Safety of tartrazine in the food industry and potential protective factors
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic-ecollection
Document type Journal Article, Review
PubMed
39381230
PubMed Central
PMC11458953
DOI
10.1016/j.heliyon.2024.e38111
PII: S2405-8440(24)14142-4
Knihovny.cz E-resources
- Keywords
- Food color, Food dye, Protective factors, Safety, Tartrazine, Toxicity,
- Publication type
- Journal Article MeSH
- Review MeSH
Tartrazine belongs to the colors raising significant concerns regarding consumer safety at low doses relevant for real-life human exposure. Scientific literature continues to grow after the European Food Safety Authority (EFSA) re-evaluation in 2009 and the Joint FAO/WHO Expert Committee on Food Additives (JECFA) in 2016. Therefore, this review aims to collect recent knowledge on the toxicity issues of tartrazine, namely its genotoxicity, cytotoxicity, carcinogenicity, reproductive, developmental, and neurotoxicity, alterations of blood biochemical parameters, and hematotoxicity. The second part of the review covers the potential protective factors against the toxic effects of tartrazine based on the hypothesis of mitigation of oxidative stress induced by the color. The reviewed protective factors are crocin, royal jelly, fish oil, honey, acetylsalicylic acid, black caraway, blackthorn, turmeric, vitamin E, and riboflavin. This review concludes that tartrazine seems safe under the current acceptable daily intake (ADI) and the evidence on the potential protective factors is insufficient to reach any conclusion regarding their use.
Department of Pharmacology Faculty of Medicine Masaryk University Brno Czech Republic
Oncology Department Hospital of Ceske Budejovice Ceske Budejovice Czech Republic
See more in PubMed
Food and Feed Information Portal Database | FIP, (n.d.). https://ec.europa.eu/food/food-feed-portal/screen/food-additives/search/details/POL-FAD-IMPORT-2987 (accessed March 4, 2024).
World Health Organization . World Health Organization; 2016. Evaluation of Certain Food Additives: Eighty-Second Report of the Joint FAO.https://apps.who.int/iris/bitstream/handle/10665/250277/9789241210003-eng.pdf
de Mejia E.G., Zhang Q., Penta K., Eroglu A., Lila M.A. The colors of health: chemistry, bioactivity, and market demand for colorful foods and natural food sources of colorants. Annu. Rev. Food Sci. Technol. 2020;11:145–182. doi: 10.1146/annurev-food-032519-051729. PubMed DOI
EFSA Panel on Food Additives and Nutrient Sources Added to Food Scientific opinion on the re-evaluation tartrazine (E 102) EFSA J. 2009;7:1331. doi: 10.2903/j.efsa.2009.1331. DOI
Food and Drug Administration FDA Background Document for the Food Advisory Committee: Certified Color Additives in Food and Possible Association with Attention Deficit Hyperactivity Disorder in Children. 2011
Amchova P., Kotolova H., Ruda-Kucerova J. Health safety issues of synthetic food colorants. Regul. Toxicol. Pharmacol. 2015;73:914–922. PubMed
Amin K.A., Al-Shehri F.S. Toxicological and safety assessment of tartrazine as a synthetic food additive on health biomarkers: a review. Afr. J. Biotechnol. 2018;17:139–149.
Elhkim M.O., Héraud F., Bemrah N., Gauchard F., Lorino T., Lambré C., Frémy J.M., Poul J.-M. New considerations regarding the risk assessment on Tartrazine: an update toxicological assessment, intolerance reactions and maximum theoretical daily intake in France. Regul. Toxicol. Pharmacol. 2007;47:308–316. doi: 10.1016/j.yrtph.2006.11.004. PubMed DOI
Himri I., Bellahcen S., Souna F., Belmekki F., Aziz M., Bnouham M., Zoheir J., Berkia Z., Mekhfi H., Saalaoui E.A. vol. 300. 2011. A 90-day oral toxicity study of tartrazine, a synthetic food dye. (Wistar Rats, Group).
Staples J.W., Stine J.M., Mäki-Lohiluoma E., Steed E., George K.M., Thompson C.M., Woodahl E.L. Food dyes as P-glycoprotein modulators. Food Chem. Toxicol. 2020;146 doi: 10.1016/j.fct.2020.111785. PubMed DOI PMC
Banerjee S., Chattopadhyaya M.C. Adsorption characteristics for the removal of a toxic dye, tartrazine from aqueous solutions by a low cost agricultural by-product. Arab. J. Chem. 2017;10:S1629–S1638. doi: 10.1016/j.arabjc.2013.06.005. DOI
Sasaki Y.F., Kawaguchi S., Kamaya A., Ohshita M., Kabasawa K., Iwama K., Taniguchi K., Tsuda S. The comet assay with 8 mouse organs: results with 39 currently used food additives. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2002;519:103–119. doi: 10.1016/S1383-5718(02)00128-6. PubMed DOI
Hartmann A., Agurell E., Beevers C., Brendler-Schwaab S., Burlinson B., Clay P., Collins A., Smith A., Speit G., Thybaud V., Tice R.R. 4th international comet assay workshop, recommendations for conducting the in vivo alkaline comet assay. 4th International Comet Assay Workshop, Mutagenesis. 2003;18:45–51. doi: 10.1093/mutage/18.1.45. PubMed DOI
Bastaki M., Farrell T., Bhusari S., Pant K., Kulkarni R. Lack of genotoxicity in vivo for food color additive Tartrazine. Food Chem. Toxicol. 2017;105:278–284. doi: 10.1016/j.fct.2017.04.034. PubMed DOI
dos Santos J.R., de Sousa Soares L., Soares B.M., de Gomes Farias M., de Oliveira V.A., de Sousa N.A.B., Negreiros H.A., da Silva F.C.C., Peron A.P., Pacheco A.C.L., Marques M.M.M., Gonçalves J.C.R., Montenegro R.C., Islam M.T., Sharifi-Rad J., Mubarak M.S., de Melo Cavalcante A.A.C., de Castro e Sousa J.M. Cytotoxic and mutagenic effects of the food additive tartrazine on eukaryotic cells. BMC Pharmacol Toxicol. 2022;23:95. doi: 10.1186/s40360-022-00638-7. PubMed DOI PMC
Atlı Şekeroğlu Z., Güneş B., Kontaş Yedier S., Şekeroğlu V., Aydın B. Effects of tartrazine on proliferation and genetic damage in human lymphocytes. Toxicol. Mech. Methods. 2017;27:370–375. doi: 10.1080/15376516.2017.1296051. PubMed DOI
Soares B.M., Araújo T.M.T., Ramos J.A.B., Pinto L.C., Khayat B.M., De Oliveira Bahia M., Montenegro R.C., Burbano R.M.R., Khayat A.S. Effects on DNA repair in human lymphocytes exposed to the food dye tartrazine yellow. Anticancer Res. 2015;35:1465–1474. PubMed
Merinas-Amo R., Martínez-Jurado M., Jurado-Güeto S., Alonso-Moraga Á., Merinas-Amo T. Biological effects of food coloring in in vivo and in vitro model systems. Foods. 2019;8:176. doi: 10.3390/foods8050176. PubMed DOI PMC
Nasri A., Pohjanvirta R. In vitro estrogenic, cytotoxic, and genotoxic profiles of the xenoestrogens 8-prenylnaringenine, genistein and tartrazine. Environ. Sci. Pollut. Res. Int. 2021;28:27988–27997. doi: 10.1007/s11356-021-12629-y. PubMed DOI PMC
Floriano J.M., da Rosa E., do Amaral Q.D.F., Zuravski L., Chaves P.E.E., Machado M.M., de Oliveira L.F.S. Is tartrazine really safe? In silico and ex vivo toxicological studies in human leukocytes: a question of dose. Toxicol. Res. 2018;7:1128–1134. doi: 10.1039/c8tx00034d. PubMed DOI PMC
Haverić A., Inajetović D., Vareškić A., Hadžić M., Haverić S. IN vitro analysis of tartrazine genotoxicity and cytotoxicity. Genetics & Applications. 2018;1:37–43. doi: 10.31383/ga.vol1iss1pp37-43. DOI
Ceti̇nkaya A.Y., Yurtsever S. Somatic mutations and recombination test in Drosophila melanogaster used for investigating the genotoxicity of some food additives. International Journal of Agriculture Environment and Food Sciences. 2021;5:65–73. doi: 10.31015/jaefs.2021.1.9. DOI
El-Keredy A. Experiment on the genetic toxicity of tartrazine yellow and behavioral effects on Drosophila melanogaster. Egypt. J. Genet. Cytol. 2017;46
Khayyat L., Essawy A., Sorour J., Soffar A. Tartrazine induces structural and functional aberrations and genotoxic effects in vivo. PeerJ. 2017;5 doi: 10.7717/peerj.3041. PubMed DOI PMC
Erdemli Z., Altinoz E., Erdemli M.E., Gul M., Bag H.G., Gul S. Ameliorative effects of crocin on tartrazine dye-induced pancreatic adverse effects: a biochemical and histological study. Environ. Sci. Pollut. Res. Int. 2021;28:2209–2218. doi: 10.1007/s11356-020-10578-6. PubMed DOI
Velioglu C., Erdemli M.E., Gul M., Erdemli Z., Zayman E., Bag H.G., Altinoz E. Protective effect of crocin on food azo dye tartrazine-induced hepatic damage by improving biochemical parameters and oxidative stress biomarkers in rats. Gen. Physiol. Biophys. 2019;38:73–82. doi: 10.4149/gpb_2018039. PubMed DOI
Wu L., Lv X., Zhang Y., Xin Q., Zou Y., Li X. Tartrazine exposure results in histological damage, oxidative stress, immune disorders and gut microbiota dysbiosis in juvenile crucian carp (Carassius carassius) Aquat. Toxicol. 2021;241 doi: 10.1016/j.aquatox.2021.105998. PubMed DOI
Pasdaran A., Azarpira N., Heidari R., Nourinejad S., Zare M., Hamedi A. Effects of some cosmetic dyes and pigments on the proliferation of human foreskin fibroblasts and cellular oxidative stress; potential cytotoxicity of chlorophyllin and indigo carmine on fibroblasts. J. Cosmet. Dermatol. 2022;21:3979–3985. doi: 10.1111/jocd.14695. PubMed DOI
Albasher G., Maashi N., Alfarraj S., Almeer R., Albrahim T., Alotibi F., Bin-Jumah M., Mahmoud A.M. Perinatal exposure to tartrazine triggers oxidative stress and neurobehavioral alterations in mice offspring. Antioxidants. 2020;9:53. doi: 10.3390/antiox9010053. PubMed DOI PMC
El-Desoky G.E., Abdel-Ghaffar A., Al-Othman Z.A., Habila M.A., Al-Sheikh Y.A., Ghneim H.K., Giesy J.P., Aboul-Soud M.a.M. Curcumin protects against tartrazine-mediated oxidative stress and hepatotoxicity in male rats. Eur. Rev. Med. Pharmacol. Sci. 2017;21:635–645. PubMed
Wopara I., Adebayo O.G., Umoren E.B., Aduema W., Iwueke A.V., Etim O.E., Pius E.A., James W.B., Wodo J. Involvement of striatal oxido-inflammatory, nitrosative and decreased cholinergic activity in neurobehavioral alteration in adult rat model with oral co-exposure to erythrosine and tartrazine. Heliyon. 2021;7 doi: 10.1016/j.heliyon.2021.e08454. PubMed DOI PMC
Al-Seeni M.N., El Rabey H.A., Al-Hamed A.M., Zamazami M.A. Nigella sativa oil protects against tartrazine toxicity in male rats. Toxicol Rep. 2018;5:146–155. doi: 10.1016/j.toxrep.2017.12.022. PubMed DOI PMC
Rehman K., Ashraf A., Azam F., Akash M.S.H. Effect of food azo-dye tartrazine on physiological functions of pancreas and glucose homeostasis. Turk. J. Biochem. 2019;44:197–206. doi: 10.1515/tjb-2017-0296. DOI
Abd-Elhakim Y.M., Moustafa G.G., Hashem M.M., Ali H.A., Abo-El-Sooud K., El-Metwally A.E. Influence of the long-term exposure to tartrazine and chlorophyll on the fibrogenic signalling pathway in liver and kidney of rats: the expression patterns of collagen 1-α, TGFβ-1, fibronectin, and caspase-3 genes. Environ. Sci. Pollut. Res. Int. 2019;26:12368–12378. doi: 10.1007/s11356-019-04734-w. PubMed DOI
Al-Daamy A.M.Z., Al-Zubiady N.M.H. Study the toxic effect of tartrazine pigment on oxidative stress in Male albino rats. J. Biochemical and Cellular Archives., Forthcoming. 2020
Erdemli M.E., Gul M., Altinoz E., Zayman E., Aksungur Z., Bag H.G. The protective role of crocin in tartrazine induced nephrotoxicity in Wistar rats. Biomed. Pharmacother. 2017;96:930–935. doi: 10.1016/j.biopha.2017.11.150. PubMed DOI
Altinoz E., Erdemli M.E., Gül M., Erdemli Z., Gül S., Turkoz Y. Prevention of toxic effects of orally administered tartrazine by crocin in Wistar rats. Toxicol. Environ. Chem. 2021;103:184–198. doi: 10.1080/02772248.2021.1942472. DOI
Zingue S., Mindang E.L.N., Awounfack F.C., Kalgonbe A.Y., Kada M.M., Njamen D., Ndinteh D.T. Oral administration of tartrazine (E102) accelerates the incidence and the development of 7,12-dimethylbenz(a) anthracene (DMBA)-induced breast cancer in rats. BMC Complementary Medicine and Therapies. 2021;21:303. doi: 10.1186/s12906-021-03490-0. PubMed DOI PMC
Datta P., Lundin-Schiller S. Estrogenicity of the synthetic food colorants tartrazine, erythrosin B, and Sudan I in an estrogen-responsive human breast cancer cell line. J. Tenn. Acad. Sci. 2008;83
Axon A., May F.E.B., Gaughan L.E., Williams F.M., Blain P.G., Wright M.C. Tartrazine and sunset yellow are xenoestrogens in a new screening assay to identify modulators of human oestrogen receptor transcriptional activity. Toxicology. 2012;298:40–51. doi: 10.1016/j.tox.2012.04.014. PubMed DOI
Meyer S.K., Probert P.M.E., Lakey A.F., Axon A.R., Leitch A.C., Williams F.M., Jowsey P.A., Blain P.G., Kass G.E.N., Wright M.C. Hepatic effects of tartrazine (E 102) after systemic exposure are independent of oestrogen receptor interactions in the mouse. Toxicol. Lett. 2017;273:55–68. doi: 10.1016/j.toxlet.2017.03.024. PubMed DOI PMC
Elekima I., Nwachuku O.E. Evaluation of acute and chronic toxicity of tartrazine (E102) on steriod reproductive hormones of albino rats. Methodology. 2017:2018.
Wopara I., Modo E.U., Mobisson S.K., Olusegun G.A., Umoren E.B., Orji B.O., Mounmbegna P.E., Ujunwa S.O. Synthetic Food dyes cause testicular damage via up-regulation of pro-inflammatory cytokines and down-regulation of FSH-R and TESK-1 gene expression. JBRA Assist Reprod. 2021;25:341–348. doi: 10.5935/1518-0557.20200097. PubMed DOI PMC
Boussada M., Lamine J.A., Bini I., Abidi N., Lasrem M., El-Fazaa S., El-Golli N. Assessment of a sub-chronic consumption of tartrazine (E102) on sperm and oxidative stress features in Wistar rat. Int. Food Res. J. 2017;24
Tanaka T. Reproductive and neurobehavioural toxicity study of tartrazine administered to mice in the diet. Food Chem. Toxicol. 2006;44:179–187. doi: 10.1016/j.fct.2005.06.011. PubMed DOI
Tanaka T., Takahashi O., Oishi S., Ogata A. Effects of tartrazine on exploratory behavior in a three-generation toxicity study in mice. Reprod. Toxicol. 2008;26:156–163. doi: 10.1016/j.reprotox.2008.07.001. PubMed DOI
Yuan C.J., Marikawa Y. Developmental toxicity assessment of common excipients using a stem cell-based in vitro morphogenesis model. Food Chem. Toxicol. 2017;109:376–385. doi: 10.1016/j.fct.2017.09.023. PubMed DOI PMC
Hashem M.M., Abd-Elhakim Y.M., Abo-El-Sooud K., Eleiwa M.M.E. Embryotoxic and teratogenic effects of tartrazine in rats. Toxicol. Res. 2019;35:75–81. doi: 10.5487/TR.2019.35.1.075. PubMed DOI PMC
Joshi V., Katti P. Developmental toxicity assay for food additive tartrazine using zebrafish (Danio rerio) embryo cultures. Int. J. Toxicol. 2018;37:38–44. doi: 10.1177/1091581817735227. PubMed DOI
El-Borm H.T., Badawy G.M., El-Nabi S.H., El-Sherif W.A., Atallah M.N. The ameliorative effect of curcumin extract on the morphological and skeletal abnormalities induced by sunset yellow and tartrazine in the developing chick embryo Gallus domesticus. Heliyon. 2020;6 doi: 10.1016/j.heliyon.2020.e03305. PubMed DOI PMC
Ovalioglu A.O., Ovalioglu T.C., Arslan S., Canaz G., Aydin A.E., Sar M., Emel E. Effects of erythrosine on neural tube development in early chicken embryos. World Neurosurgery. 2020;134:e822–e825. doi: 10.1016/j.wneu.2019.11.017. PubMed DOI
Martynov V.O., Brygadyrenko V.V. The influence of the synthetic food colourings tartrazine, allura red and indigo carmine on the body weight of Tenebrio molitor (Coleoptera, Tenebrionidae) larvae, Regulatory Mechanisms in. Biosystems. 2018;9:479–484. doi: 10.15421/021871. DOI
Mohamed A.A.-R., Galal A.A.A., Elewa Y.H.A. Comparative protective effects of royal jelly and cod liver oil against neurotoxic impact of tartrazine on male rat pups brain. Acta Histochem. 2015;117:649–658. doi: 10.1016/j.acthis.2015.07.002. PubMed DOI
Hosieny N.A., Eldemerdash M., Ahmed S.M., Zayed M. Toxic effects of food azo dye tartrazine on the brain of young male albino rats: role of oxidative stress. Zagazig Journal of Forensic Medicine. 2021;19:60–73. doi: 10.21608/zjfm.2020.44386.1064. DOI
El-Sakhawy M.A., Mohamed D.W., Ahmed Y.H. Histological and immunohistochemical evaluation of the effect of tartrazine on the cerebellum, submandibular glands, and kidneys of adult male albino rats. Environ. Sci. Pollut. Res. Int. 2019;26:9574–9584. doi: 10.1007/s11356-019-04399-5. PubMed DOI
Bhatt D., Vyas K., Singh S., John P.J., Soni I. Tartrazine induced neurobiochemical alterations in rat brain sub-regions. Food Chem. Toxicol. 2018;113:322–327. doi: 10.1016/j.fct.2018.02.011. PubMed DOI
Essawy A.E., Mohamed A.I., Ali R.G., Ali A.M., Abdou H.M. Analysis of melatonin-modulating effects against tartrazine-induced neurotoxicity in male rats: biochemical, pathological and immunohistochemical markers. Neurochem. Res. 2022 doi: 10.1007/s11064-022-03723-9. PubMed DOI PMC
Rafati A., Nourzei N., Karbalay-Doust S., Noorafshan A. Using vitamin E to prevent the impairment in behavioral test, cell loss and dendrite changes in medial prefrontal cortex induced by tartrazine in rats. Acta Histochem. 2017;119:172–180. doi: 10.1016/j.acthis.2017.01.004. PubMed DOI
Athira N., Jaya D. Effects of tartrazine on growth and brain biochemistry of Indian major carps on long-term exposure. Int. J. Adv. Biochem. Res. 2022;6:25–33. doi: 10.33545/26174693.2022.v6.i2a.121. DOI
Miller M.D., Steinmaus C., Golub M.S., Castorina R., Thilakartne R., Bradman A., Marty M.A. Potential impacts of synthetic food dyes on activity and attention in children: a review of the human and animal evidence. Environ. Health. 2022;21:45. doi: 10.1186/s12940-022-00849-9. PubMed DOI PMC
Usman J.N., Muhammad G.A. vol. 8. 2022. pp. 97–105. (Sub-acute Toxicity Study on Tartrazine in Male Albino Rats). DOI
Iroh G., Weli B.O., Adele U.A., Briggs O.N., Waribo H.A., Elekima I. Assessment of atherogenic indices and markers of cardiac injury in albino rats orally administered with tartrazine azo dye. Journal of Advances in Medical and Pharmaceutical Sciences. 2020:51–61. doi: 10.9734/jamps/2020/v22i630179. DOI
El-Desoky G.E., Wabaidur S.M., AlOthman Z.A., Habila M.A. Evaluation of Nano-curcumin effects against Tartrazine-induced abnormalities in liver and kidney histology and other biochemical parameters. Food Sci. Nutr. 2022;10:1344–1356. doi: 10.1002/fsn3.2790. PubMed DOI PMC
Balta I., Sevastre B., Mireşan V., Taulescu M., Raducu C., Longodor A.L., Marchiş Z., Mariş C.S., Coroian A. Protective effect of blackthorn fruits (Prunus spinosa) against tartrazine toxicity development in albino Wistar rats. BMC Chem. 2019;13:104. doi: 10.1186/s13065-019-0610-y. PubMed DOI PMC
Arefin S., Hossain M.S., Neshe S.A., Rashid M.M.O., Amin M.T., Hussain M.S. Tartrazine induced changes in physiological and biochemical parameters in Swiss albino mice. Mus musculus, Marmara Pharmaceutical Journal. 2017;21:564–569. doi: 10.12991/marupj.319304. DOI
Ali F.A., Abdelgayed S.S., El-Tawil S.O., Bakeer M.A. Toxicological and histopathological studies on the effect of tartrazine in male albino rats. International Journal of Pharmacological and Pharmaceutical Sciences. 2016;10:527–532.
Al-Daamy A.M.Z., Al-Zubiady N.M.H. Study of the toxic effect of tartrazine dye on some biochemical parameters in male albino rats. Scientific Journal of Medical Research. 2020;4:111–117.
Abd-Elhakim Y.M., Hashem M.M., El-Metwally A.E., Anwar A., Abo-El-Sooud K., Moustafa G.G., Ali H.A. Comparative haemato-immunotoxic impacts of long-term exposure to tartrazine and chlorophyll in rats. Int. Immunopharm. 2018;63:145–154. doi: 10.1016/j.intimp.2018.08.002. PubMed DOI
Meena B., Sharma S., Sharma S. Effects OF SUB-chronic exposure of the food dye tartrazine on the haematology of SWISS albino mice (MUS MUSCULUSL.) Indian J. Environ. Sci. 2017;21:49–52.
Ghasemi Fard S., Wang F., Sinclair A.J., Elliott G., Turchini G.M. How does high DHA fish oil affect health? A systematic review of evidence. Crit. Rev. Food Sci. Nutr. 2019;59:1684–1727. doi: 10.1080/10408398.2018.1425978. PubMed DOI
Pasupuleti V.R., Sammugam L., Ramesh N., Gan S.H. Honey, propolis, and royal jelly: a comprehensive review of their biological actions and health benefits. Oxid. Med. Cell. Longev. 2017;2017 doi: 10.1155/2017/1259510. PubMed DOI PMC
Elewa Y.H.A., Mohamed A.A.-R., Galal A.A.A., El-naseery N.I., Ichii O., Kon Y. Food Yellow4 reprotoxicity in relation to localization of DMC1 and apoptosis in rat testes: roles of royal jelly and cod liver oil. Ecotoxicol. Environ. Saf. 2019;169:696–706. doi: 10.1016/j.ecoenv.2018.11.082. PubMed DOI
Hua H., Zhang H., Kong Q., Wang J., Jiang Y. Complex roles of the old drug aspirin in cancer chemoprevention and therapy. Med. Res. Rev. 2019;39:114–145. doi: 10.1002/med.21514. PubMed DOI
Patel D., Roy A., Pahan K. PPARα serves as a new receptor of aspirin for neuroprotection. J. Neurosci. Res. 2020;98:626–631. doi: 10.1002/jnr.24561. PubMed DOI PMC
Stenius B.S.M., Lemola M. Hypersensitivity to acetylsalicylic acid (ASA) and tartrazine in patients with asthma. Clin. Exp. Allergy. 1976;6:119–129. doi: 10.1111/j.1365-2222.1976.tb01889.x. PubMed DOI
Stevenson D.D., Simon R.A., Lumry W.R., Mathison D.A. Pulmonary reactions to tartrazine. Pediatr. Allergy Immunol. 1992;3:222–227. doi: 10.1111/j.1399-3038.1992.tb00054.x. PubMed DOI
Alsalman N., Aljafari A., Wani T.A., Zargar S. High-dose aspirin reverses tartrazine-induced cell growth dysregulation independent of p53 signaling and antioxidant mechanisms in rat brain. BioMed Res. Int. 2019 doi: 10.1155/2019/9096404. 2019. PubMed DOI PMC
El Rabey H.A., Al-Seeni M.N., Al-Sieni A.I., Al-Hamed A.M., Zamzami M.A., Almutairi F.M. Honey attenuates the toxic effects of the low dose of tartrazine in male rats. J. Food Biochem. 2019;43 doi: 10.1111/jfbc.12780. PubMed DOI
Kandeel S., Sharaf Eldin H.E.M. The possible ameliorative effect of manuka honey on tartrazine induced injury of the jejunal mucosa with the role of oxidative stress and TNF-alpha: histological and morphometric study. Egyptian Journal of Histology. 2021;44:48–60. doi: 10.21608/ejh.2020.28580.1280. DOI
Ahmad M.F., Ahmad F.A., Ashraf S.A., Saad H.H., Wahab S., Khan M.I., Ali M., Mohan S., Hakeem K.R., Athar M.T. An updated knowledge of Black seed (Nigella sativa Linn.): review of phytochemical constituents and pharmacological properties. J. Herb. Med. 2021;25 doi: 10.1016/j.hermed.2020.100404. PubMed DOI PMC
Demircigil N., Gul M., Gokturk N., Kustepe E.K., Bag H.G., Erdemli M.E. Thymoquinone played a protective role against tartrazine-induced hepatotoxicity. Iran J Basic Med Sci. 2023;26:99–106. doi: 10.22038/IJBMS.2022.67341.14763. PubMed DOI PMC
Negrean O.-R., Farcas A.C., Pop O.L., Socaci S.A. Blackthorn—a valuable source of phenolic antioxidants with potential health benefits. Molecules. 2023;28:3456. doi: 10.3390/molecules28083456. PubMed DOI PMC
Frassová Z., Rudá-Kučerová J. [Curcumine (turmeric - curcuma longa) as a supportive phytotherapeutic treatment in oncology] Klin. Onkol. 2017;31:15–23. doi: 10.14735/amko201815. PubMed DOI
Xu X.-Y., Meng X., Li S., Gan R.-Y., Li Y., Li H.-B. Bioactivity, health benefits, and related molecular mechanisms of curcumin: current progress, challenges, and perspectives. Nutrients. 2018;10:1553. doi: 10.3390/nu10101553. PubMed DOI PMC
El-Desoky G.E., Wabaidur S.M., Habila M.A., AlOthman Z.A. Synergistic effects of curcumin and nano-curcumin against toxicity, carcinogenicity, and oxidative stress induced by tartrazine at normal and cancer cell levels. Catalysts. 2021;11:1203. doi: 10.3390/catal11101203. DOI
Hassanizadeh S., Shojaei M., Bagherniya M., Orekhov A.N., Sahebkar A. Effect of nano-curcumin on various diseases: a comprehensive review of clinical trials. Biofactors. 2023;49:512–533. doi: 10.1002/biof.1932. PubMed DOI
Sadek D.R., Abdel Wahab M.B., Moussa M.E., Elkhateb L.A., Abdelhamid W.G. A comparative study of the toxic effects of monosodium glutamate and sunset yellow on the structure and function of the liver, kidney, and testis and the possible protective role of curcumin in rats. Egyptian Journal of Histology. 2022;0 doi: 10.21608/ejh.2022.157628.1756. DOI
Elwan W.M., Ibrahim M.A. Effect of tartrazine on gastric mucosa and the possible role of recovery with or without riboflavin in adult male albino rat. Egyptian Journal of Histology. 2019;42:297–311. doi: 10.21608/ejh.2019.6312.1043. DOI
Ismail O.I., Rashed N.A. Riboflavin attenuates tartrazine toxicity in the cerebellar cortex of adult albino rat. Sci. Rep. 2022;12 doi: 10.1038/s41598-022-23894-3. PubMed DOI PMC