Epithelial barrier dysfunction and associated diseases in companion animals: Differences and similarities between humans and animals and research needs
Language English Country Denmark Media print-electronic
Document type Journal Article, Review
PubMed
39417247
PubMed Central
PMC11657079
DOI
10.1111/all.16343
Knihovny.cz E-resources
- Keywords
- companion animals, epigenetics, epithelial barrier, exposome, microbiota, skin,
- MeSH
- Pets * immunology MeSH
- Epithelium immunology MeSH
- Cats MeSH
- Humans MeSH
- Dogs MeSH
- Environmental Exposure adverse effects MeSH
- Animals MeSH
- Check Tag
- Cats MeSH
- Humans MeSH
- Dogs MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Since the 1960s, more than 350,000 new chemicals have been introduced into the lives of humans and domestic animals. Many of them have become part of modern life and some are affecting nature as pollutants. Yet, our comprehension of their potential health risks for both humans and animals remains partial. The "epithelial barrier theory" suggests that genetic predisposition and exposure to diverse factors damaging the epithelial barriers contribute to the emergence of allergic and autoimmune conditions. Impaired epithelial barriers, microbial dysbiosis, and tissue inflammation have been observed in a high number of mucosal inflammatory, autoimmune and neuropsychiatric diseases, many of which showed increased prevalence in the last decades. Pets, especially cats and dogs, share living spaces with humans and are exposed to household cleaners, personal care products, air pollutants, and microplastics. The utilisation of cosmetic products and food additives for pets is on the rise, unfortunately, accompanied by less rigorous safety regulations than those governing human products. In this review, we explore the implications of disruptions in epithelial barriers on the well-being of companion animals, drawing comparisons with humans, and endeavour to elucidate the spectrum of diseases that afflict them. In addition, future research areas with the interconnectedness of human, animal, and environmental well-being are highlighted in line with the "One Health" concept.
ALL MED Medical Research Institute Wrocław Poland
Department of Clinical Immunology Wrocław Medical University Wroclaw Poland
Department of Environmental Health Harvard T H Chan School of Public Health Boston Massachusetts USA
Department of Genetics Faculty of Veterinary Medicine Bursa Uludag University Bursa Türkiye
Faculty of Science Charles University Prague Czech Republic
SEED Inc Co Los Angeles California USA
Swiss Institute of Allergy and Asthma Research University of Zurich Davos Switzerland
See more in PubMed
Contalbrigo L, Mutinelli F, Normando S. The dark side of beauty in companion animals: can we speak about genetic abuse? Journal of Ethics and Legal Technologies. 2023;5(1):59‐74.
Pat Y, Yazici D, D'Avino P, et al. Recent advances in the epithelial barrier theory. Int Immunol. 2024;36(5):211‐222. PubMed PMC
Akdis CA. Does the epithelial barrier hypothesis explain the increase in allergy, autoimmunity and other chronic conditions? Nat Rev Immunol. 2021;21(11):739‐751. PubMed
Pawankar R, Akdis CA. Climate change and the epithelial barrier theory in allergic diseases: a one health approach to a green environment. Allergy. 2023;78(11):2829‐2834. PubMed
Trautmann A, Akdis M, Kleemann D, et al. T cell–mediated Fas‐induced keratinocyte apoptosis plays a key pathogenetic role in eczematous dermatitis. J Clin Invest. 2000;106(1):25‐35. PubMed PMC
Akdis CA, Akdis M, Trautmann A, Blaser K. Immune regulation in atopic dermatitis. Curr Opin Immunol. 2000;12(6):641‐646. PubMed
Trautmann A, Schmid‐Grendelmeier P, Krüger K, et al. T cells and eosinophils cooperate in the induction of bronchial epithelial cell apoptosis in asthma. J Allergy Clin Immunol. 2002;109(2):329‐337. PubMed
Trautmann A, Altznauer F, Akdis M, et al. The differential fate of cadherins during T‐cell‐induced keratinocyte apoptosis leads to spongiosis in eczematous dermatitis. J Invest Dermatol. 2001;117(4):927‐934. PubMed
Yazici D, Ogulur I, Pat Y, et al. The epithelial barrier: the gateway to allergic, autoimmune, and metabolic diseases and chronic neuropsychiatric conditions. Seminars in Immunology. Elsevier; 2023. PubMed
Pat Y, Ogulur I, Yazici D, et al. Effect of altered human exposome on the skin and mucosal epithelial barrier integrity. Tissue Barriers. 2023;11(4):2133877. PubMed PMC
Sözener Celebi Z, Cevhertas L, Nadeau K, Akdis M, Akdis CA. Environmental factors in epithelial barrier dysfunction. J Allergy Clin Immunol. 2020;145(6):1517‐1528. PubMed
Celebi Sozener Z, Ozdel Ozturk B, Cerci P, et al. Epithelial barrier hypothesis: effect of the external exposome on the microbiome and epithelial barriers in allergic disease. Allergy. 2022;77(5):1418‐1449. PubMed PMC
Sun N, Ogulur I, Mitamura Y, et al. The epithelial barrier theory and its associated diseases. Allergy. 2024;1‐46. doi:10.1111/all.16318. PubMed DOI PMC
Yazici D, Ogulur I, Kucukkase O, et al. Epithelial barrier hypothesis and the development of allergic and autoimmune diseases. Allergo J Int. 2022;31(4):91‐102.
Bach J‐F. The effect of infections on susceptibility to autoimmune and allergic diseases. N Engl J Med. 2002;347(12):911‐920. PubMed
Willits EK, Park MA, Hartz MF, Schleck CD, Weaver AL, Joshi AY. Food allergy: a comprehensive population‐based cohort study. Mayo Clinic Proceedings. Elsevier; 2018. PubMed PMC
Hommeida S, Grothe R, Hafed Y, et al. Assessing the incidence trend and characteristics of eosinophilic esophagitis in children in Olmsted County, Minnesota. Dis Esophagus. 2018;31(12):doy062. PubMed PMC
Lichtenstein L, Ishizaka K, Norman P, Sobotka A, Hill B. IgE antibody measurements in ragweed hay fever relationship to clinical severity and the results of immunotherapy. J Clin Invest. 1973;52(2):472‐482. PubMed PMC
Johansson S. IgE and Reaginic antibodies: IgE in allergic diseases. Proc R Soc Med. 1969;62(9):975‐976. PubMed PMC
Huang X, Tsilochristou O, Perna S, et al. Evolution of the IgE and IgG repertoire to a comprehensive array of allergen molecules in the first decade of life. Allergy. 2018;73(2):421‐430. PubMed
Prahl P, Skov P, Minuva U, Weeke B, Nexø B. Estimation of affinity and quantity of human antigen‐specific serum IgG (blocking antibodies). Allergy. 1981;36(8):555‐560. PubMed
Pali‐Schöll I, Roth‐Walter F, Jensen‐Jarolim E. One health in allergology: a concept that connects humans, animals, plants, and the environment. Allergy. 2021;76(8):2630‐2633. PubMed PMC
Jutel M, Mosnaim GS, Bernstein JA, et al. The one health approach for allergic diseases and asthma. Allergy. 2023;78(7):1777‐1793. PubMed
Ozdemir C, Kucuksezer UC, Ogulur I, et al. Lifestyle changes and industrialization in the development of allergic diseases. Curr Allergy Asthma Rep. 2024;15:331‐345. PubMed PMC
Roberts M, Bermingham E, Cave N, Young W, McKenzie C, Thomas D. Macronutrient intake of dogs, self‐selecting diets varying in composition offered ad libitum. J Anim Physiol Anim Nutr. 2018;102(2):568‐575. PubMed
Bosch G, Hagen‐Plantinga EA, Hendriks WH. Dietary nutrient profiles of wild wolves: insights for optimal dog nutrition? Br J Nutr. 2015;113(S1):S40‐S54. PubMed
Sinkko H, Lehtimäki J, Lohi H, Ruokolainen L, Hielm‐Björkman A. Distinct healthy and atopic canine gut microbiota is influenced by diet and antibiotics. R Soc Open Sci. 2023;10(4):221104. PubMed PMC
Georas SN, Rezaee F. Epithelial barrier function: at the front line of asthma immunology and allergic airway inflammation. J Allergy Clin Immunol. 2014;134(3):509‐520. PubMed PMC
Loxham M, Davies DE. Phenotypic and genetic aspects of epithelial barrier function in asthmatic patients. J Allergy Clin Immunol. 2017;139(6):1736‐1751. PubMed PMC
Moens E, Veldhoen M. Epithelial barrier biology: good fences make good neighbours. Immunology. 2012;135(1):1‐8. PubMed PMC
Egawa G, Kabashima K. Barrier dysfunction in the skin allergy. Allergol Int. 2018;67(1):3‐11. PubMed
Groschwitz KR, Hogan SP. Intestinal barrier function: molecular regulation and disease pathogenesis. J Allergy Clin Immunol. 2009;124(1):3‐20. PubMed PMC
Fiorito S, Soligo M, Gao Y, Ogulur I, Akdis CA, Bonini S. Is the epithelial barrier hypothesis the key to understanding the higher incidence and excess mortality during COVID‐19 pandemic? The Case of Northern Italy Allergy. 2022;77(5):1408‐1417. PubMed PMC
Praça FSG, Medina WSG, Eloy JO, et al. Evaluation of critical parameters for in vitro skin permeation and penetration studies using animal skin models. Eur J Pharm Sci. 2018;111:121‐132. PubMed
Summerfield A, Meurens F, Ricklin ME. The immunology of the porcine skin and its value as a model for human skin. Mol Immunol. 2015;66(1):14‐21. PubMed
Uhm C, Jeong H, Lee SH, Hwang JS, Lim K‐M, Nam KT. Comparison of structural characteristics and molecular markers of rabbit skin, pig skin, and reconstructed human epidermis for an ex vivo human skin model. Toxicological Research. 2023;39(3):477‐484. PubMed PMC
Khiao In M, Richardson KC, Loewa A, Hedtrich S, Kaessmeyer S, Plendl J. Histological and functional comparisons of four anatomical regions of porcine skin with human abdominal skin. Anat Histol Embryol. 2019;48(3):207‐217. PubMed
Debeer S, Le Luduec J‐B, Kaiserlian D, et al. Comparative histology and immunohistochemistry of porcine versus human skin. Eur J Dermatol. 2013;23(4):456‐466. PubMed
Thirion‐Delalande C, Gervais F, Fisch C, et al. Comparative analysis of the oral mucosae from rodents and non‐rodents: application to the nonclinical evaluation of sublingual immunotherapy products. PLoS One. 2017;12(9):e0183398. PubMed PMC
Kawamata S, Ozawa J, Hashimoto M, Kurose T, Shinohara H. Structure of the rat subcutaneous connective tissue in relation to its sliding mechanism. Arch Histol Cytol. 2003;66(3):273‐279. PubMed
Hargis AM, Myers S. The integument. In: Zachary JF, eds. Pathologic Basis of Veterinary Disease. St Louis, Missouri: Mosby Elsevier, 2017;1009‐1146.
Kumar MA. The skin. In: Nicole J. Buote, ed. Techniques in small animal wound Management. 2024;1‐36.
Lloyd D, Garthwaite G. Epidermal structure and surface topography of canine skin. Res Vet Sci. 1982;33(1):99‐104. PubMed
Young LA, Dodge JC, Guest KJ, Cline JL, Kerr WW. Age, breed, sex and period effects on skin biophysical parameters for dogs fed canned dog food. J Nutr. 2002;132(6):1695S‐1697S. PubMed
Miller WH, Griffin CE, Campbell KL. Muller and Kirk's small animal dermatology. Elsevier Health Sciences. 2012. p 19‐29.
Akdis CA, Arkwright PD, Brüggen M‐C, et al. Type 2 immunity in the skin and lungs. Allergy. 2020;75(7):1582‐1605. PubMed
Vermette D, Hu P, Canarie MF, Funaro M, Glover J, Pierce RW. Tight junction structure, function, and assessment in the critically ill: a systematic review. Intensive Care Med Exp. 2018;6:1‐18. PubMed PMC
Losol P, Sokolowska M, Hwang Y‐K, et al. Epithelial barrier theory: the role of exposome, microbiome, and barrier function in allergic diseases. Allergy, Asthma Immunol Res. 2023;15(6):705‐724. PubMed PMC
Pat Y, Rückert B, Ogulur I, et al. Differentiation of bronchial epithelial spheroids in the presence of IL‐13 recapitulates characteristic features of asthmatic airway epithelia. Allergy. 2022;77(7):2229‐2233. PubMed PMC
Pons S, Fodil S, Azoulay E, Zafrani L. The vascular endothelium: the cornerstone of organ dysfunction in severe SARS‐CoV‐2 infection. Crit Care. 2020;24:1‐8. PubMed PMC
Pulendran B, Artis D. New paradigms in type 2 immunity. Science. 2012;337(6093):431‐435. PubMed PMC
Schneider C, O'Leary CE, von Moltke J, et al. A metabolite‐triggered tuft cell‐ILC2 circuit drives small intestinal remodeling. Cell. 2018;174(2):271‐284. PubMed PMC
Nath TC, Eom KS, Choe S, et al. Insights to helminth infections in food and companion animals in Bangladesh: occurrence and risk profiling. Parasite Epidemiology and Control. 2022;17:e00245. PubMed PMC
Oyesola OO, Früh SP, Webb LM, Wojno EDT. Cytokines and beyond: regulation of innate immune responses during helminth infection. Cytokine. 2020;133:154527. PubMed PMC
Howitt MR, Lavoie S, Michaud M, et al. Tuft cells, taste‐chemosensory cells, orchestrate parasite type 2 immunity in the gut. Science. 2016;351(6279):1329‐1333. PubMed PMC
Moulin D, Donzé O, Talabot‐Ayer D, Mézin F, Palmer G, Gabay C. Interleukin (IL)‐33 induces the release of pro‐inflammatory mediators by mast cells. Cytokine. 2007;40(3):216‐225. PubMed
Maurya V, Gugnani HC, Sarma PU, Madan T, Shah A. Sensitization to aspergillus antigens and occurrence of allergic bronchopulmonary aspergillosis in patients with asthma. Chest. 2005;127(4):1252‐1259. PubMed
Denning DW, Pashley C, Hartl D, et al. Fungal allergy in asthma–state of the art and research needs. Clin Transl Allergy. 2014;4:1‐23. PubMed PMC
Kauffman HF. Immunopathogenesis of allergic bronchopulmonary aspergillosis and airway remodeling. Front Biosci. 2003;8(5):e190‐e196. PubMed
Eder C, Crameri R, Mayer C, et al. Allergen‐specific IgE levels against crude mould and storage mite extracts and recombinant mould allergens in sera from horses affected with chronic bronchitis. Vet Immunol Immunopathol. 2000;73(3–4):241‐253. PubMed
Künzle F, Gerber V, Van Der Haegen A, Wampfler B, Straub R, Marti E. IgE‐bearing cells in bronchoalveolar lavage fluid and allergen‐specific IgE levels in sera from RAO‐affected horses. J Veterinary Med Ser A. 2007;54(1):40‐47. PubMed
Hughes KM, Price D, Torriero AA, Symonds MR, Suphioglu C. Impact of fungal spores on asthma prevalence and hospitalization. Int J Mol Sci. 2022;23(8):4313. PubMed PMC
Daines M, Zhu L, Pereira R, et al. Alternaria induces airway epithelial cytokine expression independent of protease‐activated receptor. Respirology. 2020;25(5):502‐510. PubMed PMC
Mattoli S, Marini M, Fasoli A. Expression of the potent inflammatory cytokines, GM‐CSF, IL6, and IL8, in bronchial epithelial cells of asthmatic patients. Chest. 1992;101(3):27S‐29S. PubMed
Kouzaki H, O'Grady SM, Lawrence CB, Kita H. Proteases induce production of thymic stromal lymphopoietin by airway epithelial cells through protease‐activated receptor‐2. J Immunol. 2009;183(2):1427‐1434. PubMed PMC
Chan YS, Ng TB. Shiga toxins: from structure and mechanism to applications. Appl Microbiol Biotechnol. 2016;100:1597‐1610. PubMed
Ghasemzadeh I, Namazi S. Review of bacterial and viral zoonotic infections transmitted by dogs. J Med Life. 2015;8(Spec Iss 4):1. PubMed PMC
Kiedrowski MR, Paharik AE, Ackermann LW, et al. Development of an in vitro colonization model to investigate Staphylococcus aureus interactions with airway epithelia. Cell Microbiol. 2016;18(5):720‐732. PubMed PMC
Palma Medina LM, Becker A‐K, Michalik S, et al. Interaction of Staphylococcus aureus and host cells upon infection of bronchial epithelium during different stages of regeneration. ACS Infectious Diseases. 2020;6(8):2279‐2290. PubMed PMC
Kistler W, Villiger M, Villiger B, et al. Epithelial barrier theory in the context of nutrition and environmental exposure in athletes. Allergy. 2024;79:2912‐2923. doi: 10.1111/all.16221 PubMed DOI
Azkur AK, Akdis M, Azkur D, et al. Immune response to SARS‐CoV‐2 and mechanisms of immunopathological changes in COVID‐19. Allergy. 2020;75(7):1564‐1581. PubMed PMC
Anderberg SB, Luther T, Berglund M, et al. Increased levels of plasma cytokines and correlations to organ failure and 30‐day mortality in critically ill Covid‐19 patients. Cytokine. 2021;138:155389. PubMed PMC
Del Valle DM, Kim‐Schulze S, Huang H‐H, et al. An inflammatory cytokine signature predicts COVID‐19 severity and survival. Nat Med. 2020;26(10):1636‐1643. PubMed PMC
Barnett KC, Xie Y, Asakura T, et al. An epithelial‐immune circuit amplifies inflammasome and IL‐6 responses to SARS‐CoV‐2. Cell Host Microbe. 2023;31(2):243‐259. e6. PubMed PMC
Lin C‐N, Chan KR, Ooi EE, et al. Animal coronavirus diseases: parallels with COVID‐19 in humans. Viruses. 2021;13(8):1507. PubMed PMC
Perisé‐Barrios AJ, Tomeo‐Martín BD, Gómez‐Ochoa P, et al. Humoral responses to SARS‐CoV‐2 by healthy and sick dogs during the COVID‐19 pandemic in Spain. Vet Res. 2021;52(1):22. PubMed PMC
Ogulur I, Yazici D, Pat Y, et al. Mechanisms of gut epithelial barrier impairment caused by food emulsifiers polysorbate 20 and polysorbate 80. Allergy. 2023;78(9):2441‐2455. PubMed
Kucuksezer UC, Ozdemir C, Yazici D, et al. The epithelial barrier theory: development and exacerbation of allergic and other chronic inflammatory diseases. Asia Pac Allergy. 2023;13(1):28‐39. PubMed PMC
Mitamura Y, Ogulur I, Pat Y, et al. Dysregulation of the epithelial barrier by environmental and other exogenous factors. Contact Derm. 2021;85(6):615‐626. PubMed PMC
Yazici D, Pat Y, Mitamura Y, Akdis CA, Ogulur I. Detergent‐induced eosinophilic inflammation in the esophagus: a key evidence for the epithelial barrier theory. Allergy. 2023;78(6):1422‐1424. PubMed
Sokolowska M, Quesniaux VF, Akdis CA, Chung KF, Ryffel B, Togbe D. Acute respiratory barrier disruption by ozone exposure in mice. Front Immunol. 2019;10:2169. PubMed PMC
Ogulur I, Pat Y, Aydin T, et al. Gut epithelial barrier damage caused by dishwasher detergents and rinse aids. J Allergy Clin Immunol. 2023;151(2):469‐484. PubMed
Wang M, Tan G, Eljaszewicz A, et al. Laundry detergents and detergent residue after rinsing directly disrupt tight junction barrier integrity in human bronchial epithelial cells. J Allergy Clin Immunol. 2019;143(5):1892‐1903. PubMed
Michaudel C, Mackowiak C, Maillet I, et al. Ozone exposure induces respiratory barrier biphasic injury and inflammation controlled by IL‐33. J Allergy Clin Immunol. 2018;142(3):942‐958. PubMed
Xian M, Ma S, Wang K, et al. Particulate matter 2.5 causes deficiency in barrier integrity in human nasal epithelial cells. Allergy, Asthma Immunol Res. 2020;12(1):56‐71. PubMed PMC
Doyle AD, Masuda MY, Pyon GC, et al. Detergent exposure induces epithelial barrier dysfunction and eosinophilic inflammation in the esophagus. Allergy. 2023;78(1):192‐201. PubMed PMC
Singh N, Diebold Y, Sahu SK, Leonardi A. Epithelial barrier dysfunction in ocular allergy. Allergy. 2022;77(5):1360‐1372. PubMed PMC
Hardy J, Gajanayake I. Diagnosis and management of adverse food reactions in dogs and cats. In Pract. 2022;44(4):196‐203.
Bertero A, Fossati P, Caloni F. Indoor poisoning of companion animals by chemicals. Sci Total Environ. 2020;733:139366. PubMed
Knapp DW, Peer WA, Conteh A, et al. Detection of herbicides in the urine of pet dogs following home lawn chemical application. Sci Total Environ. 2013;456:34‐41. PubMed
Wang Z, Walker GW, Muir DC, Nagatani‐Yoshida K. Toward a global understanding of chemical pollution: a first comprehensive analysis of national and regional chemical inventories. Environ Sci Technol. 2020;54(5):2575‐2584. PubMed
O'Neill DG, James H, Brodbelt DC, Church DB, Pegram C. Prevalence of commonly diagnosed disorders in UK dogs under primary veterinary care: results and applications. BMC Vet Res. 2021;17(1):1‐14. PubMed PMC
D'Amato G, Akdis C. Global warming, climate change, air pollution and allergies. Authorea Preprints. 2020;75(9):2158‐2160. PubMed
Haines A, Ebi K. The imperative for climate action to protect health. N Engl J Med. 2019;380(3):263‐273. PubMed
Cerquetella M, Spaterna A, Laus F, et al. Inflammatory bowel disease in the dog: differences and similarities with humans. World J Gastroenterol: WJG. 2010;16(9):1050‐1056. PubMed PMC
Brown EM, Sadarangani M, Finlay BB. The role of the immune system in governing host‐microbe interactions in the intestine. Nat Immunol. 2013;14(7):660‐667. PubMed
Cebra JJ. Influences of microbiota on intestinal immune system development. Am J Clin Nutr. 1999;69(5):1046s‐1051s. PubMed
Cave N. Chronic inflammatory disorders of the gastrointestinal tract of companion animals. N Z Vet J. 2003;51(6):262‐274. PubMed
Luckschander N, Hall JA, Gaschen F, et al. Activation of nuclear factor‐κB in dogs with chronic enteropathies. Vet Immunol Immunopathol. 2010;133(2–4):228‐236. PubMed
German A, Hall E, Day M. Immune cell populations within the duodenal mucosa of dogs with enteropathies. J Vet Intern Med. 2001;15(1):14‐25. PubMed
Craig J. Additives in pet food: are they safe? J Small Anim Pract. 2021;62(8):624‐635. PubMed
FDA . CFR ‐ Code of Federal Regulations Title 21 2023. Available from: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?CFRPart=573
Cox S, Sandall A, Smith L, Rossi M, Whelan K. Food additive emulsifiers: a review of their role in foods, legislation and classifications, presence in food supply, dietary exposure, and safety assessment. Nutr Rev. 2021;79(6):726‐741. PubMed
Naimi S, Viennois E, Gewirtz AT, Chassaing B. Direct impact of commonly used dietary emulsifiers on human gut microbiota. Microbiome. 2021;9:1‐19. PubMed PMC
Chassaing B, De Bodt J, Marzorati M, Van de Wiele T, Gewirtz AT. Dietary emulsifiers directly alter human microbiota composition and gene expression ex vivo potentiating intestinal inflammation. Gut. 2017;66(8):1414‐1427. PubMed PMC
Furuhashi H, Higashiyama M, Okada Y, et al. Dietary emulsifier polysorbate‐80‐induced small‐intestinal vulnerability to indomethacin‐induced lesions via dysbiosis. J Gastroenterol Hepatol. 2020;35(1):110‐117. PubMed
Jin G, Tang Q, Ma J, et al. Maternal emulsifier P80 intake induces gut dysbiosis in offspring and increases their susceptibility to colitis in adulthood. Msystems. 2021;6(2):1337. PubMed PMC
Chassaing B, Koren O, Goodrich JK, et al. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature. 2015;519(7541):92‐96. PubMed PMC
Viennois E, Chassaing B. First victim, later aggressor: how the intestinal microbiota drives the pro‐inflammatory effects of dietary emulsifiers? Gut Microbes. 2018;9(3):289‐291. PubMed PMC
Liu C, Zhan S, Tian Z, et al. Food additives associated with gut microbiota alterations in inflammatory bowel disease: friends or enemies? Nutrients. 2022;14(15):3049. PubMed PMC
Viennois E, Bretin A, Dubé PE, et al. Dietary emulsifiers directly impact adherent‐invasive E. Coli gene expression to drive chronic intestinal inflammation. Cell Rep. 2020;33(1):108229. PubMed PMC
Zangara MT, Ponti AK, Miller ND, et al. Maltodextrin consumption impairs the intestinal mucus barrier and accelerates colitis through direct actions on the epithelium. Front Immunol. 2022;13:841188. PubMed PMC
Viennois E, Merlin D, Gewirtz AT, Chassaing B. Dietary emulsifier–induced low‐grade inflammation promotes colon carcinogenesis. Cancer Res. 2017;77(1):27‐40. PubMed PMC
Martino JV, Van Limbergen J, Cahill LE. The role of carrageenan and carboxymethylcellulose in the development of intestinal inflammation. Front Pediatr. 2017;5:96. PubMed PMC
Onderdonk A, Cisneros R, Bronson R. Enhancement of experimental ulcerative colitis by immunization with Bacteroides vulgatus. Infect Immun. 1983;42(2):783‐788. PubMed PMC
Wu W, Zhen Z, Niu T, et al. κ‐Carrageenan enhances lipopolysaccharide‐induced interleukin‐8 secretion by stimulating the Bcl10‐NF‐κB pathway in HT‐29 cells and aggravates C. Freundii‐induced inflammation in mice. Mediat Inflamm. 2017;2017:1‐16. PubMed PMC
EFSA . Ethoxyquin: EFSA safety assessment inconclusive 2015. Available from: https://www.efsa.europa.eu/en/press/news/151118
Błaszczyk A, Augustyniak A, Skolimowski J. Ethoxyquin: an antioxidant used in animal feed. Int J Food Sci. 2013;2013:1‐12. PubMed PMC
FDA . Pesticide Residue Monitoring 1999 Report 1999. Available from: https://wayback.archiveit.org/7993/20170723105343/https://www.fda.gov/Food/FoodborneIllnessContaminants/Pesticides/ucm125168.htm
FSA . Animal feed additives 2020. Available from: https://www.food.gov.uk/business‐guidance/animal‐feed‐additives
Samant SS, Crandall PG, Jarma Arroyo SE, Seo H‐S. Dry pet food flavor enhancers and their impact on palatability: a review. Food Secur. 2021;10(11):2599. PubMed PMC
EFSA . Safety of cassia gum as a feed additive for dogs and cats based on a dossier submitted by Intercolloid (UK) ltd. EFSA J. 2017;15(2):e04709. PubMed PMC
Additives EPo, Feed PoSuiA . Scientific opinion on the safety and efficacy of sorbic acid and potassium sorbate when used as technological additives for all animal species based on two dossiers from Nutrinova Nutrition Specialties & Food Ingredients GmbH. EFSA J. 2015;13(9):4239.
EFSA . Scientific opinion on the safety and efficacy of potassium sorbate as a silage additive for all animals except dogs and cats. EFSA J. 2013;11(7):3283.
Boberg J, Taxvig C, Christiansen S, Hass U. Possible endocrine disrupting effects of parabens and their metabolites. Reprod Toxicol. 2010;30(2):301‐312. PubMed
Bettini S, Boutet‐Robinet E, Cartier C, et al. Food‐grade TiO2 impairs intestinal and systemic immune homeostasis, initiates preneoplastic lesions and promotes aberrant crypt development in the rat colon. Sci Rep. 2017;7(1):40373. PubMed PMC
EC . Food and feed information portal 2024. updated 10.05.2024. Available from: https://ec.europa.eu/food/food‐feed‐portal/screen/food‐additives/search
EC . EU register of animal feed additives. 2020. Available from: https://ec.europa.eu/food/food‐feed‐portal/screen/feed‐additives/search
Niaz K, Zaplatic E, Spoor J. Extensive use of monosodium glutamate: a threat to public health? EXCLI J. 2018;17:273. PubMed PMC
Sharma A. Monosodium glutamate‐induced oxidative kidney damage and possible mechanisms: a mini‐review. J Biomed Sci. 2015;22:1‐6. PubMed PMC
Mondal M, Sarkar K, Nath PP, Paul G. Monosodium glutamate suppresses the female reproductive function by impairing the functions of ovary and uterus in rat. Environ Toxicol. 2018;33(2):198‐208. PubMed
Shi Z, Yuan B, Wittert GA, et al. Monosodium glutamate intake, dietary patterns and asthma in Chinese adults. PLoS One. 2012;7(12):e51567. PubMed PMC
Dong HV, Robbins WA. Ingestion of monosodium glutamate (MSG) in adult male rats reduces sperm count, testosterone, and disrupts testicular histology. Nutrition Bytes. 2015;19(1):1‐9.
Konrad SP, Farah V, Rodrigues B, et al. Monosodium glutamate neonatal treatment induces cardiovascular autonomic function changes in rodents. Clinics. 2012;67:1209‐1214. PubMed PMC
Roman‐Ramos R, Almanza‐Perez JC, Garcia‐Macedo R, et al. Monosodium glutamate neonatal intoxication associated with obesity in adult stage is characterized by chronic inflammation and increased mrna expression of peroxisome proliferator‐activated receptors in mice. Basic Clin Pharmacol Toxicol. 2011;108(6):406‐413. PubMed
He K, Du S, Xun P, et al. Consumption of monosodium glutamate in relation to incidence of overweight in Chinese adults: China health and nutrition survey (CHNS). Am J Clin Nutr. 2011;93(6):1328‐1336. PubMed PMC
Hemida M, Vuori KA, Moore R, Anturaniemi J, Hielm‐Björkman A. Early life modifiable exposures and their association with owner reported inflammatory bowel disease symptoms in adult dogs. Frontiers in Veterinary Science. 2021;8:12. PubMed PMC
Vuori KA, Hemida M, Moore R, et al. The effect of puppyhood and adolescent diet on the incidence of chronic enteropathy in dogs later in life. Sci Rep. 2023;13(1):1830. PubMed PMC
Raditic DM. Insights into commercial pet foods. Veterinary Clinics: Small Animal Practice. 2021;51(3):551‐562. PubMed
Gibney MJ. Ultra‐processed foods: definitions and policy issues. Current Developments in Nutrition. 2019;3(2):nzy077. PubMed PMC
Monteiro CA, Cannon G, Levy R, et al. NOVA. The star shines bright. World Nutrition. 2016;7(1–3):28‐38.
Gibson MW, Sajid A. Pet food processing: understanding transformations in starch during extrusion and baking. Cereal Foods World. 2013;58(5):232‐236.
Teodorowicz M, Hendriks WH, Wichers HJ, Savelkoul HF. Immunomodulation by processed animal feed: the role of maillard reaction products and advanced glycation end‐products (AGEs). Front Immunol. 2018;9:2088. PubMed PMC
van der Lugt T, Opperhuizen A, Bast A, Vrolijk MF. Dietary advanced glycation endproducts and the gastrointestinal tract. Nutrients. 2020;12(9):2814. PubMed PMC
Pedrinelli V, Rossi A, Brunetto MA. Theory of planned behavior applied to the choice of food with preservatives by owners and for their dogs. PLoS One. 2024;19(1):e0294044. PubMed PMC
Leisola M, Jokela J, Pastinen O, Turunen O, Schoemaker H. Industrial use of enzymes. Eolss. Publica. 2001. p 161‐184.
Bates N. Managing exposure to cleaning products in cats and dogs. The Veterinary Nurse. 2014;5(10):582‐587.
Saito K, Orimo K, Kubo T, et al. Laundry detergents and surfactants‐induced eosinophilic airway inflammation by increasing IL‐33 expression and activating ILC2s. Allergy. 2023;78(7):1878‐1892. PubMed
Bates N. Risks from detergent exposure. Companion Animal. 2017;22(2):93‐97.
Dooms‐Goossens A, Blockeel I. Allergic contact dermatitis and photoallergic contact dermatitis due to soaps and detergents. Clin Dermatol. 1996;14(1):67‐76. PubMed
Vaidyanathan S, Orr BG, Banaszak Holl MM. Detergent induction of HEK 293A cell membrane permeability measured under quiescent and superfusion conditions using whole cell patch clamp. J Phys Chem B. 2014;118(8):2112‐2123. PubMed PMC
Lichtenberg D, Ahyayauch H, Goñi FM. The mechanism of detergent solubilization of lipid bilayers. Biophys J. 2013;105(2):289‐299. PubMed PMC
le Maire M, Champeil P, Jv MÖ. Interaction of membrane proteins and lipids with solubilizing detergents. Biochimica et Biophysica Acta (BBA)‐Biomembranes. 2000;1508(1–2):86‐111. PubMed
Leoty‐Okombi S, Gillaizeau F, Leuillet S, et al. Effect of sodium lauryl sulfate (SLS) applied as a patch on human skin physiology and its microbiota. Cosmetics. 2021;8(1):6.
Wilhelm K‐P, Freitag G, Wolff HH. Surfactant‐induced skin irritation and skin repair: evaluation of the acute human irritation model by noninvasive techniques. J Am Acad Dermatol. 1994;30(6):944‐949. PubMed
Proksch E. pH in nature, humans and skin. J Dermatol. 2018;45(9):1044‐1052. PubMed
Lambers H, Piessens S, Bloem A, Pronk H, Finkel P. Natural skin surface pH is on average below 5, which is beneficial for its resident flora. Int J Cosmet Sci. 2006;28(5):359‐370. PubMed
Oh WS, Oh TH. Mapping of the dog skin based on biophysical measurements. Vet Dermatol. 2010;21(4):367‐372. PubMed
Zając M, Szczepanik MP, Wilkołek PM, et al. Assessment of a correlation between canine atopic dermatitis extent and severity index (CADESI‐03) and selected biophysical skin measures (skin hydration, pH, and erythema intensity) in dogs with naturally occurring atopic dermatitis. Can J Vet Res. 2015;79(2):136‐140. PubMed PMC
Szczepanik MP, Wilkołek PM, Adamek ŁR, Pomorski ZJ. The examination of biophysical parameters of skin (transepidermal water loss, skin hydration and pH value) in different body regions of normal cats of both sexes. J Feline Med Surg. 2011;13(4):224‐230. PubMed PMC
Nagoba BS. Acidic environment and wound healing: a review. Wounds. 2015;27:5.
Pavel AB, Renert‐Yuval Y, Wu J, et al. Tape strips from early‐onset pediatric atopic dermatitis highlight disease abnormalities in nonlesional skin. Allergy. 2021;76(1):314‐325. PubMed PMC
Mueller R, Jensen‐Jarolim E, Roth‐Walter F, et al. Allergen immunotherapy in people, dogs, cats and horses–differences, similarities and research needs. Allergy. 2018;73(10):1989‐1999. PubMed
Leverett K, Manjarín R, Laird E, et al. Fresh food consumption increases microbiome diversity and promotes changes in bacteria composition on the skin of pet dogs compared to dry foods. Animals. 2022;12(15):1881. PubMed PMC
Cornegliani L, Vercelli A, Sala E, Marsella R. Transepidermal water loss in healthy and atopic dogs, treated and untreated: a comparative preliminary study. Vet Dermatol. 2012;23(1):41. PubMed
Santoro D, Saridomichelakis M, Eisenschenk M, et al. Update on the skin barrier, cutaneous microbiome and host defence peptides in canine atopic dermatitis. Vet Dermatol. 2024;35(1):5‐14. PubMed
Rinaldi AO, Korsfeldt A, Ward S, et al. Electrical impedance spectroscopy for the characterization of skin barrier in atopic dermatitis. Allergy. 2021;76(10):3066‐3079. PubMed
Rinaldi AO, Li M, Barletta E, et al. Household laundry detergents disrupt barrier integrity and induce inflammation in mouse and human skin. Allergy. 2024;79(1):128‐141. PubMed
Rinaldi AO, Morita H, Wawrzyniak P, et al. Direct assessment of skin epithelial barrier by electrical impedance spectroscopy. Allergy. 2019;74(10):1934‐1944. PubMed
Shimada K, Yoon JS, Yoshihara T, Iwasaki T, Nishifuji K. Increased transepidermal water loss and decreased ceramide content in lesional and non‐lesional skin of dogs with atopic dermatitis. Vet Dermatol. 2009;20(5–6):541‐546. PubMed
Olivry T. Is the skin barrier abnormal in dogs with atopic dermatitis? Vet Immunol Immunopathol. 2011;144(1–2):11‐16. PubMed
Chervet L, Galichet A, McLean WI, et al. Missing C‐terminal filaggrin expression, NFkappaB activation and hyperproliferation identify the dog as a putative model to study epidermal dysfunction in atopic dermatitis. Exp Dermatol. 2010;19(8):e343‐e346. PubMed
Hensel P, Santoro D, Favrot C, Hill P, Griffin C. Canine atopic dermatitis: detailed guidelines for diagnosis and allergen identification. BMC Vet Res. 2015;11:1‐13. PubMed PMC
Wood SH, Ollier WE, Nuttall T, McEwan NA, Carter SD. Despite identifying some shared gene associations with human atopic dermatitis the use of multiple dog breeds from various locations limits detection of gene associations in canine atopic dermatitis. Vet Immunol Immunopathol. 2010;138(3):193‐197. PubMed
Halliwell R, Pucheu‐Haston CM, Olivry T, et al. Feline allergic diseases: introduction and proposed nomenclature. Vet Dermatol. 2021;32(1):8. PubMed
Santoro D, Marsella R, Bunick D, Graves TK, Campbell KL. Expression and distribution of canine antimicrobial peptides in the skin of healthy and atopic beagles. Vet Immunol Immunopathol. 2011;144(3–4):382. PubMed
Santoro D, Bunick D, Graves TK, Segre M. Evaluation of canine antimicrobial peptides in infected and noninfected chronic atopic skin. Vet Dermatol. 2013;24(1):39. PubMed
Cau L, Pendaries V, Lhuillier E, et al. Lowering relative humidity level increases epidermal protein deimination and drives human filaggrin breakdown. J Dermatol Sci. 2017;86(2):106‐113. PubMed PMC
Thyssen JP, Kezic S. Causes of epidermal filaggrin reduction and their role in the pathogenesis of atopic dermatitis. J Allergy Clin Immunol. 2014;134(4):792‐799. PubMed
Pellerin L, Henry J, Hsu C‐Y, et al. Defects of filaggrin‐like proteins in both lesional and nonlesional atopic skin. J Allergy Clin Immunol. 2013;131(4):1094‐1102. PubMed
Fazakerley J, Williams N, Carter S, McEwan N, Nuttall T. Heterogeneity of staphylococcus pseudintermedius isolates from atopic and healthy dogs. Vet Dermatol. 2010;21(6):578‐585. PubMed
Chen TA, Halliwell RE, Pemberton AD, Hill PB. Identification of major allergens of Malassezia pachydermatis in dogs with atopic dermatitis and Malassezia overgrowth. Vet Dermatol. 2002;13(3):141‐150. PubMed
Brown SJ, McLean WI. One remarkable molecule: filaggrin. J Invest Dermatol. 2012;132(3):751‐762. PubMed PMC
Combarros D, Cadiergues M‐C, Simon M. Update on canine filaggrin: a review. Vet Q. 2020;40(1):162‐168. PubMed PMC
Agler CS, Friedenberg S, Olivry T, Meurs KM, Olby NJ. Genome‐wide association analysis in West Highland White terriers with atopic dermatitis. Vet Immunol Immunopathol. 2019;209:1‐6. PubMed
Tengvall K, Kierczak M, Bergvall K, et al. Genome‐wide analysis in German shepherd dogs reveals association of a locus on CFA 27 with atopic dermatitis. PLoS Genet. 2013;9(5):e1003475. PubMed PMC
Hensel P, Saridomichelakis M, Eisenschenk M, et al. Update on the role of genetic factors, environmental factors and allergens in canine atopic dermatitis. Vet Dermatol. 2024;35(1):15‐24. PubMed
Santoro D, Di Loria A, Mirante T, et al. Identification of differentially expressed microRNAs in the skin of experimentally sensitized naturally affected atopic beagles by next‐generation sequencing. Immunogenetics. 2020;72:241‐250. PubMed
Guan Q, Jiang J, Huang Y, et al. The landscape of micron‐scale particles including microplastics in human enclosed body fluids. J Hazard Mater. 2023;442:130138. PubMed
Liu M, Liu J, Xiong F, et al. Research advances of microplastics and potential health risks of microplastics on terrestrial higher mammals: a bibliometric analysis and literature review. Environ Geochem Health. 2023;45(6):2803‐2838. PubMed PMC
Garcia MM, Romero AS, Merkley SD, et al. Vivo Tissue Distribution of Microplastics and Systemic Metabolomic Alterations After Gastrointestinal Exposure. bioRxiv. 2023.
Han Q, Gao X, Wang S, et al. Co‐exposure to polystyrene microplastics and di‐(2‐ethylhexyl) phthalate aggravates allergic asthma through the TRPA1‐p38 MAPK pathway. Toxicol Lett. 2023;384:73‐85. PubMed
Li B, Ding Y, Cheng X, et al. Polyethylene microplastics affect the distribution of gut microbiota and inflammation development in mice. Chemosphere. 2020;244:125492. PubMed
Zha H, Xia J, Li S, et al. Airborne polystyrene microplastics and nanoplastics induce nasal and lung microbial dysbiosis in mice. Chemosphere. 2023;310:136764. PubMed
Lv W, Shen Y, Xu S, Wu B, Zhang Z, Liu S. Underestimated health risks: dietary restriction magnify the intestinal barrier dysfunction and liver injury in mice induced by polystyrene microplastics. Sci Total Environ. 2023;898:165502. PubMed
Zhang J, Wang L, Kannan K. Polyethylene terephthalate and polycarbonate microplastics in pet food and feces from the United States. Environ Sci Technol. 2019;53(20):12035‐12042. PubMed
Prata JC, Silva ALP, da Costa JP, et al. Microplastics in internal tissues of companion animals from urban environments. Animals. 2022;12(15):1979. PubMed PMC
Beriot N, Peek J, Zornoza R, Geissen V, Lwanga EH. Low density‐microplastics detected in sheep faeces and soil: a case study from the intensive vegetable farming in Southeast Spain. Sci Total Environ. 2021;755:142653. PubMed
Haave M, Gomiero A, Schönheit J, Nilsen H, Olsen AB. Documentation of microplastics in tissues of wild coastal animals. Front Environ Sci. 2021;9:31.
Barboza LGA, Otero XL, Fernández EV, et al. Are microplastics contributing to pollution‐induced neurotoxicity? A pilot study with wild fish in a real scenario. Heliyon. 2023;9(1):e13070. PubMed PMC
Ramon‐Gomez K, Ron SR, Deem SL, et al. Plastic ingestion in giant tortoises: an example of a novel anthropogenic impact for Galapagos wildlife. Environ Pollut. 2024;340:122780. PubMed
Hill W, Lim EL, Weeden CE, et al. Lung adenocarcinoma promotion by air pollutants. Nature. 2023;616(7955):159‐167. PubMed PMC
Organization WH . WHO Global Air Quality Guidelines: Particulate Matter (PM2. 5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide. World Health Organization; 2021. PubMed
Liu J, Chen X, Dou M, et al. Particulate matter disrupts airway epithelial barrier via oxidative stress to promote Pseudomonas aeruginosa infection. J Thorac Dis. 2019;11(6):2617‐2627. PubMed PMC
Zhao R, Guo Z, Zhang R, et al. Nasal epithelial barrier disruption by particulate matter≤ 2.5 μm via tight junction protein degradation. J Appl Toxicol. 2018;38(5):678‐687. PubMed
Thevenot PT, Saravia J, Jin N, et al. Radical‐containing ultrafine particulate matter initiates epithelial‐to‐mesenchymal transitions in airway epithelial cells. Am J Respir Cell Mol Biol. 2013;48(2):188‐197. PubMed PMC
Piao MJ, Ahn MJ, Kang KA, et al. Particulate matter 2.5 damages skin cells by inducing oxidative stress, subcellular organelle dysfunction, and apoptosis. Arch Toxicol. 2018;92:2077‐2091. PubMed PMC
Wang T‐Y, Libardo MDJ, Angeles‐Boza AM, Pellois J‐P. Membrane oxidation in cell delivery and cell killing applications. ACS Chem Biol. 2017;12(5):1170‐1182. PubMed PMC
Pan T‐L, Wang P‐W, Aljuffali IA, Huang C‐T, Lee C‐W, Fang J‐Y. The impact of urban particulate pollution on skin barrier function and the subsequent drug absorption. J Dermatol Sci. 2015;78(1):51‐60. PubMed
Ngoc LTN, Park D, Lee Y, Lee Y‐C. Systematic review and meta‐analysis of human skin diseases due to particulate matter. Int J Environ Res Public Health. 2017;14(12):1458. PubMed PMC
Tang K‐T, Ku K‐C, Chen D‐Y, Lin C‐H, Tsuang B‐J, Chen Y‐H. Adult atopic dermatitis and exposure to air pollutants—a nationwide population‐based study. Ann Allergy Asthma Immunol. 2017;118(3):351‐355. PubMed
Caraballo JC, Yshii C, Westphal W, Moninger T, Comellas AP. Ambient particulate matter affects occludin distribution and increases alveolar transepithelial electrical conductance. Respirology. 2011;16(2):340‐349. PubMed PMC
Kumar RK, Shadie AM, Bucknall MP, et al. Differential injurious effects of ambient and traffic‐derived particulate matter on airway epithelial cells. Respirology. 2015;20(1):73‐79. PubMed
Cambra‐López M, Aarnink AJ, Zhao Y, Calvet S, Torres AG. Airborne particulate matter from livestock production systems: a review of an air pollution problem. Environ Pollut. 2010;158(1):1‐17. PubMed
Wichmann H. Diesel exhaust particles. Inhal Toxicol. 2007;19:241‐244. PubMed
Hendricks A, Eichenfield L, Shi V. The impact of airborne pollution on atopic dermatitis: a literature review. Br J Dermatol. 2020;183(1):16‐23. PubMed
Farraia M, Cavaleiro Rufo J, Paciência I, et al. Human volatilome analysis using eNose to assess uncontrolled asthma in a clinical setting. Allergy. 2020;75(7):1630‐1639. PubMed
Kakinoki YO, Tanaka A, Washio Y, et al. Nitrogen dioxide compromises defence functions of the airway epithelium. Acta Otolaryngol. 1998;118(538):221‐226. PubMed
Danov O, Wolff M, Bartel S, et al. Cigarette smoke affects dendritic cell populations, epithelial barrier function, and the immune response to viral infection with H1N1. Front Med. 2020;7:571003. PubMed PMC
Yamaya Y, Sugiya H, Watari T. Tobacco exposure increased airway limitation in dogs with chronic cough. Vet Rec. 2014;174(1):18. PubMed PMC
Smith VA, McBrearty A, Watson D, Mellor D, Spence S, Knottenbelt C. Hair nicotine concentration measurement in cats and its relationship to owner‐reported environmental tobacco smoke exposure. J Small Anim Pract. 2017;58(1):3‐9. PubMed
Ali N, Malik RN, Mehdi T, et al. Organohalogenated contaminants (OHCs) in the serum and hair of pet cats and dogs: biosentinels of indoor pollution. Sci Total Environ. 2013;449:29‐36. PubMed
Roza MR, Viegas CAA. The dog as a passive smoker: effects of exposure to environmental cigarette smoke on domestic dogs. Nicotine Tob Res. 2007;9(11):1171‐1176. PubMed
Knottenbelt CM, Bawazeer S, Hammond J, Mellor D, Watson D. Nicotine hair concentrations in dogs exposed to environmental tobacco smoke: a pilot study. J Small Anim Pract. 2012;53(11):623‐626. PubMed
McNiel EA, Carmella SG, Heath LA, Bliss RL, Le K‐A, Hecht SS. Urinary biomarkers to assess exposure of cats to environmental tobacco smoke. Am J Vet Res. 2007;68(4):349‐353. PubMed
Lin CH, Lo PY, Wu HD, Chang C, Wang LC. Association between indoor air pollution and respiratory disease in companion dogs and cats. J Vet Intern Med. 2018;32(3):1259‐1267. PubMed PMC
Lee JH, Kang BT, Kim HJ. Effect of indoor air pollution on atopic dermatitis in dogs. Allergy. 2023;78(3):862‐864. PubMed
Kim M‐A, Yon DK, Jee HM, et al. Association of phthalates with nasal patency and small airway dysfunction in first‐grade elementary school children. Allergy. 2020;75(11):2967‐2969. PubMed
Nuttall T, Hill PB, Bensignor E, Willemse T, Dermatitis motITFoCA . House dust and forage mite allergens and their role in human and canine atopic dermatitis. Vet Dermatol. 2006;17(4):223‐235. PubMed
Weber E, Hunter S, Stedman K, et al. Identification, characterization, and cloning of a complementary DNA encoding a 60‐kd house dust mite allergen (Der f 18) for human beings and dogs. J Allergy Clin Immunol. 2003;112(1):79‐86. PubMed
Sture G, Halliwell R, Thoday K, et al. Canine atopic disease: the prevalence of positive intradermal skin tests at two sites in the north and south of Great Britain. Vet Immunol Immunopathol. 1995;44(3–4):293‐308. PubMed
Hillier A, Kwochka KW, Pinchbeck LR. Reactivity to intradermal injection of extracts of Dermatophagoides farinae, Dermatophagoides pteronyssinus, house dust mite mix, and house dust in dogs suspected to have atopic dermatitis: 115 cases (1996–1998). J Am Vet Med Assoc. 2000;217(4):536‐540. PubMed
McCall C, Hunter S, Stedman K, et al. Characterization and cloning of a major high molecular weight house dust mite allergen (Der f 15) for dogs. Vet Immunol Immunopathol. 2001;78(3–4):231‐247. PubMed
Mueller R, Janda J, Jensen‐Jarolim E, Rhyner C, Marti E. Allergens in veterinary medicine. Allergy. 2016;71(1):27‐35. PubMed PMC
Gilbert S, Halliwell RE. Feline immunoglobulin E: induction of antigen‐specific antibody in normal cats and levels in spontaneously allergic cats. Vet Immunol Immunopathol. 1998;63(3):235‐252. PubMed
Olivry T, Mueller RS. Critically appraised topic on adverse food reactions of companion animals (8): storage mites in commercial pet foods. BMC Vet Res. 2019;15:1‐5. PubMed PMC
Roussel A, Bruet V, Bourdeau P. Characterisation of dog sensitisation to grass pollen in western France from 1999 to 2010. Vet Rec. 2013;172(26):686. PubMed
Stursberg U. Felines Asthma und chronische Bronchitis. Faculty of Veterinary Medicine; 2010.
Bruet V, Bourdeau PJ, Roussel A, Imparato L, Desfontis JC. Characterization of pruritus in canine atopic dermatitis, flea bite hypersensitivity and flea infestation and its role in diagnosis. Vet Dermatol. 2012;23(6):487‐493. PubMed
Ichikawa Y, Beugnet F. Epidemiological survey of anti‐flea IgE in dogs in Japan by using an antigen‐specific IgE quantitative measurement method. Parasite: Journal de la Société Française de Parasitologie. 2012;19(2):173‐176. PubMed PMC
McDermott MJ, Weber E, Hunter S, et al. Identification, cloning, and characterization of a major cat flea salivary allergen (Cte f 1). Mol Immunol. 2000;37(7):361‐375. PubMed
Pali‐Schöll I, Blank S, Verhoeckx K, et al. EAACI position paper: comparing insect hypersensitivity induced by bite, sting, inhalation or ingestion in human beings and animals. Allergy. 2019;74(5):874‐887. PubMed
Marsella R, White S, Fadok V, et al. Equine allergic skin diseases: clinical consensus guidelines of the world Association for Veterinary Dermatology. Vet Dermatol. 2023;34(3):175‐208. PubMed
Lanz S, Brunner A, Graubner C, Marti E, Gerber V. Insect bite hypersensitivity in horses is associated with airway hyperreactivity. J Vet Intern Med. 2017;31(6):1877‐1883. PubMed PMC
Han H, Roan F, Ziegler SF. The atopic march: current insights into skin barrier dysfunction and epithelial cell‐derived cytokines. Immunol Rev. 2017;278(1):116‐130. PubMed PMC
Einhorn L, Hofstetter G, Brandt S, et al. Molecular allergen profiling in horses by microarray reveals fag e 2 from buckwheat as a frequent sensitizer. Allergy. 2018;73(7):1436‐1446. PubMed PMC
Jensen‐Jarolim E, Herrmann I, Panakova L, Janda J. Allergic and atopic eczema in humans and their animals. Comparative Medicine: Disorders Linking Humans with their Animals. 2017;131‐150.
Volland‐Francqueville M, Sabbah A. Recurrent or chronic urticaria in thoroughbred race‐horses: clinical observations. Eur Ann Allergy Clin Immunol. 2004;36(1):9‐12. PubMed
Couëtil L, Cardwell J, Gerber V, Lavoie JP, Léguillette R, Richard E. Inflammatory airway disease of horses—revised consensus statement. J Vet Intern Med. 2016;30(2):503‐515. PubMed PMC
Hufnagl K, Hirt R, Robibaro B. Out of breath: asthma in humans and their animals. Comparative Medicine: Disorders Linking Humans with their Animals. 2017;71‐85.
Wallace JC, Vogelnest LJ. Evaluation of the presence of house dust mites in horse rugs. Vet Dermatol. 2010;21(6):602‐607. PubMed
Stepnik CT, Outerbridge CA, White SD, Kass PH. Equine atopic skin disease and response to allergen‐specific immunotherapy: a retrospective study at the University of California‐Davis (1991–2008). Vet Dermatol. 2012;23(1):29. PubMed
Bond SL, Timsit E, Workentine M, Alexander T, Léguillette R. Upper and lower respiratory tract microbiota in horses: bacterial communities associated with health and mild asthma (inflammatory airway disease) and effects of dexamethasone. BMC Microbiol. 2017;17:1‐11. PubMed PMC
Pali‐Schöll I, De Lucia M, Jackson H, Janda J, Mueller R, Jensen‐Jarolim E. Comparing immediate‐type food allergy in humans and companion animals—revealing unmet needs. Allergy. 2017;72(11):1643‐1656. PubMed
Veenhof EZ, Rutten VP, van Noort R, Knol EF, Willemse T. Evaluation of T‐cell activation in the duodenum of dogs with cutaneous food hypersensitivity. Am J Vet Res. 2010;71(4):441‐446. PubMed
Lee S, Johnstone I, Lee R, Opdebeeck J. Putative salivary allergens of the cat flea, Ctenocephalides felis felis. Vet Immunol Immunopathol. 1999;69(2–4):229‐237. PubMed
Olivry T, Pucheu‐Haston CM, Mayer U, Bergvall K, Bexley J. Identification of major and minor chicken allergens in dogs. Vet Dermatol. 2022;33(1):46. PubMed
Jackson HA. Food allergy in dogs and cats; current perspectives on etiology, diagnosis, and management. J Am Vet Med Assoc. 2023;261(S1):S23‐S29. PubMed
Lehtimäki J, Sinkko H, Hielm‐Björkman A, Laatikainen T, Ruokolainen L, Lohi H. Simultaneous allergic traits in dogs and their owners are associated with living environment, lifestyle and microbial exposures. Sci Rep. 2020;10(1):21954. PubMed PMC
Metzler S, Frei R, Schmaußer‐Hechfellner E, et al. Association between antibiotic treatment during pregnancy and infancy and the development of allergic diseases. Pediatr Allergy Immunol. 2019;30(4):423‐433. PubMed
Zhang Q, Ai C, Wang G, et al. Oral application of lactic acid bacteria following treatment with antibiotics inhibits allergic airway inflammation. J Appl Microbiol. 2015;119(3):809‐817. PubMed
Johnson CC, Ownby DR, Alford SH, et al. Antibiotic exposure in early infancy and risk for childhood atopy. J Allergy Clin Immunol. 2005;115(6):1218‐1224. PubMed
Hirsch AG, Pollak J, Glass TA, et al. Early‐life antibiotic use and subsequent diagnosis of food allergy and allergic diseases. Clin Exp Allergy. 2017;47(2):236‐244. PubMed PMC
Craig JM. Atopic dermatitis and the intestinal microbiota in humans and dogs. Veterinary Medicine and Science. 2016;2(2):95‐105. PubMed PMC
Marsella R. Evaluation of lactobacillus rhamnosus strain GG for the prevention of atopic dermatitis in dogs. Am J Vet Res. 2009;70(6):735‐740. PubMed
Marsella R, Santoro D, Ahrens K. Early exposure to probiotics in a canine model of atopic dermatitis has long‐term clinical and immunological effects. Vet Immunol Immunopathol. 2012;146(2):185‐189. PubMed
Tizard IR, Jones SW. The microbiota regulates immunity and immunologic diseases in dogs and cats. Veterinary Clinics: Small Animal Practice. 2018;48(2):307‐322. PubMed
Marsella R. Atopic dermatitis in domestic animals: what our current understanding is and how this applies to clinical practice. Veterinary Sciences. 2021;8(7):124. PubMed PMC
Suchodolski JS. Analysis of the gut microbiome in dogs and cats. Vet Clin Pathol. 2022;50:6‐17. PubMed PMC
Older CE, Diesel A, Patterson AP, et al. The feline skin microbiota: the bacteria inhabiting the skin of healthy and allergic cats. PLoS One. 2017;12(6):e0178555. PubMed PMC
Meason‐Smith C, Diesel A, Patterson AP, et al. Characterization of the cutaneous mycobiota in healthy and allergic cats using next generation sequencing. Advances in Veterinary Dermatology. 2017;8:84‐94. PubMed
Older CE, Hoffmann AR, Diesel AB. The feline skin microbiome: interrelationship between health and disease. J Feline Med Surg. 2023;25(7):1‐9. 1098612X231180231. PubMed PMC
Older CE, Diesel AB, Starks JM, Lawhon SD, Rodrigues HA. Characterization of staphylococcal communities on healthy and allergic feline skin. Vet Dermatol. 2021;32(1):61. PubMed
Guillot J, Bond R. Malassezia yeasts in veterinary dermatology: an updated overview. Front Cell Infect Microbiol. 2020;10:79. PubMed PMC
Rodrigues Hoffmann A, Patterson AP, Diesel A, et al. The skin microbiome in healthy and allergic dogs. PLoS One. 2014;9(1):e83197. PubMed PMC
Dréno B, Pécastaings S, Corvec S, Veraldi S, Khammari A, Roques C. Cutibacterium acnes (Propionibacterium acnes) and acne vulgaris: a brief look at the latest updates. J Eur Acad Dermatol Venereol. 2018;32:5‐14. PubMed
Coelho LP, Kultima JR, Costea PI, et al. Similarity of the dog and human gut microbiomes in gene content and response to diet. Microbiome. 2018;6:1‐11. PubMed PMC
Deng P, Swanson KS. Gut microbiota of humans, dogs and cats: current knowledge and future opportunities and challenges. Br J Nutr. 2015;113(S1):S6‐S17. PubMed
Garcia‐Mazcorro JF, Suchodolski JS, Jones KR, et al. Effect of the proton pump inhibitor omeprazole on the gastrointestinal bacterial microbiota of healthy dogs. FEMS Microbiol Ecol. 2012;80(3):624‐636. PubMed
Moon CD, Young W, Maclean PH, Cookson AL, Bermingham EN. Metagenomic insights into the roles of proteobacteria in the gastrointestinal microbiomes of healthy dogs and cats. Microbiology. 2018;7(5):e00677. PubMed PMC
Vázquez‐Baeza Y, Hyde ER, Suchodolski JS, Knight R. Dog and human inflammatory bowel disease rely on overlapping yet distinct dysbiosis networks. Nat Microbiol. 2016;1(12):1‐5. PubMed
Bermingham EN, Maclean P, Thomas DG, Cave NJ, Young W. Key bacterial families (Clostridiaceae, Erysipelotrichaceae and Bacteroidaceae) are related to the digestion of protein and energy in dogs. PeerJ. 2017;5:e3019. PubMed PMC
Song SJ, Lauber C, Costello EK, et al. Cohabiting family members share microbiota with one another and with their dogs. elife. 2013;2:e00458. PubMed PMC
Ericsson AC, Personett AR, Grobman ME, Rindt H, Reinero CR. Composition and predicted metabolic capacity of upper and lower airway microbiota of healthy dogs in relation to the fecal microbiota. PLoS One. 2016;11(5):e0154646. PubMed PMC
Fastrès A, Roels E, Vangrinsven E, et al. Assessment of the lung microbiota in dogs: influence of the type of breed, living conditions and canine idiopathic pulmonary fibrosis. BMC Microbiol. 2020;20:1‐13. PubMed PMC
Werner M, Weeger J, Hörner‐Schmid L, et al. Comparison of the respiratory bacterial microbiome in cats with feline asthma and chronic bronchitis. Frontiers in Veterinary Science. 2023;10:1148849. PubMed PMC
Načeradská M, Pekova S, Danesi P, et al. A novel Filobacterium sp can cause chronic bronchitis in cats. PLoS One. 2021;16(6):e0251968. PubMed PMC
Bergström A, Stanton DW, Taron UH, et al. Grey wolf genomic history reveals a dual ancestry of dogs. Nature. 2022;607(7918):313‐320. PubMed PMC
Ottoni C, Van Neer W, De Cupere B, et al. The palaeogenetics of cat dispersal in the ancient world. Nature Ecology & Evolution. 2017;1(7):1‐7. PubMed
Rooney N, Pead M, Sargan D. Pedigree dog breeding in the UK: a major welfare concern?: Royal Society for the Prevention of Cruelty to Animals Hosham, UK. 2009.
Bannasch D, Famula T, Donner J, et al. The effect of inbreeding, body size and morphology on health in dog breeds. Canine Medicine and Genetics. 2021;8(1):12. PubMed PMC
Bateson P, Sargan DR. Analysis of the canine genome and canine health: a commentary. WB Saunders. 2012;194:265‐269. PubMed
Björnerfeldt S, Hailer F, Nord M, Vilà C. Assortative mating and fragmentation within dog breeds. BMC Evol Biol. 2008;8:1‐11. PubMed PMC
Casal ML. Feline fertility consequences of inbreeding and implications for reproductive fitness. J Feline Med Surg. 2022;24(9):847‐852. PubMed PMC
Leroy G, Phocas F, Hedan B, Verrier E, Rognon X. Inbreeding impact on litter size and survival in selected canine breeds. Vet J. 2015;203(1):74‐78. PubMed
Sarver AL, Makielski KM, DePauw TA, Schulte AJ, Modiano JF. Increased risk of cancer in dogs and humans: a consequence of recent extension of lifespan beyond evolutionarily determined limitations? Aging and Cancer. 2022;3(1):3‐19. PubMed PMC
Evans KM, Adams VJ. Proportion of litters of purebred dogs born by caesarean section. J Small Anim Pract. 2010;51(2):113‐118. PubMed
Hobi S, Barrs VR, Bęczkowski PM. Dermatological problems of brachycephalic dogs. Animals. 2023;13(12):2016. PubMed PMC
Fawcett A, Barrs V, Awad M, et al. Consequences and management of canine brachycephaly in veterinary practice: perspectives from Australian veterinarians and veterinary specialists. Animals. 2018;9(1):3. PubMed PMC
O'Neill DG, Skipper A, Packer R, et al. English bulldogs in the UK: a VetCompass study of their disorder predispositions and protections. Canine Medicine and Genetics. 2022;9(1):1‐14. PubMed PMC
O'NeillI DG, Rowe D, Brodbelt DC, Pegram C, Hendricks A. Ironing out the wrinkles and folds in the epidemiology of skin fold dermatitis in dog breeds in the UK. Sci Rep. 2022;12(1):10553. PubMed PMC
O'Neill DG, Darwent EC, Church DB, Brodbelt DC. Demography and health of pugs under primary veterinary care in England. Canine Genetics and Epidemiology. 2016;3:1‐12. PubMed PMC
O'Neill DG, Skipper AM, Kadhim J, Church DB, Brodbelt DC, Packer RM. Disorders of bulldogs under primary veterinary care in the UK in 2013. PLoS One. 2019;14(6):e0217928. PubMed PMC
O'Neill DG, Sahota J, Brodbelt DC, Church DB, Packer RM, Pegram C. Health of pug dogs in the UK: disorder predispositions and protections. Canine Medicine and Genetics. 2022;9(1):4. PubMed PMC
Packer R, O'Neill D. Health and Welfare of Brachycephalic (Flat‐Faced) Companion Animals: a Complete Guide for Veterinary and Animal Professionals. CRC Press; 2021.
Beco L, Guaguere E, Méndez CL, Noli C, Nuttall T, Vroom M. Suggested guidelines for using systemic antimicrobials in bacterial skin infections: part 2—antimicrobial choice, treatment regimens and compliance. Vet Rec. 2013;172(6):156‐160. PubMed PMC
Hartley C, Donaldson D, Smith KC, et al. Congenital keratoconjunctivitis sicca and ichthyosiform dermatosis in 25 cavalier king Charles spaniel dogs–part I: clinical signs, histopathology, and inheritance. Vet Ophthalmol. 2012;15(5):315‐326. PubMed
Mauldin E, Wang P, Evans E, et al. Autosomal recessive congenital ichthyosis in American bulldogs is associated with NIPAL4 (ICHTHYIN) deficiency. Vet Pathol. 2015;52(4):654‐662. PubMed PMC
Mauldin EA. Canine ichthyosis and related disorders of cornification. Veterinary Clinics: Small Animal Practice. 2013;43(1):89‐97. PubMed PMC
Barnett K. Congenital keratoconjunctivitis sicca and ichthyosiform dermatosis in the cavalier king Charles spaniel. J Small Anim Pract. 2006;47(9):524‐528. PubMed
Alhaidari Z, Ortonne JP, Pisani A. Congenital ichthyosis in two cavalier king Charles spaniel littermates. Vet Dermatol. 1994;5(3):117‐121. PubMed
Akdis CA. Allergy and hypersensitivity: mechanisms of allergic disease. Curr Opin Immunol. 2006;18(6):718‐726. PubMed
Xian M, Wawrzyniak P, Rückert B, et al. Anionic surfactants and commercial detergents decrease tight junction barrier integrity in human keratinocytes. J Allergy Clin Immunol. 2016;138(3):890‐893. PubMed
Szalai K, Kopp T, Lukschal A, et al. Establishing an allergic eczema model employing recombinant house dust mite allergens D er p 1 and D er p 2 in BALB/c mice. Exp Dermatol. 2012;21(11):842‐846. PubMed PMC
Stremnitzer C, Manzano‐Szalai K, Willensdorfer A, et al. Papain degrades tight junction proteins of human keratinocytes in vitro and sensitizes C57BL/6 mice via the skin independent of its enzymatic activity or TLR4 activation. J Invest Dermatol. 2015;135(7):1790‐1800. PubMed PMC
Sa G, Xiong X, Wu T, Yang J, He S, Zhao Y. Histological features of oral epithelium in seven animal species: As a reference for selecting animal models. Eur J Pharm Sci. 2016;81:10‐17. PubMed
Skinner SA, O'Brien PE. The microvascular structure of the normal colon in rats and humans. J Surg Res. 1996;61(2):482‐490. PubMed
Rosenblum JD, Boyle CM, Schwartz LB. The mesenteric circulation: anatomy and physiology. Surgical Clinics. 1997;77(2):289‐306. PubMed
Sugito M, Araki K, Ogata T. Three‐dimensional organization of lymphatics in the dog stomach: a scanning electron microscopic study of corrosion casts. Arch Histol Cytol. 1996;59(1):61‐70. PubMed
Araki K, Furuya Y, Kobayashi M, Matsuura K, Ogata T, Isozaki H. Comparison of mucosal microvasculature between the proximal and distal human colon. Microscopy. 1996;45(3):202‐206. PubMed
Montgomery RK, Mulberg AE, Grand RJ. Development of the human gastrointestinal tract: twenty years of progress. Gastroenterology. 1999;116(3):702‐731. PubMed
Drozdowski LA, Clandinin T, Thomson AB. Ontogeny, growth and development of the small intestine: understanding pediatric gastroenterology. World J Gastroenterol: WJG. 2010;16(7):787‐799. PubMed PMC
Jiang D‐H, Satoh T, Tung SH, Kuo C‐C. Sustainable alternatives to nondegradable medical plastics. ACS Sustain Chem Eng. 2022;10(15):4792‐4806.
Letcher T. Introduction to plastic waste and recycling. Plastic Waste and Recycling: Environmental Impact, Societal Issues, Prevention, and Solutions. Academic Press; 2020.