

Majid S, Dar AA, Saini S, et al. MicroRNA‐23b functions as a tumor suppressor by regulating Zeb1 in bladder cancer. PLoS One. 2013;8(7):e67686. doi:10.1371/journal.pone.0067686 PubMed DOI PMC

Wishahi M, Khalil H, Badawy MH, et al. Upregulation of Twist2 in non‐muscle invasive urothelial carcinoma of the bladder correlate with response to treatment and progression. Open Access Maced J Med Sci. 2018;6(6):1017‐1022. doi:10.3889/oamjms.2018.165 PubMed DOI PMC

Nadeem A, Sanborn J, Gettel DL, et al. Protein receptor‐independent plasma membrane remodeling by HAMLET: a tumoricidal protein‐lipid complex. Sci Rep. 2015;5(16432). doi:10.1038/srep16432 PubMed DOI PMC

Tran HT, Ambite I, Wan MLY, et al. Long‐term prevention of bladder cancer progression by alpha1‐oleate alone or in combination with chemotherapy. Int J Cancer. 2023;153(3):584‐599. doi:10.1002/ijc.34500 PubMed DOI

Storm P, Aits S, Puthia MK, et al. Conserved features of cancer cells define their sensitivity to HAMLET‐induced death; c‐Myc and glycolysis. Oncogene. 2011;30(48):4765‐4779. doi:10.1038/onc.2011.196 PubMed DOI PMC

Ho JC, Nadeem A, Rydstrom A, Puthia M, Svanborg C. Targeting of nucleotide‐binding proteins by HAMLET—a conserved tumor cell death mechanism. Oncogene. 2016;35(7):897‐907. doi:10.1038/onc.2015.144 PubMed DOI

Nadeem A, Ho JCS, Tran TH, et al. Beta‐sheet‐specific interactions with heat shock proteins define a mechanism of delayed tumor cell death in response to HAMLET. J Mol Biol. 2019;431(14):2612‐2627. doi:10.1016/j.jmb.2019.05.007 PubMed DOI

Seymour GJ, Walsh MD, Lavin MF, Strutton G, Gardiner RA. Transferrin receptor expression by human bladder transitional cell carcinomas. Urol Res. 1987;15(6):341‐344. doi:10.1007/BF00265663 PubMed DOI

Tortorella S, Karagiannis TC. Transferrin receptor‐mediated endocytosis: a useful target for cancer therapy. J Membr Biol. 2014;247(4):291‐307. doi:10.1007/s00232-014-9637-0 PubMed DOI

Dyrskjot L, Zieger K, Kissow Lildal T, et al. Expression of MAGE‐A3, NY‐ESO‐1, LAGE‐1 and PRAME in urothelial carcinoma. Br J Cancer. 2012;107(1):116‐122. doi:10.1038/bjc.2012.215 PubMed DOI PMC

Sanders JA, Frasier C, Matulay JT, et al. Genomic analysis of response to bacillus Calmette‐Guerin (BCG) treatment in high‐grade stage 1 bladder cancer patients. Transl Androl Urol. 2021;10(7):2998‐3009. doi:10.21037/tau-21-158 PubMed DOI PMC

Kim YJ, Ha YS, Kim SK, et al. Gene signatures for the prediction of response to bacillus Calmette‐Guerin immunotherapy in primary pT1 bladder cancers. Clin Cancer Res. 2010;16(7):2131‐2137. doi:10.1158/1078-0432.CCR-09-3323 PubMed DOI

Su F, Liu M, Zhang W, et al. Bacillus Calmette‐Guerin treatment changes the tumor microenvironment of non‐muscle‐invasive bladder cancer. Front . Oncologia. 2022;12:842182. doi:10.3389/fonc.2022.842182 PubMed DOI PMC

Han J, Gu X, Li Y, Wu Q. Mechanisms of BCG in the treatment of bladder cancer‐current understanding and the prospect. Biomed Pharmacother. 2020;129:110393. doi:10.1016/j.biopha.2020.110393 PubMed DOI

Shore ND, Palou Redorta J, Robert G, et al. Non‐muscle‐invasive bladder cancer: an overview of potential new treatment options. Urol Oncol. 2021;39(10):642‐663. doi:10.1016/j.urolonc.2021.05.015 PubMed DOI

Smelser WW, Yasin HA, Davis NB. BCG‐unresponsive NMIBC: current evidence and options. Urol Times. 2021;10(4):16‐19. https://www.urologytimes.com/view/bcg‐unresponsive‐nmibc‐current‐evidence‐and‐options

Boorjian SA, Alemozaffar M, Konety BR, et al. Intravesical nadofaragene firadenovec gene therapy for BCG‐unresponsive non‐muscle‐invasive bladder cancer: a single‐arm, open‐label, repeat‐dose clinical trial. Lancet Oncol. 2021;22(1):107‐117. doi:10.1016/S1470-2045(20)30540-4 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...