Receptor usage of Syncytin-1: ASCT2, but not ASCT1, is a functional receptor and effector of cell fusion in the human placenta

. 2024 Oct 29 ; 121 (44) : e2407519121. [epub] 20241021

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39432789

Grantová podpora
LX22NPO2103 National Insitute of Virology and Bacteriology, Programme EXCELES
Praemium Academiae Award 2018 Czech Academy of Sciences
RVO 68378050-KAV-NPUI Czech Academy of Sciences
LM2023052 Ministry of Education, Youth, and Sports of the Czech Republic

Syncytin-1, a human fusogenic protein of retroviral origin, is crucial for placental syncytiotrophoblast formation. To mediate cell-to-cell fusion, Syncytin-1 requires specific interaction with its cognate receptor. Two trimeric transmembrane proteins, Alanine, Serine, Cysteine Transporters 1 and 2 (ASCT1 and ASCT2), were suggested and widely accepted as Syncytin-1 cellular receptors. To quantitatively assess the individual contributions of human ASCT1 and ASCT2 to the fusogenic activity of Syncytin-1, we developed a model system where the ASCT1 and ASCT2 double knockout was rescued by ectopic expression of either ASCT1 or ASCT2. We demonstrated that ASCT2 was required for Syncytin-1 binding, cellular entry, and cell-to-cell fusion, while ASCT1 was not involved in this receptor interaction. We experimentally validated the ASCT1-ASCT2 heterotrimers as a possible explanation for the previous misidentification of ASCT1 as a receptor for Syncytin-1. This redefinition of receptor specificity is important for proper understanding of Syncytin-1 function in normal and pathological pregnancy.

Zobrazit více v PubMed

Knöfler M., et al. , Human placenta and trophoblast development: Key molecular mechanisms and model systems. Cell. Mol. Life Sci. 76, 3479–3496 (2019). PubMed PMC

Soares M. J., Varberg K. M., Iqbal K., Hemochorial placentation: Development, function, and adaptations. Biol. Reprod. 99, 196–211 (2018). PubMed PMC

Turco M. Y., Moffett A., Development of the human placenta. Development 146, 163428 (2019). PubMed

Maltepe E., Bakardjiev A. I., Fisher S. J., The placenta: Transcriptional, epigenetic, and physiological integration during development. J. Clin. Invest. 120, 1016–1025 (2010). PubMed PMC

Smith G. C. S., First-trimester determination of complications of late pregnancy. JAMA 303, 561 (2010). PubMed

Brosens I., Pijnenborg R., Vercruysse L., Romero R., The “Great Obstetrical Syndromes” are associated with disorders of deep placentation. Am. J. Obstet. Gynecol. 204, 193–201 (2011). PubMed PMC

Graham W., et al. , Diversity and divergence: The dynamic burden of poor maternal health. Lancet 388, 2164–2175 (2016). PubMed

Lavialle C., et al. , Paleovirology of “syncytins”, retroviral env genes exapted for a role in placentation. Philos. Trans. R. Soc. B Biol. Sci. 368, 20120507 (2013). PubMed PMC

Mi S., et al. , Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature 403, 785–789 (2000). PubMed

Blond J.-L., et al. , Molecular characterization and placental expression of HERV-W, a new human endogenous retrovirus family. J. Virol. 73, 1175–1185 (1999). PubMed PMC

Frendo J. L., et al. , Overexpression of copper zinc superoxide dismutase impairs human trophoblast cell fusion and differentiation. Endocrinology 142, 3638–3648 (2001). PubMed

Frendo J., et al. , Direct involvement of HERV-W Env glycoprotein in human trophoblast cell fusion and differentiation. Mol. Cell. Biol. 23, 3566–3574 (2003). PubMed PMC

Matoušková M., Blažková J., Pajer P., Pavlíček A., Hejnar J., CpG methylation suppresses transcriptional activity of human syncytin-1 in non-placental tissues. Exp. Cell Res. 312, 1011–1020 (2006). PubMed

Trejbalová K., et al. , Epigenetic regulation of transcription and splicing of syncytins, fusogenic glycoproteins of retroviral origin. Nucleic Acids Res. 39, 8728–8739 (2011). PubMed PMC

Benešová M., et al. , DNA hypomethylation and aberrant expression of the human endogenous retrovirus ERVWE1/syncytin-1 in seminomas. Retrovirology 14, 1–17 (2017). PubMed PMC

Benešová M., et al. , Overexpression of TET dioxygenases in seminomas associates with low levels of DNA methylation and hydroxymethylation. Mol. Carcinog. 56, 1837–1850 (2017). PubMed PMC

Gimenez J., et al. , Comparative methylation of ERVWE1/Syncytin-1 and other human endogenous retrovirus LTRs in placenta tissues. DNA Res. 16, 195–211 (2009). PubMed PMC

Gimenez J., et al. , Custom human endogenous retroviruses dedicated microarray identifies self-induced HERV-W family elements reactivated in testicular cancer upon methylation control. Nucleic Acids Res. 38, 2229–2246 (2010). PubMed PMC

Antony J. M., et al. , Human endogenous retrovirus glycoprotein–mediated induction of redox reactants causes oligodendrocyte death and demyelination. Nat. Neurosci. 7, 1088–1095 (2004). PubMed

Antony J. M., et al. , The human endogenous retrovirus envelope glycoprotein, Syncytin-1, regulates neuroinflammation and its receptor expression in multiple sclerosis: A role for endoplasmic reticulum chaperones in astrocytes. J. Immunol. 179, 1210–1224 (2007). PubMed

Brudek T., et al. , B cells and monocytes from patients with active multiple sclerosis exhibit increased surface expression of both HERV-H Env and HERV-W Env, accompanied by increased seroreactivity. Retrovirology 6, 104 (2009). PubMed PMC

Blond J.-L., et al. , An envelope glycoprotein of the human endogenous retrovirus HERV-W is expressed in the human placenta and fuses cells expressing the type D mammalian retrovirus receptor. J. Virol. 74, 3321–3329 (2000). PubMed PMC

Lavillette D., et al. , The envelope glycoprotein of human endogenous retrovirus type W uses a divergent family of amino acid transporters/cell surface receptors. J. Virol. 76, 6442–6452 (2002). PubMed PMC

Garaeva A. A., et al. , Cryo-EM structure of the human neutral amino acid transporter ASCT2. Nat. Struct. Mol. Biol. 25, 515-521 (2018). PubMed

Yu X., et al. , Cryo-EM structures of the human glutamine transporter SLC1A5 (ASCT2) in the outward-facing conformation. eLife 8, e48120 (2019). PubMed PMC

Stehantsev P., et al. , A structural view onto disease-linked mutations in the human neutral amino acid exchanger ASCT1. Comput. Struct. Biotechnol. J. 19, 5246–5254 (2021). PubMed PMC

Arriza J. L., et al. , Cloning and expression of a human neutral amino acid transporter with structural similarity to the glutamate transporter gene family. J. Biol. Chem. 268, 15329–15332 (1993). PubMed

Foster A. C., et al. , D-Serine Is a substrate for neutral amino acid transporters ASCT1/SLC1A4 and ASCT2/SLC1A5, and is transported by both subtypes in rat hippocampal astrocyte cultures. PLoS ONE 11, e0156551 (2016). PubMed PMC

Kaplan E., et al. , ASCT1 (Slc1a4) transporter is a physiologic regulator of brain D-serine and neurodevelopment. Proc. Natl. Acad. Sci. U.S.A. 115, 9628–9633 (2018). PubMed PMC

Utsunomiya-Tate N., Endou H., Kanai Y., Cloning and functional characterization of a system ASC-like Na+-dependent neutral amino acid transporter. J. Biol. Chem. 271, 14883–14890 (1996). PubMed

Scalise M., Pochini L., Console L., Losso M. A., Indiveri C., The human SLC1A5 (ASCT2) amino acid transporter: From function to structure and role in cell biology. Front. Cell Dev. Biol. 6, 96 (2018). PubMed PMC

Shafqat S., et al. , Cloning and expression of a novel Na+-dependent neutral amino acid transporter structurally related to mammalian Na+/glutamate cotransporters. J. Biol. Chem. 268, 15351–15355 (1993). PubMed

Uhlén M., et al. , Tissue-based map of the human proteome. Science 347, 1260419 (2015). PubMed

Tailor C. S., Nouri A., Zhao Y., Takeuchi Y., Kabat D., A sodium-dependent neutral-amino-acid transporter mediates infections of feline and baboon endogenous retroviruses and simian type D retroviruses. J. Virol. 73, 4470–4474 (1999). PubMed PMC

Rasko J. E. J., Battini J.-L., Gottschalk R. J., Mazo I., Miller A. D., The RD114/simian type D retrovirus receptor is a neutral amino acid transporter. Proc. Natl. Acad. Sci. U.S.A. 96, 2129–2134 (1999). PubMed PMC

Marin M., Tailor C. S., Nouri A., Kabat D., Sodium-dependent neutral amino acid transporter type 1 is an auxiliary receptor for baboon endogenous retrovirus. J. Virol. 74, 8085–93 (2000). PubMed PMC

Sommerfelt M. A., Weiss R. A., Receptor interference groups of 20 retroviruses plating on human cells. Virology 176, 58–69 (1990). PubMed

Sinha A., Johnson W. E., Retroviruses of the RDR superinfection interference group: Ancient origins and broad host distribution of a promiscuous Env gene. Curr. Opin. Virol. 25, 105–112 (2017). PubMed

Yoshikawa R., Shimode S., Sakaguchi S., Miyazawa T., Contamination of live attenuated vaccines with an infectious feline endogenous retrovirus (RD-114 virus). Arch. Virol. 159, 399–404 (2014). PubMed PMC

Štafl K., et al. , Heterologous avian system for quantitative analysis of Syncytin-1 interaction with ASCT2 receptor. Retrovirology 18, 1–18 (2021). PubMed PMC

Dixon A. S., et al. , NanoLuc complementation reporter optimized for accurate measurement of protein interactions in cells. ACS Chem. Biol. 11, 400–408 (2016). PubMed

Finkelshtein D., Werman A., Novick D., Barak S., Rubinstein M., LDL receptor and its family members serve as the cellular receptors for vesicular stomatitis virus. Proc. Natl. Acad. Sci. U.S.A. 110, 7306–7311 (2013). PubMed PMC

Vento-Tormo R., et al. , Single-cell reconstruction of the early maternal–fetal interface in humans. Nature 563, 347–353 (2018). PubMed PMC

Miklík D., et al. , Long terminal repeats of gammaretroviruses retain stable expression after integration retargeting. Viruses 16, 1518 (2024). PubMed PMC

Koo H.-M., Parthasarathi S., Ron Y., Dougherty J. P., Pseudotyped REV/SRV retroviruses reveal restrictions to infection and host range within members of the same receptor interference group. Virology 205, 345–351 (1994). PubMed

Erkens G. B., Hänelt I., Goudsmits J. M. H., Slotboom D. J., van Oijen A. M., Unsynchronised subunit motion in single trimeric sodium-coupled aspartate transporters. Nature 502, 119–123 (2013). PubMed

Khare S., et al. , Receptor-recognition and antiviral mechanisms of retrovirus-derived human proteins. Nat. Struct. Mol. Biol. 31, 1368–1376 (2024). PubMed

Marin M., Lavillette D., Kelly S. M., Kabat D., N-Linked glycosylation and sequence changes in a critical negative control region of the ASCT1 and ASCT2 neutral amino acid transporters determine their retroviral receptor functions. J. Virol. 77, 2936–2945 (2003). PubMed PMC

Miyaho R. N., et al. , Susceptibility of domestic animals to a pseudotype virus bearing RD-114 virus envelope protein. Gene 567, 189–195 (2015). PubMed

Heidmann O., Vernochet C., Dupressoir A., Heidmann T., Identification of an endogenous retroviral envelope gene with fusogenic activity and placenta-specific expression in the rabbit: A new “syncytin” in a third order of mammals. Retrovirology 6, 1–11 (2009). PubMed PMC

Malicorne S., et al. , Genome-wide screening of retroviral envelope genes in the nine-banded armadillo (Dasypus novemcinctus, xenarthra) reveals an unfixed chimeric endogenous betaretrovirus using the ASCT2 receptor. J. Virol. 90, 8132–49 (2016). PubMed PMC

Sugimoto J., et al. , Suppressyn localization and dynamic expression patterns in primary human tissues support a physiologic role in human placentation. Sci. Rep. 9, 19502 (2019). PubMed PMC

Shimode S., Nakaoka R., Shogen H., Miyazawa T., Characterization of feline ASCT1 and ASCT2 as RD-114 virus receptor. J. Gen. Virol. 94, 1608–1612 (2013). PubMed

Yoshikawa R., Yasuda J., Kobayashi T., Miyazawa T., Canine ASCT1 and ASCT2 are functional receptors for RD-114 virus in dogs. J. Gen. Virol. 93, 603–607 (2012). PubMed

Funk M., et al. , Capture of a hyena-specific retroviral envelope gene with placental expression associated in evolution with the unique emergence among carnivorans of hemochorial placentation in hyaenidae. J. Virol. 93, e01811-18 (2019). PubMed PMC

Kitao K., Shoji H., Miyazawa T., Nakagawa S., Dynamic evolution of retroviral envelope genes in egg-laying mammalian genomes. Mol. Biol. Evol. 40, msad090 (2023). PubMed PMC

Bon N., et al. , Phosphate (Pi)-regulated heterodimerization of the highaffinity sodium-dependent Pi transporters PiT1/Slc20a1 and PiT2/Slc20a2 underlies extracellular Pi sensing independently of Pi uptake. J. Biol. Chem. 293, 2102–2114 (2018). PubMed PMC

Anderson M. M., Lauring A. S., Burns C. C., Overbaugh J., Identification of a cellular cofactor required for infection by feline leukemia virus. Science 287, 1828–1830 (2000). PubMed

Sakaguchi S., Shojima T., Fukui D., Miyazawa T., A soluble envelope protein of endogenous retrovirus (FeLIX) present in serum of domestic cats mediates infection of a pathogenic variant of feline leukemia virus. J. Gen. Virol. 96, 681–687 (2015). PubMed

Miller D. G., Miller A. D., Tunicamycin treatment of CHO cells abrogates multiple blocks to retrovirus infection, one of which is due to a secreted inhibitor. J. Virol. 66, 78–84 (1992). PubMed PMC

Sugimoto J., Sugimoto M., Bernstein H., Jinno Y., Schust D., A novel human endogenous retroviral protein inhibits cell-cell fusion. Sci. Rep. 3, 1462 (2013). PubMed PMC

Frank J. A., et al. , Evolution and antiviral activity of a human protein of retroviral origin. Science 378, 422–428 (2022). PubMed PMC

Bert A. G., Burrows J., Osborne C. S., Cockerill P. N., Generation of an improved luciferase reporter gene plasmid that employs a novel mechanism for high-copy replication. Plasmid 44, 173–182 (2000). PubMed

Schambach A., et al. , Equal potency of gammaretroviral and lentiviral SIN vectors for expression of O6-methylguanine–DNA methyltransferase in hematopoietic cells. Mol. Ther. 13, 391–400 (2006). PubMed

Suerth J. D., Maetzig T., Galla M., Baum C., Schambach A., Self-inactivating alpharetroviral vectors with a split-packaging design. J. Virol. 84, 6626–6635 (2010). PubMed PMC

Shan L., et al. , Generation and characterization of an IgG4 monomeric Fc platform. PLoS ONE 11, e0160345 (2016). PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Inhibition of placental trophoblast fusion by guanylate-binding protein 5

. 2025 May 09 ; 11 (19) : eadt5388. [epub] 20250507

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...