Radiation Signature in Plasma Metabolome of Total-Body Irradiated Nonhuman Primates and Clinical Patients
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
AFR-12080
Uniformed Services the Armed Forces Radiobiology Research Institute/University of the Health Sciences
Healthcare Challenges of WMD II, project DZRO-FVZ22-ZHN II
Ministry of Defence of Czech Republic
PubMed
39273157
PubMed Central
PMC11395250
DOI
10.3390/ijms25179208
PII: ijms25179208
Knihovny.cz E-resources
- Keywords
- biomarkers, human, metabolomics, nonhuman primate, plasma, total-body irradiation,
- MeSH
- Biomarkers blood MeSH
- Whole-Body Irradiation * MeSH
- Adult MeSH
- Radiation, Ionizing MeSH
- Leukemia blood metabolism MeSH
- Middle Aged MeSH
- Humans MeSH
- Macaca mulatta MeSH
- Metabolome * MeSH
- Metabolomics methods MeSH
- Animals MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Biomarkers MeSH
In the last decade, geopolitical instability across the globe has increased the risk of a large-scale radiological event, when radiation biomarkers would be needed for an effective triage of an irradiated population. Ionizing radiation elicits a complex response in the proteome, genome, and metabolome and hence can be leveraged as rapid and sensitive indicators of irradiation-induced damage. We analyzed the plasma of total-body irradiated (TBI) leukemia patients (n = 24) and nonhuman primates (NHPs; n = 10) before and 24 h after irradiation, and we performed a global metabolomic study aiming to provide plasma metabolites as candidate radiation biomarkers for biological dosimetry. Peripheral blood samples were collected according to the appropriate ethical approvals, and metabolites were extracted and analyzed by liquid chromatography mass spectrometry. We identified an array of metabolites significantly altered by irradiation, including bilirubin, cholesterol, and 18-hydroxycorticosterone, which were detected in leukemia patients and NHPs. Pathway analysis showed overlapping perturbations in steroidogenesis, porphyrin metabolism, and steroid hormone biosynthesis and metabolism. Additionally, we observed dysregulation in bile acid biosynthesis and tyrosine metabolism in the TBI patient cohort. This investigation is, to our best knowledge, among the first to provide valuable insights into a comparison between human and NHP irradiation models. The findings from this study could be leveraged for translational biological dosimetry.
See more in PubMed
Hall J., Jeggo P.A., West C., Gomolka M., Quintens R., Badie C., Laurent O., Aerts A., Anastasov N., Azimzadeh O., et al. Ionizing radiation biomarkers in epidemiological studies—An update. Mutat. Res. Rev. Mutat. Res. 2017;771:59–84. doi: 10.1016/j.mrrev.2017.01.001. PubMed DOI
Pannkuk E.L., Fornace A.J., Jr., Laiakis E.C. Metabolomic applications in radiation biodosimetry: Exploring radiation effects through small molecules. Int. J. Radiat. Biol. 2017;93:1151–1176. doi: 10.1080/09553002.2016.1269218. PubMed DOI PMC
Singh V.K., Seed T.M., Cheema A.K. Metabolomics-based predictive biomarkers of radiation injury and countermeasure efficacy: Current status and future perspectives. Expert Rev. Mol. Diagn. 2021;21:641–654. doi: 10.1080/14737159.2021.1933448. PubMed DOI
Liu H., Wang Z., Zhang X., Qiao Y., Wu S., Dong F., Chen Y. Selection of candidate radiation biomarkers in the serum of rats exposed to gamma-rays by gc/tofms-based metabolomics. Radiat. Prot. Dosim. 2013;154:9–17. doi: 10.1093/rpd/ncs138. PubMed DOI
Manna S.K., Krausz K.W., Bonzo J.A., Idle J.R., Gonzalez F.J. Metabolomics reveals aging-associated attenuation of noninvasive radiation biomarkers in mice: Potential role of polyamine catabolism and incoherent DNA damage-repair. J. Proteome Res. 2013;12:2269–2281. doi: 10.1021/pr400161k. PubMed DOI PMC
Crook A., De Lima Leite A., Payne T., Bhinderwala F., Woods J., Singh V.K., Powers R. Radiation exposure induces cross-species temporal metabolic changes that are mitigated in mice by amifostine. Sci. Rep. 2021;11:14004. doi: 10.1038/s41598-021-93401-7. PubMed DOI PMC
Cheema A.K., Li Y., Girgis M., Jayatilake M., Fatanmi O.O., Wise S.Y., Seed T.M., Singh V.K. Alterations in tissue metabolite profiles with amifostine-prophylaxed mice exposed to gamma radiation. Metabolites. 2020;10:211. doi: 10.3390/metabo10050211. PubMed DOI PMC
Cheema A.K., Li Y., Girgis M., Jayatilake M., Simas M., Wise S.Y., Olabisi A.O., Seed T.M., Singh V.K. Metabolomic studies in tissues of mice treated with amifostine and exposed to gamma-radiation. Sci. Rep. 2019;9:15701. doi: 10.1038/s41598-019-52120-w. PubMed DOI PMC
Singh V.K., Fatanmi O.O., Wise S.Y., Carpenter A.D., Olsen C.H. Determination of lethality curve for cobalt-60 gamma-radiation source in rhesus macaques using subject-based supportive care. Radiat. Res. 2022;198:599–614. doi: 10.1667/RADE-22-00101.1. PubMed DOI PMC
Vral A., Fenech M., Thierens H. The micronucleus assay as a biological dosimeter of in vivo ionising radiation exposure. Mutagenesis. 2011;26:11–17. doi: 10.1093/mutage/geq078. PubMed DOI
Khan N.M., Poduval T.B. Bilirubin augments radiation injury and leads to increased infection and mortality in mice: Molecular mechanisms. Free Radic. Biol. Med. 2012;53:1152–1169. doi: 10.1016/j.freeradbiomed.2012.07.007. PubMed DOI
Manens L., Grison S., Bertho J.M., Lestaevel P., Gueguen Y., Benderitter M., Aigueperse J., Souidi M. Chronic exposure of adult, postnatal and in utero rat models to low-dose 137cesium: Impact on circulating biomarkers. J. Radiat. Res. 2016;57:607–619. doi: 10.1093/jrr/rrw067. PubMed DOI PMC
Wong F.L., Yamada M., Sasaki H., Kodama K., Hosoda Y. Effects of radiation on the longitudinal trends of total serum cholesterol levels in the atomic bomb survivors. Radiat. Res. 1999;151:736–746. doi: 10.2307/3580213. PubMed DOI
Werner E., Alter A., Deng Q., Dammer E.B., Wang Y., Yu D.S., Duong D.M., Seyfried N.T., Doetsch P.W. Ionizing radiation induction of cholesterol biosynthesis in lung tissue. Sci. Rep. 2019;9:12546. doi: 10.1038/s41598-019-48972-x. PubMed DOI PMC
French A.B., Migeon C.J., Samuels L.T., Bowers J.Z. Effects of whole body x-irradiation on 17-hydroxycorticosteroid levels, leucocytes and volume of packed rell cells in the rhesus monkey. Am. J. Physiol. 1955;182:469–476. doi: 10.1152/ajplegacy.1955.182.3.469. PubMed DOI
Hirao T., Urata Y., Kageyama K., Ikezaki M., Kawakatsu M., Matsuse M., Matsuo T., Akishita M., Nagata I., Kondo T. Dehydroepiandrosterone augments sensitivity to gamma-ray irradiation in human h4 neuroglioma cells through down-regulation of akt signaling. Free Radic. Res. 2008;42:957–965. doi: 10.1080/10715760802566582. PubMed DOI
Thompson J.S., Reilly R.W., Crawford M., Russe H.P. The effect of estradiol and estriol on the survival of sublethally and lethally irradiated mice. Radiat. Res. 1965;26:567–583. doi: 10.2307/3571867. PubMed DOI
Koch H.J., Jr., Talbot T.R., Bernstein M., Mac K.J., Elias C. The effect of isotopic (i131) radiation and x-radiation on the total coproporphyrin excretion in humans. J. Clin. Endocrinol. Metab. 1950;10:1029–1053. doi: 10.1210/jcem-10-9-1029. PubMed DOI
Lee T.K., Stupans I. Radioprotection: The non-steroidal anti-inflammatory drugs (nsaids) and prostaglandins. J. Pharm. Pharmacol. 2002;54:1435–1445. doi: 10.1211/00223570254. PubMed DOI
MacNaughton W.K., Leach K.E., Prud’homme-Lalonde L., Ho W., Sharkey K.A. Ionizing radiation reduces neurally evoked electrolyte transport in rat ileum through a mast cell-dependent mechanism. Gastroenterology. 1994;106:324–335. doi: 10.1016/0016-5085(94)90589-4. PubMed DOI
Nakajima T., Yukawa O. Mechanism of radiation-induced diacylglycerol production in primary cultured rat hepatocytes. J. Radiat. Res. 1999;40:135–144. doi: 10.1269/jrr.40.135. PubMed DOI
Shimura T., Nakashiro C., Fujiwara K., Shiga R., Sasatani M., Kamiya K., Ushiyama A. Radiation affects glutathione redox reaction by reduced glutathione peroxidase activity in human fibroblasts. J. Radiat. Res. 2022;63:183–191. doi: 10.1093/jrr/rrab122. PubMed DOI PMC
Laiakis E.C., Strassburg K., Bogumil R., Lai S., Vreeken R.J., Hankemeier T., Langridge J., Plumb R.S., Fornace A.J., Jr., Astarita G. Metabolic phenotyping reveals a lipid mediator response to ionizing radiation. J. Proteome Res. 2014;13:4143–4154. doi: 10.1021/pr5005295. PubMed DOI PMC
Li Y., Girgis M., Wise S.Y., Fatanmi O.O., Seed T.M., Maniar M., Cheema A.K., Singh V.K. Analysis of the metabolomic profile in serum of irradiated nonhuman primates treated with ex-rad, a radiation countermeasure. Sci. Rep. 2021;11:11449. doi: 10.1038/s41598-021-91067-9. PubMed DOI PMC
Li Y., Girgis M., Jayatilake M., Serebrenik A.A., Cheema A.K., Kaytor M.D., Singh V.K. Pharmacokinetic and metabolomic studies with a bio 300 oral powder formulation in nonhuman primates. Sci. Rep. 2022;12:13475. doi: 10.1038/s41598-022-17807-7. PubMed DOI PMC
Cheema A.K., Mehta K.Y., Santiago P.T., Fatanmi O.O., Kaytor M.D., Singh V.K. Pharmacokinetic and metabolomic studies with bio 300, a nanosuspension of genistein, in a nonhuman primate model. Int. J. Mol. Sci. 2019;20:1231. doi: 10.3390/ijms20051231. PubMed DOI PMC
Pannkuk E.L., Laiakis E.C., Fornace A.J., Jr., Fatanmi O.O., Singh V.K. A metabolomic serum signature from nonhuman primates treated with a radiation countermeasure, gamma-tocotrienol, and exposed to ionizing radiation. Health Phys. 2018;115:3–11. doi: 10.1097/HP.0000000000000776. PubMed DOI PMC
Cheema A.K., Mehta K.Y., Fatanmi O.O., Wise S.Y., Hinzman C.P., Wolff J., Singh V.K. A metabolomic and lipidomic serum signature from nonhuman primates administered with a promising radiation countermeasure, gamma-tocotrienol. Int. J. Mol. Sci. 2018;19:79. doi: 10.3390/ijms19010079. PubMed DOI PMC
Carpenter A.D., Li Y., Fatanmi O.O., Wise S.Y., Petrus S.A., Janocha B.L., Cheema A.K., Singh V.K. Metabolomic profiles in tissues of nonhuman primates exposed to total- or partial-body radiation. Radiat. Res. 2024;201:371–383. doi: 10.1667/RADE-23-00091.1. PubMed DOI
Carpenter A.D., Fatanmi O.O., Wise S.Y., Petrus S.A., Tyburski J.B., Cheema A.K., Singh V.K. Metabolomic changes in plasma of preterminal stage of rhesus nonhuman primates exposed to lethal dose of radiation. Metabolites. 2024;14:18. doi: 10.3390/metabo14010018. PubMed DOI PMC
Singh V.K., Kulkarni S., Fatanmi O.O., Wise S.Y., Newman V.L., Romaine P.L., Hendrickson H., Gulani J., Ghosh S.P., Kumar K.S., et al. Radioprotective efficacy of gamma-tocotrienol in nonhuman primates. Radiat. Res. 2016;185:285–298. doi: 10.1667/RR14127.1. PubMed DOI
National Research Council of the National Academy of Sciences . Guide for the Care and Use of Laboratory Animals. 8th ed. National Academies Press; Washington, DC, USA: 2011.
Practice for Use of an Alanine-EPR Dosimetry System. International Standardization Organization and ASTM International; Geneva, Switzerland: 2013. p. 7.
Nagy V. Accuracy considerations in epr dosimetry. Appl. Radiat. Isot. 2000;52:1039–1050. doi: 10.1016/S0969-8043(00)00052-X. PubMed DOI
Vellichirammal N.N., Sethi S., Pandey S., Singh J., Wise S.Y., Carpenter A.D., Fatanmi O.O., Guda C., Singh V.K. Lung transcriptome of nonhuman primates exposed to total- and partial-body irradiation. Mol. Ther. Nucleic Acids. 2022;29:584–598. doi: 10.1016/j.omtn.2022.08.006. PubMed DOI PMC
Dissmore T., DeMarco A.G., Jayatilake M., Girgis M., Bansal S., Li Y., Mehta K., Sridharan V., Gill K., Bansal S., et al. Longitudinal metabolic alterations in plasma of rats exposed to low doses of high linear energy transfer radiation. J. Environ. Sci. Health C Toxicol. Carcinog. 2021;39:219–233. doi: 10.1080/26896583.2020.1865027. PubMed DOI PMC
Libiseller G., Dvorzak M., Kleb U., Gander E., Eisenberg T., Madeo F., Neumann S., Trausinger G., Sinner F., Pieber T., et al. IPO: A tool for automated optimization of xcms parameters. BMC Bioinform. 2015;16:118. doi: 10.1186/s12859-015-0562-8. PubMed DOI PMC
Xia J., Psychogios N., Young N., Wishart D.S. MetaboAnalyst: A web server for metabolomic data analysis and interpretation. Nucleic Acids Res. 2009;37:W652–W660. doi: 10.1093/nar/gkp356. PubMed DOI PMC
Li S., Park Y., Duraisingham S., Strobel F.H., Khan N., Soltow Q.A., Jones D.P., Pulendran B. Predicting network activity from high throughput metabolomics. PLoS Comput. Biol. 2013;9:e1003123. doi: 10.1371/journal.pcbi.1003123. PubMed DOI PMC