Characterization of pneumococcal Ser/Thr protein phosphatase phpP mutant and identification of a novel PhpP substrate, putative RNA binding protein Jag
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
PubMed
27776484
PubMed Central
PMC5078927
DOI
10.1186/s12866-016-0865-6
PII: 10.1186/s12866-016-0865-6
Knihovny.cz E-zdroje
- Klíčová slova
- Cell division, Jag, Phosphorylation, Protein kinase, Protein phosphatase, Signal transduction, Streptococcus,
- MeSH
- bakteriální proteiny genetika metabolismus MeSH
- buněčná stěna metabolismus MeSH
- buněčné dělení fyziologie MeSH
- fenotyp MeSH
- fosforylace MeSH
- genový knockout MeSH
- mutantní proteiny genetika metabolismus MeSH
- oxidační stres fyziologie MeSH
- protein-serin-threoninkinasy genetika metabolismus MeSH
- proteinfosfatasy genetika metabolismus MeSH
- proteiny vázající RNA metabolismus MeSH
- rekombinantní fúzní proteiny metabolismus MeSH
- sekvenční delece MeSH
- signální transdukce MeSH
- Streptococcus pneumoniae cytologie enzymologie genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- bakteriální proteiny MeSH
- mutantní proteiny MeSH
- protein-serin-threoninkinasy MeSH
- proteinfosfatasy MeSH
- proteiny vázající RNA MeSH
- rekombinantní fúzní proteiny MeSH
BACKGROUND: Reversible protein phosphorylation catalyzed by protein kinases and phosphatases is the primary mechanism for signal transduction in all living organisms. Streptococcus pneumoniae encodes a single Ser/Thr protein kinase, StkP, which plays a role in virulence, stress resistance and the regulation of cell wall synthesis and cell division. However, the role of its cognate phosphatase, PhpP, is not well defined. RESULTS: Here, we report the successful construction of a ΔphpP mutant in the unencapsulated S. pneumoniae Rx1 strain and the characterization of its phenotype. We demonstrate that PhpP negatively controls the level of protein phosphorylation in S. pneumoniae both by direct dephosphorylation of target proteins and by dephosphorylation of its cognate kinase, StkP. Catalytic inactivation or absence of PhpP resulted in the hyperphosphorylation of StkP substrates and specific phenotypic changes, including sensitivity to environmental stresses and competence deficiency. The morphology of the ΔphpP cells resembled the StkP overexpression phenotype and conversely, overexpression of PhpP resulted in cell elongation mimicking the stkP null phenotype. Proteomic analysis of the phpP knock-out strain permitted identification of a novel StkP/PhpP substrate, Spr1851, a putative RNA-binding protein homologous to Jag. Here, we show that pneumococcal Jag is phosphorylated on Thr89. Inactivation of jag confers a phenotype similar to the phpP mutant strain. CONCLUSIONS: Our results suggest that PhpP and StkP cooperatively regulate cell division of S. pneumoniae and phosphorylate putative RNA binding protein Jag.
Zobrazit více v PubMed
Jung K, Fried L, Behr S, Heermann R. Histidine kinases and response regulators in networks. Curr Opin Microbiol. 2012;15(2):118–24. doi: 10.1016/j.mib.2011.11.009. PubMed DOI
Dworkin J. Ser/Thr phosphorylation as a regulatory mechanism in bacteria. Curr Opin Microbiol. 2015;24:47–52. doi: 10.1016/j.mib.2015.01.005. PubMed DOI PMC
Jones G, Dyson P. Evolution of transmembrane protein kinases implicated in coordinating remodeling of gram-positive peptidoglycan: inside versus outside. J Bacteriol. 2006;188(21):7470–6. doi: 10.1128/JB.00800-06. PubMed DOI PMC
Manuse S, Fleurie A, Zucchini L, Lesterlin C, Grangeasse C. Role of eukaryotic-like serine/threonine kinases in bacterial cell division and morphogenesis. FEMS Microbiol Rev. 2016;40(1):41–56. doi: 10.1093/femsre/fuv041. PubMed DOI
Pereira SF, Goss L, Dworkin J. Eukaryote-like serine/threonine kinases and phosphatases in bacteria. Microbiol Mol Biol Rev. 2011;75(1):192–212. doi: 10.1128/MMBR.00042-10. PubMed DOI PMC
Yeats C, Finn RD, Bateman A. The PASTA domain: a beta-lactam-binding domain. Trends Biochem Sci. 2002;27(9):438. doi: 10.1016/S0968-0004(02)02164-3. PubMed DOI
Shi L, Potts M, Kennelly PJ. The serine, threonine, and/or tyrosine-specific protein kinases and protein phosphatases of prokaryotic organisms: a family portrait. FEMS Microbiol Rev. 1998;22(4):229–53. doi: 10.1111/j.1574-6976.1998.tb00369.x. PubMed DOI
Echenique J, Kadioglu A, Romao S, Andrew PW, Trombe MC. Protein serine/threonine kinase StkP positively controls virulence and competence in Streptococcus pneumoniae. Infect Immun. 2004;72(4):2434–7. doi: 10.1128/IAI.72.4.2434-2437.2004. PubMed DOI PMC
Jin H, Pancholi V. Identification and biochemical characterization of a eukaryotic-type serine/threonine kinase and its cognate phosphatase in Streptococcus pyogenes: their biological functions and substrate identification. J Mol Biol. 2006;357(5):1351–72. doi: 10.1016/j.jmb.2006.01.020. PubMed DOI
Osaki M, Arcondeguy T, Bastide A, Touriol C, Prats H, Trombe MC. The StkP/PhpP signaling couple in Streptococcus pneumoniae: cellular organization and physiological characterization. J Bacteriol. 2009;191(15):4943–50. doi: 10.1128/JB.00196-09. PubMed DOI PMC
Agarwal S, Agarwal S, Pancholi P, Pancholi V. Strain-specific regulatory role of eukaryote-like serine/threonine phosphatase in pneumococcal adherence. Infect Immun. 2012;80(4):1361–72. doi: 10.1128/IAI.06311-11. PubMed DOI PMC
Banu LD, Conrads G, Rehrauer H, Hussain H, Allan E, van der Ploeg JR. The Streptococcus mutans serine/threonine kinase, PknB, regulates competence development, bacteriocin production, and cell wall metabolism. Infect Immun. 2010;78(5):2209–20. doi: 10.1128/IAI.01167-09. PubMed DOI PMC
Beltramini AM, Mukhopadhyay CD, Pancholi V. Modulation of cell wall structure and antimicrobial susceptibility by a Staphylococcus aureus eukaryote-like serine/threonine kinase and phosphatase. Infect Immun. 2009;77(4):1406–16. doi: 10.1128/IAI.01499-08. PubMed DOI PMC
Burnside K, Lembo A, de Los Reyes M, Iliuk A, BinhTran NT, Connelly JE, et al. Regulation of hemolysin expression and virulence of Staphylococcus aureus by a serine/threonine kinase and phosphatase. PLoS One. 2010;5(6) doi: 10.1371/journal.pone.0011071. PubMed DOI PMC
Rajagopal L, Clancy A, Rubens CE. A eukaryotic type serine/threonine kinase and phosphatase in Streptococcus agalactiae reversibly phosphorylate an inorganic pyrophosphatase and affect growth, cell segregation, and virulence. J Biol Chem. 2003;278(16):14429–41. doi: 10.1074/jbc.M212747200. PubMed DOI
Sajid A, Arora G, Singhal A, Kalia VC, Singh Y. Protein phosphatases of pathogenic bacteria: role in physiology and virulence. Annu Rev Microbiol. 2015;69:527–47. doi: 10.1146/annurev-micro-020415-111342. PubMed DOI
Novakova L, Saskova L, Pallova P, Janecek J, Novotna J, Ulrych A, et al. Characterization of a eukaryotic type serine/threonine protein kinase and protein phosphatase of Streptococcus pneumoniae and identification of kinase substrates. FEBS J. 2005;272(5):1243–54. doi: 10.1111/j.1742-4658.2005.04560.x. PubMed DOI
Herbert JA, Mitchell AM, Mitchell TJ. A Serine-threonine kinase (StkP) regulates expression of the pneumococcal pilus and modulates bacterial adherence to human epithelial and endothelial cells In vitro. PLoS One. 2015;10(6) doi: 10.1371/journal.pone.0127212. PubMed DOI PMC
Saskova L, Novakova L, Basler M, Branny P. Eukaryotic-type serine/threonine protein kinase StkP is a global regulator of gene expression in Streptococcus pneumoniae. J Bacteriol. 2007;189(11):4168–79. doi: 10.1128/JB.01616-06. PubMed DOI PMC
Beilharz K, Novakova L, Fadda D, Branny P, Massidda O, Veening JW. Control of cell division in Streptococcus pneumoniae by the conserved Ser/Thr protein kinase StkP. Proc Natl Acad Sci U S A. 2012;109(15):E905–13. doi: 10.1073/pnas.1119172109. PubMed DOI PMC
Fleurie A, Cluzel C, Guiral S, Freton C, Galisson F, Zanella-Cleon I, et al. Mutational dissection of the S/T-kinase StkP reveals crucial roles in cell division of Streptococcus pneumoniae. Mol Microbiol. 2012;83(4):746–58. doi: 10.1111/j.1365-2958.2011.07962.x. PubMed DOI
Giefing C, Jelencsics KE, Gelbmann D, Senn BM, Nagy E. The pneumococcal eukaryotic-type serine/threonine protein kinase StkP co-localizes with the cell division apparatus and interacts with FtsZ in vitro. Microbiology. 2010;156(Pt 6):1697–707. doi: 10.1099/mic.0.036335-0. PubMed DOI
Novakova L, Bezouskova S, Pompach P, Spidlova P, Saskova L, Weiser J, et al. Identification of multiple substrates of the StkP Ser/Thr protein kinase in Streptococcus pneumoniae. J Bacteriol. 2010;192(14):3629–38. doi: 10.1128/JB.01564-09. PubMed DOI PMC
Fleurie A, Lesterlin C, Manuse S, Zhao C, Cluzel C, Lavergne JP, et al. MapZ marks the division sites and positions FtsZ rings in Streptococcus pneumoniae. Nature. 2014;516(7530):259–62. doi: 10.1038/nature13966. PubMed DOI PMC
Holeckova N, Doubravova L, Massidda O, Molle V, Buriankova K, Benada O, et al. LocZ is a New cell division protein involved in proper septum placement in streptococcus pneumoniae. MBio. 2014;6(1):e01700–14. doi: 10.1128/mBio.01700-14. PubMed DOI PMC
Falk SP, Weisblum B. Phosphorylation of the Streptococcus pneumoniae cell wall biosynthesis enzyme MurC by a eukaryotic-like Ser/Thr kinase. FEMS Microbiol Lett. 2013;340(1):19–23. doi: 10.1111/1574-6968.12067. PubMed DOI
Bork P, Brown NP, Hegyi H, Schultz J. The protein phosphatase 2C (PP2C) superfamily: detection of bacterial homologues. Protein Sci. 1996;5(7):1421–5. doi: 10.1002/pro.5560050720. PubMed DOI PMC
Thanassi JA, Hartman-Neumann SL, Dougherty TJ, Dougherty BA, Pucci MJ. Identification of 113 conserved essential genes using a high-throughput gene disruption system in Streptococcus pneumoniae. Nucleic Acids Res. 2002;30(14):3152–62. doi: 10.1093/nar/gkf418. PubMed DOI PMC
Bijlsma JJ, Burghout P, Kloosterman TG, Bootsma HJ, de Jong A, Hermans PW, et al. Development of genomic array footprinting for identification of conditionally essential genes in Streptococcus pneumoniae. Appl Environ Microbiol. 2007;73(5):1514–24. doi: 10.1128/AEM.01900-06. PubMed DOI PMC
Song JH, Ko KS, Lee JY, Baek JY, Oh WS, Yoon HS, et al. Identification of essential genes in Streptococcus pneumoniae by allelic replacement mutagenesis. Mol Cells. 2005;19(3):365–74. PubMed
Errington J, Appleby L, Daniel RA, Goodfellow H, Partridge SR, Yudkin MD. Structure and function of the spoIIIJ gene of Bacillus subtilis: a vegetatively expressed gene that is essential for sigma G activity at an intermediate stage of sporulation. J Gen Microbiol. 1992;138(12):2609–18. doi: 10.1099/00221287-138-12-2609. PubMed DOI
Kent JL, Hotchkiss RD. Kinetic analysis of multiple, linked recombinations in pneumococcal transformation. J Mol Biol. 1964;9:308–22. doi: 10.1016/S0022-2836(64)80209-6. PubMed DOI
Piotrowski A, Burghout P, Morrison DA. spr1630 is responsible for the lethality of clpX mutations in Streptococcus pneumoniae. J Bacteriol. 2009;191(15):4888–95. doi: 10.1128/JB.00285-09. PubMed DOI PMC
Massidda O, Novakova L, Vollmer W. From models to pathogens: how much have we learned about Streptococcus pneumoniae cell division? Environ Microbiol. 2013;15(12):3133–57. doi: 10.1111/1462-2920.12189. PubMed DOI
Eberhardt A, Wu LJ, Errington J, Vollmer W, Veening JW. Cellular localization of choline-utilization proteins in Streptococcus pneumoniae using novel fluorescent reporter systems. Mol Microbiol. 2009;74(2):395–408. doi: 10.1111/j.1365-2958.2009.06872.x. PubMed DOI
Echenique JR, Chapuy-Regaud S, Trombe MC. Competence regulation by oxygen in Streptococcus pneumoniae: involvement of ciaRH and comCDE. Mol Microbiol. 2000;36(3):688–96. doi: 10.1046/j.1365-2958.2000.01891.x. PubMed DOI
Das AK, Helps NR, Cohen PT, Barford D. Crystal structure of the protein serine/threonine phosphatase 2C at 2.0 A resolution. EMBO J. 1996;15(24):6798–809. PubMed PMC
Zuobi-Hasona K, Crowley PJ, Hasona A, Bleiweis AS, Brady LJ. Solubilization of cellular membrane proteins from Streptococcus mutans for two-dimensional gel electrophoresis. Electrophoresis. 2005;26(6):1200–5. doi: 10.1002/elps.200410349. PubMed DOI
Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, et al. CDD: NCBI's conserved domain database. Nucleic Acids Res. 2015;43(Database issue):D222–6. doi: 10.1093/nar/gku1221. PubMed DOI PMC
Nicastro G, Taylor IA, Ramos A. KH-RNA interactions: back in the groove. Curr Opin Struct Biol. 2015;30:63–70. doi: 10.1016/j.sbi.2015.01.002. PubMed DOI
Sun X, Ge F, Xiao CL, Yin XF, Ge R, Zhang LH, et al. Phosphoproteomic analysis reveals the multiple roles of phosphorylation in pathogenic bacterium Streptococcus pneumoniae. J Proteome Res. 2010;9(1):275–82. doi: 10.1021/pr900612v. PubMed DOI
Hennon SW, Soman R, Zhu L, Dalbey RE. YidC/Alb3/Oxa1 family of insertases. J Biol Chem. 2015;290(24):14866–74. doi: 10.1074/jbc.R115.638171. PubMed DOI PMC
Palmer SR, Crowley PJ, Oli MW, Ruelf MA, Michalek SM, Brady LJ. YidC1 and YidC2 are functionally distinct proteins involved in protein secretion, biofilm formation and cariogenicity of Streptococcus mutans. Microbiology. 2012;158(Pt 7):1702–12. doi: 10.1099/mic.0.059139-0. PubMed DOI PMC
Gray AN, Li Z, Henderson-Frost J, Goldberg MB. Biogenesis of YidC cytoplasmic membrane substrates is required for positioning of autotransporter IcsA at future poles. J Bacteriol. 2014;196(3):624–32. doi: 10.1128/JB.00840-13. PubMed DOI PMC
Scotti PA, Urbanus ML, Brunner J, de Gier JW, von Heijne G, van der Does C, et al. YidC, the Escherichia coli homologue of mitochondrial Oxa1p, is a component of the Sec translocase. EMBO J. 2000;19(4):542–9. doi: 10.1093/emboj/19.4.542. PubMed DOI PMC
de Sousa Borges A, de Keyzer J, Driessen AJ, Scheffers DJ. The Escherichia coli membrane protein insertase YidC assists in the biogenesis of penicillin binding proteins. J Bacteriol. 2015;197(8):1444–50. doi: 10.1128/JB.02556-14. PubMed DOI PMC
Higgins ML, Shockman GD. Model for cell wall growth of Streptococcus faecalis. J Bacteriol. 1970;101(2):643–8. PubMed PMC
Zapun A, Vernet T, Pinho MG. The different shapes of cocci. FEMS Microbiol Rev. 2008;32(2):345–60. doi: 10.1111/j.1574-6976.2007.00098.x. PubMed DOI
Lacks S, Hotchkiss RD. A study of the genetic material determining an enzyme in Pneumococcus. Biochim Biophys Acta. 1960;39:508–18. doi: 10.1016/0006-3002(60)90205-5. PubMed DOI
Auzat I, Chapuy-Regaud S, Le BG, Dos SD, Ogunniyi AD, Le TI, et al. The NADH oxidase of Streptococcus pneumoniae: its involvement in competence and virulence. Mol Microbiol. 1999;34(5):1018–28. doi: 10.1046/j.1365-2958.1999.01663.x. PubMed DOI
Lo SM, Hilleringmann M, Barocchi MA, Moschioni M. A novel strategy to over-express and purify homologous proteins from Streptococcus pneumoniae. J Biotechnol. 2012;157(2):279–86. doi: 10.1016/j.jbiotec.2011.11.011. PubMed DOI
Sung CK, Li H, Claverys JP, Morrison DA. An rpsL cassette, janus, for gene replacement through negative selection in Streptococcus pneumoniae. Appl Environ Microbiol. 2001;67(11):5190–6. doi: 10.1128/AEM.67.11.5190-5196.2001. PubMed DOI PMC
Sliusarenko O, Heinritz J, Emonet T, Jacobs-Wagner C. High-throughput, subpixel precision analysis of bacterial morphogenesis and intracellular spatio-temporal dynamics. Mol Microbiol. 2011;80(3):612–27. doi: 10.1111/j.1365-2958.2011.07579.x. PubMed DOI PMC
Morrison DA, Lacks SA, Guild WR, Hageman JM. Isolation and characterization of three new classes of transformation-deficient mutants of Streptococcus pneumoniae that are defective in DNA transport and genetic recombination. J Bacteriol. 1983;156(1):281–90. PubMed PMC
Fadda D, Pischedda C, Caldara F, Whalen MB, Anderluzzi D, Domenici E, et al. Characterization of divIVA and other genes located in the chromosomal region downstream of the dcw cluster in Streptococcus pneumoniae. J Bacteriol. 2003;185(20):6209–14. doi: 10.1128/JB.185.20.6209-6214.2003. PubMed DOI PMC
GpsB Coordinates StkP Signaling as a PASTA Kinase Adaptor in Streptococcus pneumoniae Cell Division