The EuroFlow PIDOT external quality assurance scheme: enhancing laboratory performance evaluation in immunophenotyping of rare lymphoid immunodeficiencies
Jazyk angličtina Země Německo Médium electronic-print
Typ dokumentu časopisecké články
PubMed
39423371
DOI
10.1515/cclm-2024-0749
PII: cclm-2024-0749
Knihovny.cz E-zdroje
- Klíčová slova
- EuroFlow, external quality assurance, flow cytometry, primary immunodeficiencies, standardization,
- MeSH
- imunofenotypizace * normy metody MeSH
- lidé MeSH
- průtoková cytometrie * normy metody MeSH
- reprodukovatelnost výsledků MeSH
- řízení kvality MeSH
- syndromy imunologické nedostatečnosti * diagnóza imunologie MeSH
- zajištění kvality zdravotní péče * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
OBJECTIVES: The development of External Quality Assessment Schemes (EQAS) for clinical flow cytometry (FCM) is challenging in the context of rare (immunological) diseases. Here, we introduce a novel EQAS monitoring the primary immunodeficiency Orientation Tube (PIDOT), developed by EuroFlow, in both a 'wet' and 'dry' format. This EQAS provides feedback on the quality of individual laboratories (i.e., accuracy, reproducibility and result interpretation), while eliminating the need for sample distribution. METHODS: In the wet format, marker staining intensities (MedFIs) within landmark cell populations in PIDOT analysis performed on locally collected healthy control (HC) samples, were compared to EQAS targets. In the dry format, participants analyzed centrally distributed PIDOT flow cytometry data (n=10). RESULTS: We report the results of six EQAS rounds across 20 laboratories in 11 countries. The wet format (212 HC samples) demonstrated consistent technical performance among laboratories (median %rCV on MedFIs=34.5 %; average failure rate 17.3 %) and showed improvement upon repeated participation. The dry format demonstrated effective proficiency of participants in cell count enumeration (range %rCVs 3.1-7.1 % for the major lymphoid subsets), and in identifying lymphoid abnormalities (79.3 % alignment with reference). CONCLUSIONS: The PIDOT-EQAS allows laboratories, adhering to the standardized EuroFlow approach, to monitor interlaboratory variations without the need for sample distribution, and provides them educational support to recognize rare clinically relevant immunophenotypic patterns of primary immunodeficiencies (PID). This EQAS contributes to quality improvement of PID diagnostics and can serve as an example for future flow cytometry EQAS in the context of rare diseases.
Cancer Research Centre Salamanca Spain
Department of Diagnostic Sciences Ghent University Ghent Belgium
Department of Haematology University Hospital Ghent Ghent Belgium
Department of Laboratory Medicine University Hospital Ghent Ghent Belgium
Department of Laboratory Medicine University Hospital Leuven Leuven Belgium
Department of Microbiology Immunology and Transplantation KU Leuven Leuven Belgium
Zobrazit více v PubMed
Bousfiha, A, Jeddane, L, Picard, C, Al-Herz, W, Ailal, F, Chatila, T, et al.. Human inborn errors of immunity: 2019 update of the IUIS phenotypical classification. J Clin Immunol 2020;40:66–81. https://doi.org/10.1007/s10875-020-00758-x . DOI
Tangye, SG, Al-Herz, W, Bousfiha, A, Cunningham-Rundles, C, Franco, JL, Holland, SM, et al.. Human inborn errors of immunity: 2022 update on the classification from the international union of immunological societies expert committee. J Clin Immunol 2022;42:1473–507. https://doi.org/10.1007/s10875-022-01289-3 . DOI
Ma, CS, Tangye, SG. Flow cytometric-based analysis of defects in lymphocyte differentiation and function due to inborn errors of immunity. Front Immunol 2019;10:2108. https://doi.org/10.3389/fimmu.2019.02108 . DOI
Kalina, T, Bakardjieva, M, Blom, M, Perez-Andres, M, Barendregt, B, Kanderová, V, et al.. EuroFlow standardized approach to diagnostic immunopheneotyping of severe PID in newborns and young children. Front Immunol 2020;11:371. https://doi.org/10.3389/fimmu.2020.00371 . DOI
Shai, S, Perez-Becker, R, Andres, O, Bakhtiar, S, Bauman, U, von Bernuth, H, et al.. Incidence of SCID in Germany from 2014 to 2015 an ESPED* Survey on Behalf of the API*** Erhebungseinheit für Seltene Pädiatrische Erkrankungen in Deutschland (German Paediatric Surveillance Unit) ** Arbeitsgemeinschaft Pädiatrische Immunologie. J Clin Immunol 2020;40:708–17. https://doi.org/10.1007/s10875-020-00782-x . DOI
Kwan, A, Abraham, RS, Currier, R, Brower, A, Andruszewski, K, Abbott, JK, et al.. Newborn screening for severe combined immunodeficiency in 11 screening programs in the United States. JAMA 2014;312:729–38. https://doi.org/10.1001/jama.2014.9132 . DOI
Ameratunga, R, Woon, ST, Gillis, D, Koopmans, W, Steele, R. New diagnostic criteria for common variable immune deficiency (CVID), which may assist with decisions to treat with intravenous or subcutaneous immunoglobulin. Clin Exp Immunol 2013;174:203–11. https://doi.org/10.1111/cei.12178 . DOI
Wehr, C, Kivioja, T, Schmitt, C, Ferry, B, Witte, T, Eren, E, et al.. The EUROclass trial: defining subgroups in common variable immunodeficiency. Blood 2008;111:77–85. https://doi.org/10.1182/blood-2007-06-091744 . DOI
Warnatz, K, Denz, A, Dräger, R, Braun, M, Groth, C, Wolff-Vorbeck, G, et al.. Severe deficiency of switched memory B cells (CD27(+)IgM(-)IgD(-)) in subgroups of patients with common variable immunodeficiency: a new approach to classify a heterogeneous disease. Blood 2002;99:1544–51. https://doi.org/10.1182/blood.v99.5.1544 . DOI
Blanco, E, Perez-Andres, M, Arriba-Mendez, S, Serrano, C, Criado, I, Del Pino-Molina, L, et al.. Defects in memory B-cell and plasma cell subsets expressing different immunoglobulin-subclasses in patients with CVID and immunoglobulin subclass deficiencies. J Allergy Clin Immunol 2019;144:809–24. https://doi.org/10.1016/j.jaci.2019.02.017 . DOI
Kalina, T. Reproducibility of flow cytometry through standardization: opportunities and challenges. Cytometry A 2020;97:137–47. https://doi.org/10.1002/cyto.a.23901 . DOI
Maecker, HT, McCoy, JP, Nussenblatt, R. Standardizing immunophenotyping for the human immunology project. Nat Rev Immunol 2012;12:191–200. https://doi.org/10.1038/nri3158 . DOI
Streitz, M, Miloud, T, Kapinsky, M, Reed, MR, Magari, R, Geissler, EK, et al.. Standardization of whole blood immune phenotype monitoring for clinical trials: panels and methods from the ONE study. Transplant Res 2013;2:17. https://doi.org/10.1186/2047-1440-2-17 . DOI
Ivison, S, Malek, M, Garcia, RV, Broady, R, Halpin, A, Richaud, M, et al.. A standardized immune phenotyping and automated data analysis platform for multicenter biomarker studies. JCI Insight 2018;3. https://doi.org/10.1172/jci.insight.121867 . DOI
Jamin, C, Le Lann, L, Alvarez-Errico, D, Barbarroja, N, Cantaert, T, Ducreux, J, et al.. Multi-center harmonization of flow cytometers in the context of the European “PRECISESADS” project. Autoimmun Rev 2016;15:1038–45. https://doi.org/10.1016/j.autrev.2016.07.034 . DOI
Boldt, A, Borte, S, Fricke, S, Kentouche, K, Emmrich, F, Borte, M, et al.. Eight-color immunophenotyping of T-B-and NK-cell subpopulations for characterization of chronic immunodeficiencies. Cytometry B Clin Cytometry 2014;86:191–206. https://doi.org/10.1002/cyto.b.21162 . DOI
Biancotto, A, Fuchs, JC, Williams, A, Dagur, PK, McCoy, JPJr. High dimensional flow cytometry for comprehensive leukocyte immunophenotyping (CLIP) in translational research. J Immunol Methods 2011;363:245–61. https://doi.org/10.1016/j.jim.2010.06.010 . DOI
Abraham, RS, Aubert, G. Flow cytometry, a versatile tool for diagnosis and monitoring of primary immunodeficiencies. Clin Vaccine Immunol 2016;23:254–71. https://doi.org/10.1128/cvi.00001-16 . DOI
O’Gorman, MRG. Flow cytometry assays in primary immunodeficiency diseases. Methods Mol Biol 2018;1678:321–45. https://doi.org/10.1007/978-1-4939-7346-0_14 . DOI
Takashima, T, Okamura, M, Yeh, TW, Okano, T, Yamashita, M, Tanaka, K, et al.. Multicolor flow cytometry for the diagnosis of primary immunodeficiency diseases. J Clin Immunol 2017;37:486–95. https://doi.org/10.1007/s10875-017-0405-7 . DOI
Oliveira, JB, Notarangelo, LD, Fleisher, TA. Applications of flow cytometry for the study of primary immune deficiencies. Curr Opin Allergy Clin Immunol 2008;8:499–509. https://doi.org/10.1097/ACI.0b013e328312c790 . DOI
Kanegane, H, Hoshino, A, Okano, T, Yasumi, T, Wada, T, Takada, H, et al.. Flow cytometry-based diagnosis of primary immunodeficiency diseases. Allergol Int 2018;67:43–54. https://doi.org/10.1016/j.alit.2017.06.003 . DOI
Linskens, E, Diks, AM, Neirinck, J, Perez-Andres, M, De Maertelaere, E, Berkowska, MA, et al.. Improved standardization of flow cytometry diagnostic screening of primary immunodeficiency by software-based automated gating. Front Immunol 2020;11:584646. https://doi.org/10.3389/fimmu.2020.584646 . DOI
Pedreira, CE, Costa, ESD, Lecrevise, Q, Grigore, G, Fluxa, R, Verde, J, et al.. From big flow cytometry datasets to smart diagnostic strategies: the EuroFlow approach. J Immunol Methods 2019:112631. https://doi.org/10.1016/j.jim.2019.07.003 . DOI
Van Gassen, S, Callebaut, B, Van Helden, MJ, Lambrecht, BN, Demeester, P, Dhaene, T, et al.. FlowSOM: using self-organizing maps for visualization and interpretation of cytometry data. Cytometry A 2015;87:636–45. https://doi.org/10.1002/cyto.a.22625 . DOI
Emmaneel, A, Quintelier, K, Sichien, D, Rybakowska, P, Marañón, C, Alarcón-Riquelme, ME, et al.. PeacoQC: peak-based selection of high quality cytometry data. Cytometry A 2022;101:325–38. https://doi.org/10.1002/cyto.a.24501 . DOI
van Dongen, JJ, Lhermitte, L, Böttcher, S, Almeida, J, van der Velden, VH, Flores-Montero, J, et al.. EuroFlow antibody panels for standardized n-dimensional flow cytometric immunophenotyping of normal, reactive and malignant leukocytes. Leukemia 2012;26:1908–75. https://doi.org/10.1038/leu.2012.120 . DOI
Kalina, T, Brdickova, N, Glier, H, Fernandez, P, Bitter, M, Flores-Montero, J, et al.. Frequent issues and lessons learned from EuroFlow QA. J Immunol Methods 2019;475:112520. https://doi.org/10.1016/j.jim.2018.09.008 . DOI
van Dongen, JJ, Orfao, A. EuroFlow: resetting leukemia and lymphoma immunophenotyping. Basis for companion diagnostics and personalized medicine. Leukemia 2012;26:1899–907. https://doi.org/10.1038/leu.2012.121 . DOI
Lhermitte, L, Mejstrikova, E, van der Sluijs-Gelling, AJ, Grigore, GE, Sedek, L, Bras, AE, et al.. Automated database-guided expert-supervised orientation for immunophenotypic diagnosis and classification of acute leukemia. Leukemia 2018;32:874–81. https://doi.org/10.1038/leu.2017.313 . DOI
Flores-Montero, J, Kalina, T, Corral-Mateos, A, Sanoja-Flores, L, Perez-Andres, M, Martin-Ayuso, M, et al.. Fluorochrome choices for multi-color flow cytometry. J Immunol Methods 2019;475:112618. https://doi.org/10.1016/j.jim.2019.06.009 . DOI
Flores-Montero, J, Grigore, G, Fluxá, R, Hernández, J, Fernandez, P, Almeida, J, et al.. EuroFlow lymphoid screening tube (LST) data base for automated identification of blood lymphocyte subsets. J Immunol Methods 2019;475:112662. https://doi.org/10.1016/j.jim.2019.112662 . DOI
Novakova, M, Glier, H, Brdickova, N, Vlkova, M, Santos, AH, Lima, M, et al.. How to make usage of the standardized EuroFlow 8-color protocols possible for instruments of different manufacturers. J Immunol Methods 2017;475:112388. https://doi.org/10.1016/j.jim.2017.11.007 . DOI
Diks, AM, Bonroy, C, Teodosio, C, Groenland, RJ, de Mooij, B, de Maertelaere, E, et al.. Impact of blood storage and sample handling on quality of high dimensional flow cytometric data in multicenter clinical research. J Immunol Methods 2019;475:112616. https://doi.org/10.1016/j.jim.2019.06.007 . DOI
van der Velden, VH, Flores-Montero, J, Perez-Andres, M, Martin-Ayuso, M, Crespo, O, Blanco, E, et al.. Optimization and testing of dried antibody tube: the EuroFlow LST and PIDOT tubes as examples. J Immunol Methods 2017;475:112287. https://doi.org/10.1016/j.jim.2017.03.011 . DOI
Kalina, T, Flores-Montero, J, van der Velden, VH, Martin-Ayuso, M, Bottcher, S, Ritgen, M, et al.. EuroFlow standardization of flow cytometer instrument settings and immunophenotyping protocols. Leukemia 2012;26:1986–2010. https://doi.org/10.1038/leu.2012.122 . DOI
Torres-Valle, A, Aragon, L, Silva, SL, Serrano, C, Marcos, M, Melero, J, et al.. In-depth blood immune profiling of good syndrome patients. Front Immunol 2023;14. https://doi.org/10.3389/fimmu.2023.1285088 . DOI
van Dongen, JJM, van der Burg, M, Kalina, T, Perez-Andres, M, Mejstrikova, E, Vlkova, M, et al.. EuroFlow-based flowcytometric diagnostic screening and classification of primary immunodeficiencies of the lymphoid system. Front Immunol 2019;10:1271. https://doi.org/10.3389/fimmu.2019.01271 . DOI
Neirinck, J, Emmaneel, A, Buysse, M, Philippé, J, Van Gassen, S, Saeys, Y, et al.. The Euroflow PID orientation tube in the diagnostic workup of primary immunodeficiency: daily practice performance in a tertiary university hospital. Front Immunol 2022;13. https://doi.org/10.3389/fimmu.2022.937738 . DOI
van der Burg, M, Kalina, T, Perez-Andres, M, Vlkova, M, Lopez-Granados, E, Blanco, E, et al.. The EuroFlow PID orientation tube for flow cytometric diagnostic screening of primary immunodeficiencies of the lymphoid system. Front Immunol 2019;10:246. https://doi.org/10.3389/fimmu.2019.00246 . DOI
Blasutig, IM, Wheeler, SE, Bais, R, Dabla, PK, Lin, J, Perret-Liaudet, A, et al.. External quality assessment practices in medical laboratories: an IFCC global survey of member societies. Clin Chem Lab Med 2023;61:1404–10. https://doi.org/10.1515/cclm-2023-0057 . DOI
Sciacovelli, L, Secchiero, S, Padoan, A, Plebani, M. External quality assessment programs in the context of ISO 15189 accreditation. Clin Chem Lab Med 2018;56:1644–54. https://doi.org/10.1515/cclm-2017-1179 . DOI
Keppens, C, Boone, E, Gameiro, P, Tack, V, Moreau, E, Hodges, E, et al.. Evaluation of a worldwide EQA scheme for complex clonality analysis of clinical lymphoproliferative cases demonstrates a learning effect. Virchows Arch 2021;479:365–76. https://doi.org/10.1007/s00428-021-03046-0 . DOI
Kalina, T, Flores-Montero, J, Lecrevisse, Q, Pedreira, CE, van der Velden, VH, Novakova, M, et al.. Quality assessment program for EuroFlow protocols: summary results of four-year (2010–2013) quality assurance rounds. Cytometry A 2015;87:145–56. https://doi.org/10.1002/cyto.a.22581 . DOI
Glier, H, Heijnen, I, Hauwel, M, Dirks, J, Quarroz, S, Lehmann, T, et al.. Standardization of 8-color flow cytometry across different flow cytometer instruments: a feasibility study in clinical laboratories in Switzerland. J Immunol Methods 2019;475:112348. https://doi.org/10.1016/j.jim.2017.07.013 . DOI
Wan, X, Wang, W, Liu, J, Tong, T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol 2014;14:135. https://doi.org/10.1186/1471-2288-14-135 . DOI
Glier, H, Novakova, M, Te Marvelde, J, Bijkerk, A, Morf, D, Thurner, D, et al.. Comments on EuroFlow standard operating procedures for instrument setup and compensation for BD FACS canto II, navios and BD FACS lyric instruments. J Immunol Methods 2019;475:112680. https://doi.org/10.1016/j.jim.2019.112680 . DOI
INSTAND e.V. Immunophenotyping – cellular immunodeficiency diagnostic – INSTAND e.V.; n.d. https://www.instand-ev.de/en/instand-eqas/eqa-program/offer/immunophenotyping-cellular-immunodeficiency-diagnostic/ [Accessed 11 Jan 2024].
Reilly, JT, Barnett, D. UK NEQAS for leucocyte immunophenotyping: the first 10 years. J Clin Pathol 2001;54:508–11. https://doi.org/10.1136/jcp.54.7.508 . DOI
Whitby, L, Granger, V, Storie, I, Goodfellow, K, Sawle, A, Reilly, JT, et al.. Quality control of CD4+ T-lymphocyte enumeration: results from the last 9 years of the United Kingdom national external quality assessment scheme for immune monitoring (1993–2001). Cytometry 2002;50:102–10. https://doi.org/10.1002/cyto.10094 . DOI