GpsB Coordinates StkP Signaling as a PASTA Kinase Adaptor in Streptococcus pneumoniae Cell Division

. 2024 Nov 15 ; 436 (22) : 168797. [epub] 20240919

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39303764

Grantová podpora
R35 GM131767 NIGMS NIH HHS - United States

Odkazy

PubMed 39303764
PubMed Central PMC11563889
DOI 10.1016/j.jmb.2024.168797
PII: S0022-2836(24)00419-4
Knihovny.cz E-zdroje

StkP, the Ser/Thr protein kinase of the major human pathogen Streptococcus pneumoniae, monitors cell wall signals and regulates growth and division in response. In vivo, StkP interacts with GpsB, a cell division protein required for septal ring formation and closure, that affects StkP-dependent phosphorylation. Here, we report that although StkP has basal intrinsic kinase activity, GpsB promotes efficient autophosphorylation of StkP and phosphorylation of StkP substrates. Phosphoproteomic analyzes showed that GpsB is phosphorylated at several Ser and Thr residues. We confirmed that StkP directly phosphorylates GpsB in vitro and in vivo, with T79 and T83 being the major phosphorylation sites. In vitro, phosphoablative GpsB substitutions had a lower potential to stimulate StkP activity, whereas phosphomimetic substitutions were functional in terms of StkP activation. In vivo, substitutions of GpsB phosphoacceptor residues, either phosphoablative or mimetic, had a negative effect on GpsB function, resulting in reduced StkP-dependent phosphorylation and impaired cell division. The bacterial two-hybrid assay and co-immunoprecipitation of GpsB from cells with differentially active StkP indicated that increased phosphorylation of GpsB resulted in a more efficient interaction of GpsB with StkP. Our data suggest that GpsB acts as an adaptor that directly promotes StkP activity by mediating interactions within the StkP signaling hub, ensuring StkP recruitment into the complex and substrate specificity. We present a model that interaction of StkP with GpsB and its phosphorylation and dephosphorylation dynamically modulate kinase activity during exponential growth and under cell wall stress of S. pneumoniae, ensuring the proper functioning of the StkP signaling pathway.

Zobrazit více v PubMed

Sender V, Hentrich K & Henriques-Normark B (2021). Virus-Induced Changes of the Respiratory Tract Environment Promote Secondary Infections With Streptococcus pneumoniae. Front Cell Infect Microbiol. 11, 643326. 10.3389/fcimb.2021.643326. PubMed DOI PMC

Briggs NS, Bruce KE, Naskar S, Winkler ME & Roper DI (2021). The Pneumococcal Divisome: Dynamic Control of Streptococcus pneumoniae Cell Division. Front Microbiol. 12, 737396. 10.3389/fmicb.2021.737396. PubMed DOI PMC

Massidda O, Novakova L & Vollmer W (2013). From models to pathogens: how much have we learned about Streptococcus pneumoniae cell division? Environ Microbiol. 15, 3133–3157. 10.1111/1462-2920.12189. PubMed DOI

Vollmer W, Massidda O & Tomasz A (2019). The Cell Wall of Streptococcus pneumoniae. Microbiol Spectr 7. 10.1128/microbiolspec.GPP3-0018-2018. PubMed DOI PMC

Beilharz K, Novakova L, Fadda D, Branny P, Massidda O & Veening JW (2012). Control of cell division in Streptococcus pneumoniae by the conserved Ser/Thr protein kinase StkP. Proc Natl Acad Sci U S A. 109, E905–913. 10.1073/pnas.1119172109. PubMed DOI PMC

Fleurie A, Cluzel C, Guiral S, Freton C, Galisson F, Zanella-Cleon I, Di Guilmi AM & Grangeasse C (2012). Mutational dissection of the S/T-kinase StkP reveals crucial roles in cell division of Streptococcus pneumoniae. Mol Microbiol. 83, 746–758. 10.1111/j.1365-2958.2011.07962.x. PubMed DOI

Fleurie A, Manuse S, Zhao C, Campo N, Cluzel C, Lavergne JP, Freton C, Combet C, Guiral S, Soufi B, Macek B, Kuru E, VanNieuwenhze MS, Brun YV, Di Guilmi AM, Claverys JP, Galinier A & Grangeasse C (2014). Interplay of the serine/threonine-kinase StkP and the paralogs DivIVA and GpsB in pneumococcal cell elongation and division. PLoS Genet. 10, e1004275. 10.1371/journal.pgen.1004275. PubMed DOI PMC

Land AD, Tsui HC, Kocaoglu O, Vella SA, Shaw SL, Keen SK, Sham LT, Carlson EE & Winkler ME (2013). Requirement of essential Pbp2x and GpsB for septal ring closure in Streptococcus pneumoniae D39. Mol Microbiol. 90, 939–955. 10.1111/mmi.12408. PubMed DOI PMC

Rued BE, Zheng JJ, Mura A, Tsui HT, Boersma MJ, Mazny JL, Corona F, Perez AJ, Fadda D, Doubravova L, Buriankova K, Branny P, Massidda O & Winkler ME (2017). Suppression and synthetic-lethal genetic relationships of DeltagpsB mutations indicate that GpsB mediates protein phosphorylation and penicillin-binding protein interactions in Streptococcus pneumoniae D39. Mol Microbiol. 103, 931–957. 10.1111/mmi.13613. PubMed DOI PMC

Ulrych A, Holeckova N, Goldova J, Doubravova L, Benada O, Kofronova O, Halada P & Branny P (2016). Characterization of pneumococcal Ser/Thr protein phosphatase phpP mutant and identification of a novel PhpP substrate, putative RNA binding protein Jag. BMC Microbiol. 16, 247. 10.1186/s12866-016-0865-6. PubMed DOI PMC

Tsui HT, Joseph M, Zheng JJ, Perez AJ, Manzoor I, Rued BE, Richardson JD, Branny P, Doubravova L, Massidda O & Winkler ME (2023). Negative regulation of MurZ and MurA underlies the essentiality of GpsB- and StkP-mediated protein phosphorylation in Streptococcus pneumoniae D39. Mol Microbiol. 10.1111/mmi.15122. PubMed DOI PMC

Yeats C, Finn RD & Bateman A (2002). The PASTA domain: a beta-lactam-binding domain. Trends Biochem. Sci. 27, 438. PubMed

Manuse S, Fleurie A, Zucchini L, Lesterlin C & Grangeasse C (2016). Role of eukaryotic-like serine/threonine kinases in bacterial cell division and morphogenesis. FEMS Microbiol Rev. 40, 41–56. 10.1093/femsre/fuv041. PubMed DOI

Nagarajan SN, Lenoir C & Grangeasse C (2022). Recent advances in bacterial signaling by serine/threonine protein kinases. Trends Microbiol. 30, 553–566. 10.1016/j.tim.2021.11.005. PubMed DOI

Pereira SF, Goss L & Dworkin J (2011). Eukaryote-like serine/threonine kinases and phosphatases in bacteria. Microbiol. Mol. Biol. Rev. 75, 192–212. PubMed PMC

Hirschfeld C, Gomez-Mejia A, Bartel J, Hentschker C, Rohde M, Maass S, Hammerschmidt S & Becher D (2019). Proteomic Investigation Uncovers Potential Targets and Target Sites of Pneumococcal Serine-Threonine Kinase StkP and Phosphatase PhpP. Front Microbiol. 10, 3101. 10.3389/fmicb.2019.03101. PubMed DOI PMC

Ulrych A, Fabrik I, Kupcik R, Vajrychova M, Doubravova L & Branny P (2021). Cell Wall Stress Stimulates the Activity of the Protein Kinase StkP of Streptococcus pneumoniae, Leading to Multiple Phosphorylation. J Mol Biol. 433, 167319. 10.1016/j.jmb.2021.167319. PubMed DOI

Giefing C, Jelencsics KE, Gelbmann D, Senn BM & Nagy E (2010). The pneumococcal eukaryotic-type serine/threonine protein kinase StkP co-localizes with the cell division apparatus and interacts with FtsZ in vitro. Microbiology. 156, 1697–1707. PubMed

Novakova L, Bezouskova S, Pompach P, Spidlova P, Saskova L, Weiser J & Branny P (2010). Identification of multiple substrates of the StkP Ser/Thr protein kinase in Streptococcus pneumoniae. J Bacteriol. 192, 3629–3638. 10.1128/JB.01564-09. PubMed DOI PMC

Fleurie A, Lesterlin C, Manuse S, Zhao C, Cluzel C, Lavergne JP, Franz-Wachtel M, Macek B, Combet C, Kuru E, VanNieuwenhze MS, Brun YV, Sherratt D & Grangeasse C (2014). MapZ marks the division sites and positions FtsZ rings in Streptococcus pneumoniae. Nature. 516, 259–262. PubMed PMC

Holeckova N, Doubravova L, Massidda O, Molle V, Buriankova K, Benada O, Kofronova O, Ulrych A & Branny P (2014). LocZ is a new cell division protein involved in proper septum placement in Streptococcus pneumoniae. mBio. 6, e01700–01714. 10.1128/mBio.01700-14. PubMed DOI PMC

Stamsas GA, Straume D, Ruud Winther A, Kjos M, Frantzen CA & Havarstein LS (2017). Identification of EloR (Spr1851) as a regulator of cell elongation in Streptococcus pneumoniae. Mol Microbiol. 105, 954–967. 10.1111/mmi.13748. PubMed DOI

Zheng JJ, Perez AJ, Tsui HT, Massidda O & Winkler ME (2017). Absence of the KhpA and KhpB (JAG/EloR) RNA-binding proteins suppresses the requirement for PBP2b by overproduction of FtsA in Streptococcus pneumoniae D39. Mol Microbiol. 106, 793–814. 10.1111/mmi.13847. PubMed DOI PMC

Fenton AK, Manuse S, Flores-Kim J, Garcia PS, Mercy C, Grangeasse C, Bernhardt TG & Rudner DZ (2018). Phosphorylation-dependent activation of the cell wall synthase PBP2a in Streptococcus pneumoniae by MacP. Proc Natl Acad Sci U S A. 115, 2812–2817. 10.1073/pnas.1715218115. PubMed DOI PMC

Taguchi A, Page JE, Tsui HT, Winkler ME & Walker S (2021). Biochemical reconstitution defines new functions for membrane-bound glycosidases in assembly of the bacterial cell wall. Proc Natl Acad Sci U S A. 118. 10.1073/pnas.2103740118. PubMed DOI PMC

Tsui HC, Zheng JJ, Magallon AN, Ryan JD, Yunck R, Rued BE, Bernhardt TG & Winkler ME (2016). Suppression of a deletion mutation in the gene encoding essential PBP2b reveals a new lytic transglycosylase involved in peripheral peptidoglycan synthesis in Streptococcus pneumoniae D39. Mol Microbiol. 100, 1039–1065. 10.1111/mmi.13366. PubMed DOI PMC

Winkler ME, Joseph M & Tsui HT (2023). Secrets of getting started: Regulation of the first committed step of peptidoglycan synthesis by protein phosphorylation in Enterococcus and other Gram-positive bacteria. Mol Microbiol. 120, 805–810. 10.1111/mmi.15204. PubMed DOI PMC

Kelliher JL, Grunenwald CM, Abrahams RR, Daanen ME, Lew CI, Rose WE & Sauer JD (2021). PASTA kinase-dependent control of peptidoglycan synthesis via ReoM is required for cell wall stress responses, cytosolic survival, and virulence in Listeria monocytogenes. PLoS Pathog. 17, e1009881. 10.1371/journal.ppat.1009881. PubMed DOI PMC

Mascari CA, Little JL & Kristich CJ (2023). PASTA-kinase-mediated signaling drives accumulation of the peptidoglycan synthesis protein MurAA to promote cephalosporin resistance in Enterococcus faecalis. Mol Microbiol. 10.1111/mmi.15150. PubMed DOI PMC

Sun Y, Hurlimann S & Garner E (2023). Growth rate is modulated by monitoring cell wall precursors in Bacillus subtilis. Nat Microbiol. 8, 469–480. 10.1038/s41564-023-01329-7. PubMed DOI

Wamp S, Rothe P, Stern D, Holland G, Dohling J & Halbedel S (2022). MurA escape mutations uncouple peptidoglycan biosynthesis from PrkA signaling. PLoS Pathog. 18, e1010406. 10.1371/journal.ppat.1010406. PubMed DOI PMC

Wamp S, Rutter ZJ, Rismondo J, Jennings CE, Moller L, Lewis RJ & Halbedel S (2020). PrkA controls peptidoglycan biosynthesis through the essential phosphorylation of ReoM. Elife. 9. 10.7554/eLife.56048. PubMed DOI PMC

Shah IM, Laaberki MH, Popham DL & Dworkin J (2008). A eukaryotic-like Ser/Thr kinase signals bacteria to exit dormancy in response to peptidoglycan fragments. Cell. 135, 486–496. PubMed PMC

Squeglia F, Marchetti R, Ruggiero A, Lanzetta R, Marasco D, Dworkin J, Petoukhov M, Molinaro A, Berisio R & Silipo A (2011). Chemical basis of peptidoglycan discrimination by PrkC, a key kinase involved in bacterial resuscitation from dormancy. J Am Chem Soc. 133, 20676–20679. 10.1021/ja208080r. PubMed DOI

Maestro B, Novakova L, Hesek D, Lee M, Leyva E, Mobashery S, Sanz JM & Branny P (2011). Recognition of peptidoglycan and beta-lactam antibiotics by the extracellular domain of the Ser/Thr protein kinase StkP from Streptococcus pneumoniae. FEBS Lett. 585, 357–363. 10.1016/j.febslet.2010.12.016. PubMed DOI PMC

Hardt P, Engels I, Rausch M, Gajdiss M, Ulm H, Sass P, Ohlsen K, Sahl HG, Bierbaum G, Schneider T & Grein F (2017). The cell wall precursor lipid II acts as a molecular signal for the Ser/Thr kinase PknB of Staphylococcus aureus. Int J Med Microbiol. 307, 1–10. 10.1016/j.ijmm.2016.12.001. PubMed DOI

Kaur P, Rausch M, Malakar B, Watson U, Damle NP, Chawla Y, Srinivasan S, Sharma K, Schneider T, Jhingan GD, Saini D, Mohanty D, Grein F & Nandicoori VK (2019). LipidII interaction with specific residues of Mycobacterium tuberculosis PknB extracytoplasmic domain governs its optimal activation. Nat Commun. 10, 1231. 10.1038/s41467-019-09223-9. PubMed DOI PMC

Zucchini L, Mercy C, Garcia PS, Cluzel C, Gueguen-Chaignon V, Galisson F, Freton C, Guiral S, Brochier-Armanet C, Gouet P & Grangeasse C (2018). PASTA repeats of the protein kinase StkP interconnect cell constriction and separation of Streptococcus pneumoniae. Nat Microbiol. 3, 197–209. 10.1038/s41564-017-0069-3. PubMed DOI

Novakova L, Saskova L, Pallova P, Janecek J, Novotna J, Ulrych A, Echenique J, Trombe MC & Branny P (2005). Characterization of a eukaryotic type serine/threonine protein kinase and protein phosphatase of Streptococcus pneumoniae and identification of kinase substrates. FEBS J. 272, 1243–1254. 10.1111/j.1742-4658.2005.04560.x. PubMed DOI

Mir M, Asong J, Li X, Cardot J, Boons GJ & Husson RN (2011). The extracytoplasmic domain of the Mycobacterium tuberculosis Ser/Thr kinase PknB binds specific muropeptides and is required for PknB localization. PLoS Pathog. 7, e1002182. 10.1371/journal.ppat.1002182. PubMed DOI PMC

Halbedel S & Lewis RJ (2019). Structural basis for interaction of DivIVA/GpsB proteins with their ligands. Mol Microbiol. 111, 1404–1415. 10.1111/mmi.14244. PubMed DOI

Pompeo F, Foulquier E, Serrano B, Grangeasse C & Galinier A (2015). Phosphorylation of the cell division protein GpsB regulates PrkC kinase activity through a negative feedback loop in Bacillus subtilis. Mol Microbiol. 97, 139–150. 10.1111/mmi.13015. PubMed DOI

Bartlett TM, Sisley TA, Mychack A, Walker S, Baker RW, Rudner DZ & Bernhardt TG (2024). FacZ is a GpsB-interacting protein that prevents aberrant division-site placement in Staphylococcus aureus. Nat Microbiol. 9, 801–813. 10.1038/s41564-024-01607-y. PubMed DOI PMC

Costa SF, Saraiva BM, Veiga H, Marques LB, Schaper S, Sporniak M, Vega DE, Jorge AM, Duarte AM, Brito AD, Tavares AC, Reed P & Pinho MG (2024). The role of GpsB in Staphylococcus aureus cell morphogenesis. mBio e0323523. 10.1128/mbio.03235-23. PubMed DOI PMC

Hammond LR, White ML & Eswara PJ (2019). inverted exclamation markvIVA la DivIVA! J Bacteriol. 201. 10.1128/JB.00245-19. PubMed DOI PMC

Martinez-Goikoetxea M & Lupas AN (2023). A conserved motif suggests a common origin for a group of proteins involved in the cell division of Gram-positive bacteria. PLoS One. 18, e0273136. 10.1371/journal.pone.0273136. PubMed DOI PMC

Minton NE, Djoric D, Little J & Kristich CJ (2022). GpsB Promotes PASTA Kinase Signaling and Cephalosporin Resistance in Enterococcus faecalis. J Bacteriol. 204, e0030422. 10.1128/jb.00304-22. PubMed DOI PMC

Sutton JAF, Cooke M, Tinajero-Trejo M, Wacnik K, Salamaga B, Portman-Ross C, Lund VA, Hobbs JK & Foster SJ (2023). The roles of GpsB and DivIVA in Staphylococcus aureus growth and division. Front Microbiol. 14, 1241249. 10.3389/fmicb.2023.1241249. PubMed DOI PMC

Pompeo F, Byrne D, Mengin-Lecreulx D & Galinier A (2018). Dual regulation of activity and intracellular localization of the PASTA kinase PrkC during Bacillus subtilis growth. Sci Rep. 8, 1660. 10.1038/s41598-018-20145-2. PubMed DOI PMC

Kelliher JL, Daanen ME & Sauer J-D (2023). GpsB control of PASTA kinase activity in Listeria monocytogenes influences peptidoglycan synthesis during cell wall stress and cytosolic survival. bioRxiv. 2023.2006.2012.544644. 10.1101/2023.06.12.544644. PubMed DOI PMC

Rothe P, Wamp S, Rosemeyer L, Rismondo J, Doellinger J, Gründling A & Halbedel S (2024). Cytosolic factors controlling PASTA kinase-dependent ReoM phosphorylation. bioRxiv. 2024.2004.2002.587704. 10.1101/2024.04.02.587704. PubMed DOI

VanZeeland NE, Schultz KM, Klug CS & Kristich CJ (2023). Multisite Phosphorylation Regulates GpsB Function in Cephalosporin Resistance of Enterococcus faecalis. J Mol Biol. 435, 168216. 10.1016/j.jmb.2023.168216. PubMed DOI PMC

Cleverley RM, Rismondo J, Lockhart-Cairns MP, Van Bentum PT, Egan AJ, Vollmer W, Halbedel S, Baldock C, Breukink E & Lewis RJ (2016). Subunit Arrangement in GpsB, a Regulator of Cell Wall Biosynthesis. Microb Drug Resist. 22, 446–460. 10.1089/mdr.2016.0050. PubMed DOI PMC

Rismondo J, Cleverley RM, Lane HV, Grosshennig S, Steglich A, Moller L, Mannala GK, Hain T, Lewis RJ & Halbedel S (2016). Structure of the bacterial cell division determinant GpsB and its interaction with penicillin-binding proteins. Mol Microbiol. 99, 978–998. 10.1111/mmi.13279. PubMed DOI

Cleverley RM, Rutter ZJ, Rismondo J, Corona F, Tsui HT, Alatawi FA, Daniel RA, Halbedel S, Massidda O, Winkler ME & Lewis RJ (2019). The cell cycle regulator GpsB functions as cytosolic adaptor for multiple cell wall enzymes. Nat Commun. 10, 261. 10.1038/s41467-018-08056-2. PubMed DOI PMC

Hammond LR, Sacco MD, Khan SJ, Spanoudis C, Hough-Neidig A, Chen Y & Eswara PJ (2022). GpsB Coordinates Cell Division and Cell Surface Decoration by Wall Teichoic Acids in Staphylococcus aureus. Microbiol Spectr. 10, e0141322. 10.1128/spectrum.01413-22. PubMed DOI PMC

Huemer M, Mairpady Shambat S, Hertegonne S, Bergada-Pijuan J, Chang CC, Pereira S, Gomez-Mejia A, Van Gestel L, Bar J, Vulin C, Pfammatter S, Stinear TP, Monk IR, Dworkin J & Zinkernagel AS (2023). Serine-threonine phosphoregulation by PknB and Stp contributes to quiescence and antibiotic tolerance in Staphylococcus aureus. Sci Signal. 16, eabj8194. 10.1126/scisignal.abj8194. PubMed DOI

Hentschker C, Maass S, Junker S, Hecker M, Hammerschmidt S, Otto A & Becher D (2020). Comprehensive Spectral Library from the Pathogenic Bacterium Streptococcus pneumoniae with Focus on Phosphoproteins. J Proteome Res. 19, 1435–1446. 10.1021/acs.jproteome.9b00615. PubMed DOI

Eberhardt A, Wu LJ, Errington J, Vollmer W & Veening JW (2009). Cellular localization of choline-utilization proteins in Streptococcus pneumoniae using novel fluorescent reporter systems. Mol. Microbiol. 74, 395–408. PubMed

Karimova G, Pidoux J, Ullmann A & Ladant D (1998). A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proc Natl Acad Sci U S A. 95, 5752–5756. PubMed PMC

Battesti A & Bouveret E (2012). The bacterial two-hybrid system based on adenylate cyclase reconstitution in Escherichia coli. Methods. 58, 325–334. 10.1016/j.ymeth.2012.07.018. PubMed DOI

Lamanna MM, Manzoor I, Joseph M, Ye ZA, Benedet M, Zanardi A, Ren Z, Wang X, Massidda O, Tsui HT & Winkler ME (2022). Roles of RodZ and class A PBP1b in the assembly and regulation of the peripheral peptidoglycan elongasome in ovoid-shaped cells of Streptococcus pneumoniae D39. Mol Microbiol. 118, 336–368. 10.1111/mmi.14969. PubMed DOI PMC

Dephoure N, Gould KL, Gygi SP & Kellogg DR (2013). Mapping and analysis of phosphorylation sites: a quick guide for cell biologists. Mol Biol Cell. 24, 535–542. 10.1091/mbc.E12-09-0677. PubMed DOI PMC

Greenstein AE, Echols N, Lombana TN, King DS & Alber T (2007). Allosteric activation by dimerization of the PknD receptor Ser/Thr protein kinase from Mycobacterium tuberculosis. J Biol Chem. 282, 11427–11435. 10.1074/jbc.M610193200. PubMed DOI

Lombana TN, Echols N, Good MC, Thomsen ND, Ng HL, Greenstein AE, Falick AM, King DS & Alber T (2010). Allosteric activation mechanism of the Mycobacterium tuberculosis receptor Ser/Thr protein kinase, PknB. Structure. 18, 1667–1677. 10.1016/j.str.2010.09.019. PubMed DOI PMC

Ortiz-Lombardia M, Pompeo F, Boitel B & Alzari PM (2003). Crystal structure of the catalytic domain of the PknB serine/threonine kinase from Mycobacterium tuberculosis. J Biol Chem. 278, 13094–13100. 10.1074/jbc.M300660200. PubMed DOI

Ruggiero A, De Simone P, Smaldone G, Squeglia F & Berisio R (2012). Bacterial cell division regulation by Ser/Thr kinases: a structural perspective. Curr Protein Pept Sci. 13, 756–766. 10.2174/138920312804871201. PubMed DOI PMC

Young TA, Delagoutte B, Endrizzi JA, Falick AM & Alber T (2003). Structure of Mycobacterium tuberculosis PknB supports a universal activation mechanism for Ser/Thr protein kinases. Nat Struct Biol. 10, 168–174. 10.1038/nsb897. PubMed DOI

Hanks SK, Quinn AM & Hunter T (1988). The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science. 241, 42–52. PubMed

Nolen B, Taylor S & Ghosh G (2004). Regulation of protein kinases; controlling activity through activation segment conformation. Mol Cell. 15, 661–675. 10.1016/j.molcel.2004.08.024. PubMed DOI

Linding R, Jensen LJ, Diella F, Bork P, Gibson TJ & Russell RB (2003). Protein disorder prediction: implications for structural proteomics. Structure. 11, 1453–1459. 10.1016/j.str.2003.10.002. PubMed DOI

Newcombe EA, Delaforge E, Hartmann-Petersen R, Skriver K & Kragelund BB (2022). How phosphorylation impacts intrinsically disordered proteins and their function. Essays Biochem. 66, 901–913. 10.1042/EBC20220060. PubMed DOI PMC

Miller CJ & Turk BE (2018). Homing in: Mechanisms of Substrate Targeting by Protein Kinases. Trends Biochem Sci. 43, 380–394. 10.1016/j.tibs.2018.02.009. PubMed DOI PMC

Ng YW, Raghunathan D, Chan PM, Baskaran Y, Smith DJ, Lee CH, Verma C & Manser E (2010). Why an A-loop phospho-mimetic fails to activate PAK1: understanding an inaccessible kinase state by molecular dynamics simulations. Structure. 18, 879–890. 10.1016/j.str.2010.04.011. PubMed DOI

Somale D, Di Nardo G, di Blasio L, Puliafito A, Vara-Messler M, Chiaverina G, Palmiero M, Monica V, Gilardi G, Primo L & Gagliardi PA (2020). Activation of RSK by phosphomimetic substitution in the activation loop is prevented by structural constraints. Sci Rep. 10, 591. 10.1038/s41598-019-56937-3. PubMed DOI PMC

Yariv B, Yariv E, Kessel A, Masrati G, Chorin AB, Martz E, Mayrose I, Pupko T & Ben-Tal N (2023). Using evolutionary data to make sense of macromolecules with a “face-lifted” ConSurf. Protein Sci. 32, e4582. 10.1002/pro.4582. PubMed DOI PMC

Pallova P, Hercik K, Saskova L, Novakova L & Branny P (2007). A eukaryotic-type serine/threonine protein kinase StkP of Streptococcus pneumoniae acts as a dimer in vivo. Biochem Biophys Res Commun. 355, 526–530. 10.1016/j.bbrc.2007.01.184. PubMed DOI

Borowicz P, Chan H, Hauge A & Spurkland A (2020). Adaptor proteins: Flexible and dynamic modulators of immune cell signalling. Scand J Immunol. 92, e12951. 10.1111/sji.12951. PubMed DOI

Van Roey K, Uyar B, Weatheritt RJ, Dinkel H, Seiler M, Budd A, Gibson TJ & Davey NE (2014). Short linear motifs: ubiquitous and functionally diverse protein interaction modules directing cell regulation. Chem Rev. 114, 6733–6778. 10.1021/cr400585q. PubMed DOI

Lanie JA, Ng WL, Kazmierczak KM, Andrzejewski TM, Davidsen TM, Wayne KJ, Tettelin H, Glass JI & Winkler ME (2007). Genome sequence of Avery’s virulent serotype 2 strain D39 of Streptococcus pneumoniae and comparison with that of unencapsulated laboratory strain R6. J Bacteriol. 189, 38–51. 10.1128/JB.01148-06. PubMed DOI PMC

Morrison DA, Lacks SA, Guild WR & Hageman JM (1983). Isolation and characterization of three new classes of transformation-deficient mutants of Streptococcus pneumoniae that are defective in DNA transport and genetic recombination. J. Bacteriol. 156, 281–290. PubMed PMC

Canova MJ, Kremer L & Molle V (2008). pETPhos: a customized expression vector designed for further characterization of Ser/Thr/Tyr protein kinases and their substrates. Plasmid. 60, 149–153. 10.1016/j.plasmid.2008.05.002. PubMed DOI

Ducret A, Quardokus EM & Brun YV (2016). MicrobeJ, a tool for high throughput bacterial cell detection and quantitative analysis. Nat Microbiol. 1, 16077. 10.1038/nmicrobiol.2016.77. PubMed DOI PMC

Fadda D, Santona A, D’Ulisse V, Ghelardini P, Ennas MG, Whalen MB & Massidda O (2007). Streptococcus pneumoniae DivIVA: localization and interactions in a MinCD-free context. J. Bacteriol. 189, 1288–1298. PubMed PMC

Perez AJ, Villicana JB, Tsui HT, Danforth ML, Benedet M, Massidda O & Winkler ME (2021). FtsZ-Ring Regulation and Cell Division Are Mediated by Essential EzrA and Accessory Proteins ZapA and ZapJ in Streptococcus pneumoniae. Front Microbiol. 12, 780864. 10.3389/fmicb.2021.780864. PubMed DOI PMC

Perez-Riverol Y, Csordas A, Bai J, Bernal-Llinares M, Hewapathirana S, Kundu DJ, Inuganti A, Griss J, Mayer G, Eisenacher M, Perez E, Uszkoreit J, Pfeuffer J, Sachsenberg T, Yilmaz S, Tiwary S, Cox J, Audain E, Walzer M, Jarnuczak AF, Ternent T, Brazma A & Vizcaino JA (2019). The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 47, D442–D450. 10.1093/nar/gky1106. PubMed DOI PMC

Abramson J, Adler J, Dunger J, Evans R, Green T, Pritzel A, Ronneberger O, Willmore L, Ballard AJ, Bambrick J, Bodenstein SW, Evans DA, Hung CC, O’Neill M, Reiman D, Tunyasuvunakool K, Wu Z, Zemgulyte A, Arvaniti E, Beattie C, Bertolli O, Bridgland A, Cherepanov A, Congreve M, Cowen-Rivers AI, Cowie A, Figurnov M, Fuchs FB, Gladman H, Jain R, Khan YA, Low CMR, Perlin K, Potapenko A, Savy P, Singh S, Stecula A, Thillaisundaram A, Tong C, Yakneen S, Zhong ED, Zielinski M, Zidek A, Bapst V, Kohli P, Jaderberg M, Hassabis D & Jumper JM (2024). Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature. 630, 493–500. 10.1038/s41586-024-07487-w. PubMed DOI PMC

Sehnal D, Bittrich S, Deshpande M, Svobodova R, Berka K, Bazgier V, Velankar S, Burley SK, Koca J & Rose AS (2021). Mol* Viewer: modern web app for 3D visualization and analysis of large biomolecular structures. Nucleic Acids Res. 49, W431–W437. 10.1093/nar/gkab314. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...