Role of diet in development of non-communicable diseases: focus on gut microbiome
Jazyk angličtina Země Česko Médium print
Typ dokumentu časopisecké články, přehledy
PubMed
39352096
DOI
10.21101/cejph.a8138
Knihovny.cz E-zdroje
- Klíčová slova
- diet, dysbiosis, gut microbiome, non-communicable diseases, obesity,
- MeSH
- diabetes mellitus 2. typu prevence a kontrola mikrobiologie epidemiologie MeSH
- dieta * MeSH
- dysbióza MeSH
- lidé MeSH
- neinfekční nemoci * epidemiologie prevence a kontrola MeSH
- obezita mikrobiologie epidemiologie MeSH
- střevní mikroflóra * fyziologie MeSH
- zánět MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Geografické názvy
- Česká republika epidemiologie MeSH
OBJECTIVES: The dietary composition is able to rapidly and significantly influence the diversity of the gut microbiome. This article focuses on how various types of diet affect the composition of the gut microbiome and how dietary changes are able to prevent or slow down the development of non-communicable diseases including obesity, type 2 diabetes mellitus, cardiovascular diseases, and low-grade inflammation. METHODS: A review in PubMed and a hand search using references in identified articles were performed. Studies published in English from 2000 to 2024 were included. RESULTS: The studies showed the significant effect of diet on the development of non-communicable diseases dependent on the state of the gut microbiota and molecules it produces. The Western diet that continues to gain in popularity for Czech people, leads to dysbiosis and production of bacterial lipopolysaccharide or trimethylamine N-oxide causing systemic chronic inflammation in the body and thus promoting the development of non-communicable diseases. CONCLUSIONS: Findings from this review emphasize the importance of healthy eating habits in the prevention of intestinal dysbiosis and still increasing prevalence and incidence of obesity and other non-communicable diseases.
Zobrazit více v PubMed
Lucas López R, Grande Burgos MJ, Gálvez A, Pérez Pulido R. The human gastrointestinal tract and oral microbiota in inflammatory bowel disease: a state of the science review. APMIS. 2017 Jan;125(1):3-10. PubMed DOI
Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006 Dec 21;444(7122):1027-31. PubMed DOI
Aleman RS, Moncada M, Aryana KJ. Leaky gut and the ingredients that help treat it: a review. Molecules. 2023 Jan 7;28(2):619. doi: 10.3390/molecules28020619. PubMed DOI
Dahl WJ, Rivero Mendoza D, Lambert JM. Chapter Eight - Diet, nutrients and the microbiome. Prog Mol Biol Transl Sci. 2020;171:237-63. PubMed DOI
Hijova E, Chmelarova A. Short chain fatty acids and colonic health. Bratisl Lek Listy. 2007;108(8):354-8.
Conz A, Salmona M, Diomede L. Effect of non-nutritive sweeteners on the gut microbiota. Nutrients. 2023 Apr 13;15(8):1869. doi: 10.3390/nu15081869. PubMed DOI
Suez J, Korem T, Zeevi D, Zilberman-Schapira G, Thaiss CA, Maza O, et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature. 2014 Oct 9;514(7521):181-6. PubMed DOI
Chi L, Bian X, Gao B, Tu P, Lai Y, Ru H, et al. Effects of the artificial sweetener neotame on the gut microbiome and fecal metabolites in mice. Molecules. 2018 Feb 9;23(2):367. doi: 10.3390/molecules23020367. PubMed DOI
Markus V, Share O, Shagan M, Halpern B, Bar T, Kramarsky-Winter E, et al. Inhibitory effects of artificial sweeteners on bacterial quorum sensing. Int J Mol Sci. 2021 Sep 13;22(18):9863. doi: 10.3390/ijms22189863. PubMed DOI
Gostner A, Blaut M, Schäffer V, Kozianowski G, Theis S, Klingeberg M, et al. Effect of isomalt consumption on faecal microflora and colonic metabolism in healthy volunteers. Br J Nutr. 2006 Jan;95(1):40-50. PubMed DOI
Hildebrandt MA, Hoffmann C, Sherrill-Mix SA, Keilbaugh SA, Hamady M, Chen YY, et al. High-fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology. 2009 Nov;137(5):1716-24.e1-2. PubMed DOI
Jantchou P, Morois S, Clavel-Chapelon F, Boutron-Ruault MC, Carbonnel F. Animal protein intake and risk of inflammatory bowel disease: the E3N prospective study. Am J Gastroenterol. 2010 Oct;105(10):2195-201. PubMed DOI
Jeffery LE, Qureshi OS, Gardner D, Hou TZ, Briggs Z, Soskic B, et al. Vitamin D antagonises the suppressive effect of inflammatory cytokines on CTLA-4 expression and regulatory function. PLoS One. 2015;10(7). doi: 10.1371/journal.pone.0131539. PubMed DOI
Scolaro BL, Barretta C, Matos CH, Malluta EF, Almeida IBT de, Braggio LD, et al. Deficiency of vitamin D and its relation with clinical and laboratory activity of inflammatory bowel diseases. J Coloproctol. 2018 Jun 8;38(2):99-104. DOI
Mechie NC, Mavropoulou E, Ellenrieder V, Kunsch S, Cameron S, Amanzada A. Distinct association of serum vitamin D concentration with disease activity and trough levels of infliximab and adalimumab during inflammatory bowel disease treatment. Digestion. 2020;101(6):761-70. PubMed DOI
Wang H, Chen W, Li D, Yin X, Zhang X, Olsen N, et al. Vitamin D and chronic diseases. Aging Dis. 2017;8(3):346-53. PubMed DOI
Lagishetty V, Misharin AV, Liu NQ, Lisse TS, Chun RF, Ouyang Y, et al. Vitamin D deficiency in mice impairs colonic antibacterial activity and predisposes to colitis. Endocrinology. 2010 Jun;151(6):2423-32. PubMed DOI
Vranić L, Mikolašević I, Milić S. Vitamin D deficiency: consequence or cause of obesity? Medicina (Kaunas). 2019 Aug 28;55(9):541. doi: 10.3390/medicina55090541. PubMed DOI
Chang SW, Lee HC. Vitamin D and health - the missing vitamin in humans. Pediatr Neonatol. 2019 Jun;60(3):237-44. PubMed DOI
Bouillon R. Vitamin D: photosynthesis, metabolism, and action to clinical applications. In: Degroot L, Jameson JL, Burger HG, editors. Endocrinology. 3rd ed. Philadelphia: WB Saunders; 2001. p. 1009-28.
Singh RK, Chang HW, Yan D, Lee KM, Ucmak D, Wong K, et al. Influence of diet on the gut microbiome and implications for human health. J Transl Med. 2017 Apr 8;15(1):73. doi: 10.1186/s12967-017-1175-y. PubMed DOI
Sakkas H, Bozidis P, Touzios C, Kolios D, Athanasiou G, Athanasopoulou E, et al. Nutritional status and the influence of the vegan diet on the gut microbiota and human health. Medicina (Kaunas). 2020 Feb 22;56(2):88. doi: 10.3390/medicina56020088. PubMed DOI
García-Montero C, Fraile-Martínez O, Gómez-Lahoz AM, Pekarek L, Castellanos AJ, Noguerales-Fraguas F, et al. Nutritional components in western diet versus Mediterranean diet at the gut microbiota-immune system interplay. Implications for health and disease. Nutrients. 2021 Feb 22;13(2):699. doi: 10.3390/nu13020699. PubMed DOI
Chapman-Kiddell AC, Davies SWP, Gillen L, Radford-Smith LG. Role of diet in the development of inflammatory bowel disease. Inflamm Bowel Dis. 2010 May 21;16(1):137-51. PubMed DOI
Michelsen KS, Wong MH, Shah PK, Zhang W, Yano J, Doherty TM, et al. Lack of toll-like receptor 4 or myeloid differentiation factor 88 reduces atherosclerosis and alters plaque phenotype in mice deficient in apolipoprotein E. Proc Natl Acad Sci U S A. 2004 Jul 20;101(29):10679-84. PubMed DOI
Vors C, Pineau G, Drai J, Meugnier E, Pesenti S, Laville M, et al. Postprandial endotoxemia linked with chylomicrons and lipopolysaccharides handling in obese versus lean men: a lipid dose-effect trial. J Clin Endocrinol Metab. 2015 Sep;100(9):3427-35. PubMed DOI
Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011 Oct 7;334(6052):105-8. PubMed DOI
Tang WHW, Hazen SL. Microbiome, trimethylamine N-Oxide, and cardiometabolic disease. Transl Res. 2017 Jan;179:108-15. PubMed DOI
Krueger ES, Lloyd TS, Tessem JS. The accumulation and molecular effects of trimethylamine N-Oxide on metabolic tissues: it's not all bad. Nutrients. 2021 Aug 21;13(8):2873. doi: 10.3390/nu13082873. PubMed DOI
Caio G, Lungaro L, Segata N, Guarino M, Zoli G, Volta U, et al. Effect of gluten-free diet on gut microbiota composition in patients with celiac disease and non-celiac gluten/wheat sensitivity. Nutrients. 2020 Jun 19;12(6):1832. doi: 10.3390/nu12061832. PubMed DOI
Nistal E, Caminero A, Herrán AR, Arias L, Vivas S, Ruiz De Morales JM, et al. Differences of small intestinal bacteria populations in adults and children with/without celiac disease: effect of age, gluten diet, and disease. Inflamm Bowel Dis. 2012;18(4):649-56. PubMed DOI
Palmieri O, Castellana S, Bevilacqua A, Latiano A, Latiano T, Panza A, et al. Adherence to gluten-free diet restores alpha diversity in celiac people but the microbiome composition is different to healthy people. Nutrients. 2022 Jun 14;14(12):2452. doi: 10.3390/nu14122452. PubMed DOI
Polo A, Arora K, Ameur H, Di Cagno R, De Angelis M, Gobbetti M. Gluten-free diet and gut microbiome. J Cereal Sci. 2020 Sep;95:103058. doi: 10.1016/j.jcs.2020.103058 DOI
Thompson T, Dennis M, Higgins LA, Lee AR, Sharrett MK. Gluten-free diet survey: are Americans with coeliac disease consuming recommended amounts of fibre, iron, calcium and grain foods? J Hum Nutr Diet. 2005 Jun;18(3):163-9. PubMed DOI
Sue A, Dehlsen K, Ooi CY. Paediatric patients with coeliac disease on a gluten-free diet: nutritional adequacy and macro- and micronutrient imbalances. Curr Gastroenterol Rep. 2018 Jan 22;20(1):2. doi: 10.1007/s11894-018-0606-0. PubMed DOI
Bonder MJ, Tigchelaar EF, Cai X, Trynka G, Cenit MC, Hrdlickova B, et al. The influence of a short-term gluten-free diet on the human gut microbiome. Genome Med. 2016 Dec 21;8(1):45. doi: 10.1186/s13073-016-0295-y. PubMed DOI
Boulangé CL, Neves AL, Chilloux J, Nicholson JK, Dumas ME. Impact of the gut microbiota on inflammation, obesity, and metabolic disease. Genome Med. 2016 Apr 20;8(1):42. doi: 10.1186/s13073-016-0303-2. PubMed DOI
Maya-Lucas O, Murugesan S, Nirmalkar K, Alcaraz LD, Hoyo-Vadillo C, Pizano-Zárate ML, et al. The gut microbiome of Mexican children affected by obesity. Anaerobe. 2019;55:11-23. PubMed DOI
Xu Z, Jiang W, Huang W, Lin Y, Chan FKL, Ng SC. Gut microbiota in patients with obesity and metabolic disorders - a systematic review. Genes Nutr. 2022 Jan 29;17(1):2. doi: 10.1186/s12263-021-00703-6. PubMed DOI
Xiao H, Kang S. The role of the gut microbiome in energy balance with a focus on the gut-adipose tissue axis. Front Genet. 2020 Apr 7;11:297. doi: 10.3389/fgene.2020.00297. PubMed DOI
Lundgren P, Thaiss CA. The microbiome-adipose tissue axis in systemic metabolism. Am J Physiol Gastrointest Liver Physiol. 2020;318(4):G717-24. PubMed DOI
De Vadder F, Kovatcheva-Datchary P, Goncalves D, Vinera J, Zitoun C, Duchampt A, et al. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell. 2014 Jan 16;156(1-2):84-96. PubMed DOI
Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56(7):1761-72. PubMed DOI
Boyko EJ, Magliano DJ, Karuranga S, Piemonte L, Riley P, Saeedi P, et al., editors. IDF Diabetes Atlas. 10th ed. Brussels: International Diabetes Federation; 2021.
Pedersen HK, Gudmundsdottir V, Nielsen HB, Hyotylainen T, Nielsen T, Jensen BAH, et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature. 2016 Jul 13;535(7612):376-81. PubMed DOI
Larsen N, Vogensen FK, van den Berg FWJ, Nielsen DS, Andreasen AS, Pedersen BK, et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One. 2010 Feb 5;5(2):e9085. doi: 10.1371/journal.pone.0009085. PubMed DOI
Karlsson FH, Tremaroli V, Nookaew I, Bergström G, Behre CJ, Fagerberg B, et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature. 2013 Jun 29;498(7452):99-103. PubMed DOI
Dai H, Hou T, Wang Q, Hou Y, Wang T, Zheng J, et al. Causal relationships between the gut microbiome, blood lipids, and heart failure: a Mendelian randomization analysis. Eur J Prev Cardiol. 2023 Sep 6;30(12):1274-82. PubMed DOI
Yoshida N, Yamashita T, Kishino S, Watanabe H, Sasaki K, Sasaki D, et al. A possible beneficial effect of Bacteroides on faecal lipopolysaccharide activity and cardiovascular diseases. Sci Rep. 2020 Aug 3;10(1):13009. doi: 10.1038/s41598-020-69983-z. PubMed DOI
Randrianarisoa E, Lehn-Stefan A, Wang X, Hoene M, Peter A, Heinzmann SS, et al. Relationship of serum trimethylamine N-Oxide (TMAO) levels with early atherosclerosis in humans. Sci Rep. 2016 May 27;6:26745. doi: 10.1038/srep26745. PubMed DOI
Li XS, Obeid S, Klingenberg R, Gencer B, Mach F, Räber L, et al. Gut microbiota-dependent trimethylamine N-Oxide in acute coronary syndromes: a prognostic marker for incident cardiovascular events beyond traditional risk factors. Eur Heart J. 2017 Mar 14;38(11):814-24. PubMed DOI