Molecular genetic analysis of colorectal carcinoma with an aggressive extraintestinal immunohistochemical phenotype
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
Cooperatio Medical Diagnostics and Basic Medical Sciences
Univerzita Karlova v Praze
Cooperatio Medical Diagnostics and Basic Medical Sciences
Univerzita Karlova v Praze
Cooperatio Medical Diagnostics and Basic Medical Sciences
Univerzita Karlova v Praze
PubMed
39333321
PubMed Central
PMC11437151
DOI
10.1038/s41598-024-72687-3
PII: 10.1038/s41598-024-72687-3
Knihovny.cz E-zdroje
- Klíčová slova
- Claudin 18, Colorectal carcinoma, Cytokeratin 7, Mucin, NGS, SATB2,
- MeSH
- dospělí MeSH
- fenotyp MeSH
- fosfatidylinositol-3-kinasy třídy I genetika metabolismus MeSH
- imunohistochemie * MeSH
- keratin-7 metabolismus genetika MeSH
- kolorektální nádory * genetika patologie metabolismus mortalita MeSH
- lidé středního věku MeSH
- lidé MeSH
- mucin 4 genetika metabolismus MeSH
- mucin 5AC genetika metabolismus MeSH
- mucin 6 genetika metabolismus MeSH
- mutace MeSH
- nádorové biomarkery * genetika metabolismus MeSH
- prognóza MeSH
- protoonkogenní proteiny B-Raf genetika MeSH
- protoonkogenní proteiny p21(ras) genetika MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- transkripční faktory MeSH
- vazebné proteiny DNA v oblastech připojení k matrix * genetika metabolismus MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- BRAF protein, human MeSH Prohlížeč
- fosfatidylinositol-3-kinasy třídy I MeSH
- keratin-7 MeSH
- KRAS protein, human MeSH Prohlížeč
- MUC4 protein, human MeSH Prohlížeč
- MUC5AC protein, human MeSH Prohlížeč
- MUC6 protein, human MeSH Prohlížeč
- mucin 4 MeSH
- mucin 5AC MeSH
- mucin 6 MeSH
- nádorové biomarkery * MeSH
- PIK3CA protein, human MeSH Prohlížeč
- protoonkogenní proteiny B-Raf MeSH
- protoonkogenní proteiny p21(ras) MeSH
- SATB2 protein, human MeSH Prohlížeč
- transkripční faktory MeSH
- vazebné proteiny DNA v oblastech připojení k matrix * MeSH
Colorectal cancer (CRC) is a leading global cause of illness and death. There is a need for identification of better prognostic markers beyond traditional clinical variables like grade and stage. Previous research revealed that abnormal expression of cytokeratin 7 (CK7) and loss of the intestinal-specific Special AT-rich sequence-binding protein 2 (SATB2) are linked to poor CRC prognosis. This study aimed to explore these markers' prognostic significance alongside two extraintestinal mucins (MUC5AC, MUC6), claudin 18, and MUC4 in 285 CRC cases using immunohistochemistry on tissue microarrays (TMAs). CK7 expression and SATB2-loss were associated with MUC5AC, MUC6, and claudin 18 positivity. These findings suggest a distinct "non-intestinal" immunohistochemical profile in CRC, often right-sided, SATB2-low, with atypical expression of CK7 and non-colorectal mucins (MUC5AC, MUC6). Strong MUC4 expression negatively impacted cancer-specific survival (hazard ratio = 2.7, p = 0.044). Genetic analysis via next-generation sequencing (NGS) in CK7 + CRCs and those with high MUC4 expression revealed prevalent mutations in TP53, APC, BRAF, KRAS, PIK3CA, FBXW7, and SMAD4, consistent with known CRC mutation patterns. NGS also identified druggable variants in BRAF, PIK3CA, and KRAS. CK7 + tumors showed intriguingly common (31.6%) BRAF V600E mutations corelating with poor prognosis, compared to the frequency described in the literature and databases. Further research on larger cohorts with a non-colorectal immunophenotype and high MUC4 expression is needed.
Zobrazit více v PubMed
Morgan, E. et al. Global burden of colorectal cancer in 2020 and 2040: Incidence and mortality estimates from GLOBOCAN. Gut72, 338–344 (2023). PubMed
Sung, H. et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA. Cancer J. Clin.71, 209–249 (2021). PubMed
Hrudka, J., Fišerová, H., Jelínková, K., Matěj, R. & Waldauf, P. Cytokeratin 7 expression as a predictor of an unfavorable prognosis in colorectal carcinoma. Sci. Rep.11, 17863 (2021). PubMed PMC
Hrudka, J. et al. Loss of SATB2 expression correlates with cytokeratin 7 and PD-L1 tumor cell positivity and aggressiveness in colorectal cancer. Sci. Rep.12, 19152 (2022). PubMed PMC
Shanmugam, C. et al. Prognostic value of mucin 4 expression in colorectal adenocarcinomas. Cancer116, 3577–3586 (2010). PubMed PMC
Kubota, Y. et al. Comprehensive clinical and molecular characterization of claudin 18.2 expression in advanced gastric or gastroesophageal junction cancer. ESMO Open.8, 100762 (2023). PubMed PMC
Hrudka, J. et al. Undifferentiated carcinoma with osteoclast-like giant cells of the pancreas: Molecular genetic analysis of 13 cases. Int. J. Mol. Sci.25, 3285 (2024). PubMed PMC
Erlenbach-Wünsch, K. Histomorphologische und molekularpathologische Prognosefaktoren beim kolorektalen Karzinom. Pathologe.41, 70–75 (2020). PubMed
Eberhard, J. et al. A cohort study of the prognostic and treatment predictive value of SATB2 expression in colorectal cancer. Br. J. Cancer.106, 931–938 (2012). PubMed PMC
Kim, C. J. et al. Value of SATB2 immunostaining in the distinction between small intestinal and colorectal adenocarcinomas. J. Clin. Pathol.69, 1046–1050 (2016). PubMed
Imai, Y. et al. Differential mucin phenotypes and their significance in a variation of colorectal carcinoma. World J. Gastroenterol.19, 3957–3968 (2013). PubMed PMC
Betge, J. et al. MUC1, MUC2, MUC5AC, and MUC6 in colorectal cancer: Expression profiles and clinical significance. Virchows Arch.469, 255–265 (2016). PubMed PMC
Kocer, B. et al. Expression of MUC5AC in colorectal carcinoma and relationship with prognosis. Pathol. Int.52, 470–477 (2002). PubMed
Wang, H. et al. Expression of survivin, MUC2 and MUC5 in colorectal cancer and their association with clinicopathological characteristics. Oncol. Lett.14, 1011–1016 (2017). PubMed PMC
Cox, K. E. et al. The mucin family of proteins: Candidates as potential biomarkers for colon cancer. Cancers (Basel).15, 1491 (2023). PubMed PMC
Bartman, A. E. et al. Aberrant expression of MUC5AC and MUC6 gastric mucin genes in colorectal polyps. Int. J. Cancer.80, 210–218 (1999). PubMed
Owens, S. R., Chiosea, S. I. & Kuan, S. F. Selective expression of gastric mucin MUC6 in colonic sessile serrated adenoma but not in hyperplastic polyp aids in morphological diagnosis of serrated polyps. Mod. Pathol.21, 660–669 (2008). PubMed
Leir, S. H. & Harris, A. MUC6 mucin expression inhibits tumor cell invasion. Exp. Cell Res.317, 2408–2419 (2011). PubMed
Sanada, Y. et al. Down-regulation of the claudin-18 gene, identified through serial analysis of gene expression data analysis, in gastric cancer with an intestinal phenotype. J. Pathol.208, 633–642 (2006). PubMed
Kyuno, D. et al. Claudin-18.2 as a therapeutic target in cancers: cumulative findings from basic research and clinical trials. Tissue Barriers.10, 1967080 (2022). PubMed PMC
Sentani, K. et al. Immunohistochemical staining of Reg IV and claudin-18 is useful in the diagnosis of gastrointestinal signet ring cell carcinoma. Am. J. Surg. Pathol.32, 1182–1189 (2008). PubMed
Ungureanu, B. S. et al. Clinicopathologic relevance of Claudin 18.2 expression in gastric cancer: A meta-analysis. Front. Oncol.11, 643872 (2021). PubMed PMC
Arpa, G. et al. Claudin-18 expression in small bowel adenocarcinoma: A clinico-pathologic study. Virchows Arch.481, 853–863 (2022). PubMed PMC
Matsuda, M. et al. Immunohistochemical analysis of colorectal cancer with gastric phenotype: Claudin-18 is associated with poor prognosis. Pathol. Int.60, 673–680 (2010). PubMed
Moniaux, N. et al. Human MUC4 mucin induces ultra-structural changes and tumorigenicity in pancreatic cancer cells. Br. J. Cancer.97, 345–357 (2007). PubMed PMC
Chaturvedi, P., Singh, A. P. & Batra, S. K. Structure, evolution, and biology of the MUC4 mucin. FASEB J.22, 966–981 (2008). PubMed PMC
Chaturvedi, P. et al. MUC4 mucin interacts with and stabilizes the HER2 oncoprotein in human pancreatic cancer cells. Cancer Res.68, 2065–2070 (2008). PubMed PMC
Miyahara, N. et al. MUC4 interacts with ErbB2 in human gallbladder carcinoma: potential pathobiological implications. Eur. J. Cancer.44, 1048–1056 (2008). PubMed
Komatsu, M., Jepson, S., Arango, M. E., Carothers Carraway, C. A. & Carraway, K. L. Muc4/sialomucin complex, an intramembrane modulator of ErbB2/HER2/Neu, potentiates primary tumor growth and suppresses apoptosis in a xenotransplanted tumor. Oncogene20, 461–470 (2001). PubMed
Chaturvedi, P. et al. MUC4 mucin potentiates pancreatic tumor cell proliferation, survival, and invasive properties and interferes with its interaction to extracellular matrix proteins. Mol. Cancer Res.5, 309–320 (2007). PubMed
Biemer-Hüttmann, A. E. et al. Mucin core protein expression in colorectal cancers with high levels of microsatellite instability indicates a novel pathway of morphogenesis. Clin. Cancer Res.6, 1909–1916 (2000). PubMed
Pai, P. et al. MUC4 is negatively regulated through the Wnt/β-catenin pathway via the Notch effector Hath1 in colorectal cancer. Genes Cancer.7, 154–168 (2016). PubMed PMC
Huang, X. et al. Clinicopathological and prognostic significance of MUC4 expression in cancers: Evidence from meta-analysis. Int. J. Clin. Exp. Med.8, 10274–10283 (2015). PubMed PMC
Fearon, E. R. & Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell.61, 759–767 (1990). PubMed
Pino, M. S. & Chung, D. C. The chromosomal instability pathway in colon cancer. Gastroenterology.138, 2059–2072 (2010). PubMed PMC
Müller, M. F., Ibrahim, A. E. & Arends, M. J. Molecular pathological classification of colorectal cancer. Virchows Arch.469, 125–134 (2016). PubMed PMC
Wood, L. D. et al. The genomic landscapes of human breast and colorectal cancers. Science.318, 1108–1113 (2007). PubMed
Zhuang, Y. et al. Multi gene mutation signatures in colorectal cancer patients: Predict for the diagnosis, pathological classification, staging and prognosis. BMC Cancer.21, 380 (2021). PubMed PMC
Liu, Z. et al. The landscape of somatic mutation in sporadic Chinese colorectal cancer. Oncotarget.9, 27412–27422 (2018). PubMed PMC
Network, C. G. A. Comprehensive molecular characterization of human colon and rectal cancer. Nature.487, 330–337 (2012). PubMed PMC
Al-Shamsi, H. O. et al. Molecular spectrum of KRAS, NRAS, BRAF, PIK3CA, TP53, and APC somatic gene mutations in Arab patients with colorectal cancer: Determination of frequency and distribution pattern. J. Gastrointest. Oncol.7, 882–902 (2016). PubMed PMC
Hino, H. et al. Comprehensive genetic characterization of rectal cancer in a large cohort of Japanese patients: differences according to tumor location. J. Gastroenterol.57, 476–485 (2022). PubMed
Oncokb.org. (accessed 19th Mar 2024).
Chen, D. et al. BRAFV600E mutation and its association with clinicopathological features of colorectal cancer: A systematic review and meta-analysis. PLoS One9, e90607 (2014). PubMed PMC
Li, Y. & Li, W. BRAF mutation is associated with poor clinicopathological outcomes in colorectal cancer: A meta-analysis. Saudi J. Gastroenterol.23, 144–149 (2017). PubMed PMC
Toon, C. W. et al. BRAFV600E immunohistochemistry in conjunction with mismatch repair status predicts survival in patients with colorectal cancer. Mod. Pathol.27, 644–650 (2014). PubMed PMC
Loupakis, F. et al. CK7 and consensus molecular subtypes as major prognosticators in V600EBRAF mutated metastatic colorectal cancer. Br. J. Cancer121, 593–599 (2019). PubMed PMC
Varkaris, A. et al. Discovery and clinical proof-of-concept of RLY-2608, a first-in-class mutant-selective allosteric PI3Kα inhibitor that decouples antitumor activity from hyperinsulinemia. Cancer Discov.14, 240–257 (2024). PubMed PMC