Tetrameric INTS6-SOSS1 complex facilitates DNA:RNA hybrid autoregulation at double-strand breaks
Language English Country England, Great Britain Media print
Document type Journal Article
Grant support
R01GM078455
Sylvester Comprehensive Cancer Center
21-10464M
Grant Agency of the Czech Republic
BVR01170
Cancer Research UK - United Kingdom
R01 GM078455
NIGMS NIH HHS - United States
649030
European Research Council - International
CZ.02.01.01/00/22_008/0004575
Ministry of Education
Lee Placito Fund
BVR01670
EPA Trust Fund
University of Oxford
PubMed
39445827
PubMed Central
PMC11602137
DOI
10.1093/nar/gkae937
PII: 7833680
Knihovny.cz E-resources
- MeSH
- DNA-Binding Proteins metabolism MeSH
- DNA Helicases metabolism genetics MeSH
- DNA * metabolism chemistry MeSH
- DNA Breaks, Double-Stranded * MeSH
- Phosphorylation MeSH
- Homeostasis genetics MeSH
- Humans MeSH
- DNA Repair * MeSH
- Protein Phosphatase 2 metabolism genetics MeSH
- R-Loop Structures MeSH
- RNA Helicases metabolism genetics MeSH
- RNA Polymerase II * metabolism MeSH
- RNA * metabolism genetics chemistry MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- DNA-Binding Proteins MeSH
- DNA Helicases MeSH
- DNA * MeSH
- Protein Phosphatase 2 MeSH
- RNA Helicases MeSH
- RNA Polymerase II * MeSH
- RNA * MeSH
DNA double-strand breaks (DSBs) represent a lethal form of DNA damage that can trigger cell death or initiate oncogenesis. The activity of RNA polymerase II (RNAPII) at the break site is required for efficient DSB repair. However, the regulatory mechanisms governing the transcription cycle at DSBs are not well understood. Here, we show that Integrator complex subunit 6 (INTS6) associates with the heterotrimeric sensor of ssDNA (SOSS1) complex (comprising INTS3, INIP and hSSB1) to form the tetrameric SOSS1 complex. INTS6 binds to DNA:RNA hybrids and promotes Protein Phosphatase 2A (PP2A) recruitment to DSBs, facilitating the dephosphorylation of RNAPII. Furthermore, INTS6 prevents the accumulation of damage-associated RNA transcripts (DARTs) and the stabilization of DNA:RNA hybrids at DSB sites. INTS6 interacts with and promotes the recruitment of senataxin (SETX) to DSBs, facilitating the resolution of DNA:RNA hybrids/R-loops. Our results underscore the significance of the tetrameric SOSS1 complex in the autoregulation of DNA:RNA hybrids and efficient DNA repair.
CEITEC Central European Institute of Technology Masaryk University Brno CZ 62500 Czech Republic
Sir William Dunn School of Pathology University of Oxford South Parks Road Oxford OX1 3RE UK
See more in PubMed
Jackson S.P., Bartek J.. The DNA-damage response in human biology and disease. Nature. 2009; 461:1071–1078. PubMed PMC
Long Q., Liu Z., Gullerova M.. Sweet melody or jazz? Transcription around DNA double-strand breaks. Front, Mol. Biosci. 2021; 8:655786. PubMed PMC
Hnízda A., Blundell T.L.. Multicomponent assemblies in DNA-double-strand break repair by NHEJ. Curr. Opin. Struct. Biol. 2019; 55:154–160. PubMed
Chapman J.R., Taylor M.R., Boulton S.J.. Playing the end game: DNA double-strand break repair pathway choice. Mol. Cell. 2012; 47:497–510. PubMed
Belotserkovskii B.P., Tornaletti S., D'Souza A.D., Hanawalt P.C. R-loop generation during transcription: formation, processing and cellular outcomes. DNA Repair (Amst.). 2018; 71:69–81. PubMed PMC
Skourti-Stathaki K., Kamieniarz-Gdula K., Proudfoot N.J.. R-loops induce repressive chromatin marks over mammalian gene terminators. Nature. 2014; 516:436–439. PubMed PMC
Skourti-Stathaki K., Proudfoot N.J.. A double-edged sword: r loops as threats to genome integrity and powerful regulators of gene expression. Genes Dev. 2014; 28:1384–1396. PubMed PMC
Kruhlak M., Crouch E.E., Orlov M., Montano C., Gorski S.A., Nussenzweig A., Misteli T., Phair R.D., Casellas R.. The ATM repair pathway inhibits RNA polymerase I transcription in response to chromosome breaks. Nature. 2007; 447:730–734. PubMed
Shanbhag N.M., Rafalska-Metcalf I.U., Balane-Bolivar C., Janicki S.M., Greenberg R.A.. ATM-dependent chromatin changes silence transcription in cis to DNA double-strand breaks. Cell. 2010; 141:970–981. PubMed PMC
Anindya R., Aygun O., Svejstrup J.Q.. Damage-induced ubiquitylation of human RNA polymerase II by the ubiquitin ligase Nedd4, but not Cockayne syndrome proteins or BRCA1. Mol. Cell. 2007; 28:386–397. PubMed
Ajit K., Alagia A., Burger K., Gullerova M.. Tyrosine 1-phosphorylated RNA polymerase II transcribes PROMPTs to facilitate proximal promoter pausing and induce global transcriptional repression in response to DNA damage. Genome Res. 2024; 34:201–216. PubMed PMC
Burger K., Schlackow M., Gullerova M.. Tyrosine kinase c-abl couples RNA polymerase II transcription to DNA double-strand breaks. Nucleic Acids Res. 2019; 47:3467–3484. PubMed PMC
Aymard F., Bugler B., Schmidt C.K., Guillou E., Caron P., Briois S., Iacovoni J.S., Daburon V., Miller K.M., Jackson S.P.et al. .. Transcriptionally active chromatin recruits homologous recombination at DNA double-strand breaks. Nat. Struct. Mol. Biol. 2014; 21:366–374. PubMed PMC
Ketley R.F., Battistini F., Alagia A., Mondielli C., Iehl F., Balikci E., Huber K.V.M., Orozco M., Gullerova M.. DNA double-strand break-derived RNA drives TIRR/53BP1 complex dissociation. Cell Rep. 2022; 41:111526. PubMed PMC
Ketley R.F., Gullerova M.. Jack of all trades? The versatility of RNA in DNA double-strand break repair. Essays Biochem. 2020; 64:721–735. PubMed PMC
Liu Z., Ajit K., Wu Y., Zhu W.G., Gullerova M.. The GATAD2B-NuRD complex drives DNA:RNA hybrid-dependent chromatin boundary formation upon DNA damage. EMBO J. 2024; 43:2453–2485. PubMed PMC
Michelini F., Pitchiaya S., Vitelli V., Sharma S., Gioia U., Pessina F., Cabrini M., Wang Y., Capozzo I., Iannelli F.et al. .. Damage-induced lncRNAs control the DNA damage response through interaction with DDRNAs at individual double-strand breaks. Nat. Cell Biol. 2017; 19:1400–1411. PubMed PMC
Francia S., Michelini F., Saxena A., Tang D., de Hoon M., Anelli V., Mione M., Carninci P., d’Adda di Fagagna F.. Site-specific DICER and DROSHA RNA products control the DNA-damage response. Nature. 2012; 488:231–235. PubMed PMC
Bonath F., Domingo-Prim J., Tarbier M., Friedlander M.R., Visa N.. Next-generation sequencing reveals two populations of damage-induced small RNAs at endogenous DNA double-strand breaks. Nucleic Acids Res. 2018; 46:11869–11882. PubMed PMC
Francia S., Cabrini M., Matti V., Oldani A., d’Adda di Fagagna F.. DICER, DROSHA and DNA damage response RNAs are necessary for the secondary recruitment of DNA damage response factors. J. Cell Sci. 2016; 129:1468–1476. PubMed PMC
Bader A.S., Bushell M.. DNA:RNA hybrids form at DNA double-strand breaks in transcriptionally active loci. Cell Death. Dis. 2020; 11:280. PubMed PMC
Cohen S., Puget N., Lin Y.L., Clouaire T., Aguirrebengoa M., Rocher V., Pasero P., Canitrot Y., Legube G.. Senataxin resolves RNA:DNA hybrids forming at DNA double-strand breaks to prevent translocations. Nat. Commun. 2018; 9:533. PubMed PMC
Marnef A., Legube G.. R-loops as Janus-faced modulators of DNA repair. Nat. Cell Biol. 2021; 23:305–313. PubMed
Yasuhara T., Kato R., Hagiwara Y., Shiotani B., Yamauchi M., Nakada S., Shibata A., Miyagawa K.. Human Rad52 promotes XPG-mediated R-loop processing to initiate transcription-associated homologous recombination repair. Cell. 2018; 175:558–570. PubMed
D’Alessandro G., Whelan D.R., Howard S.M., Vitelli V., Renaudin X., Adamowicz M., Iannelli F., Jones-Weinert C.W., Lee M., Matti V.et al. .. BRCA2 controls DNA:RNA hybrid level at DSBs by mediating RNase H2 recruitment. Nat. Commun. 2018; 9:5376. PubMed PMC
Hatchi E., Skourti-Stathaki K., Ventz S., Pinello L., Yen A., Kamieniarz-Gdula K., Dimitrov S., Pathania S., McKinney K.M., Eaton M.L.et al. .. BRCA1 recruitment to transcriptional pause sites is required for R-loop-driven DNA damage repair. Mol. Cell. 2015; 57:636–647. PubMed PMC
Mazina O.M., Somarowthu S., Kadyrova L.Y., Baranovskiy A.G., Tahirov T.H., Kadyrov F.A., Mazin A.V.. Replication protein A binds RNA and promotes R-loop formation. J. Biol. Chem. 2020; 295:14203–14213. PubMed PMC
Tan J., Duan M., Yadav T., Phoon L., Wang X., Zhang J.M., Zou L., Lan L.. An R-loop-initiated CSB-RAD52-POLD3 pathway suppresses ROS-induced telomeric DNA breaks. Nucleic Acids Res. 2020; 48:1285–1300. PubMed PMC
Hamperl S., Bocek M.J., Saldivar J.C., Swigut T., Cimprich K.A.. Transcription-replication conflict orientation modulates R-loop levels and activates distinct DNA damage responses. Cell. 2017; 170:774–786. PubMed PMC
Allison D.F., Wang G.G.. R-loops: formation, function, and relevance to cell stress. Cell Stress. 2019; 3:38–46. PubMed PMC
Baillat D., Hakimi M.A., Naar A.M., Shilatifard A., Cooch N., Shiekhattar R.. Integrator, a multiprotein mediator of small nuclear RNA processing, associates with the C-terminal repeat of RNA polymerase II. Cell. 2005; 123:265–276. PubMed
Welsh S.A., Gardini A.. Genomic regulation of transcription and RNA processing by the multitasking Integrator complex. Nat. Rev. Mol. Cell Biol. 2023; 24:204–220. PubMed PMC
Lai F., Gardini A., Zhang A., Shiekhattar R.. Integrator mediates the biogenesis of enhancer RNAs. Nature. 2015; 525:399–403. PubMed PMC
Wu Y., Albrecht T.R., Baillat D., Wagner E.J., Tong L.. Molecular basis for the interaction between Integrator subunits IntS9 and IntS11 and its functional importance. Proc. Natl Acad. Sci. U.S.A. 2017; 114:4394–4399. PubMed PMC
Vervoort S.J., Welsh S.A., Devlin J.R., Barbieri E., Knight D.A., Offley S., Bjelosevic S., Costacurta M., Todorovski I., Kearney C.J.et al. .. The PP2A-Integrator-CDK9 axis fine-tunes transcription and can be targeted therapeutically in cancer. Cell. 2021; 184:3143–3162. PubMed PMC
Zheng H., Qi Y., Hu S., Cao X., Xu C., Yin Z., Chen X., Li Y., Liu W., Li J.et al. .. Identification of Integrator-PP2A complex (INTAC), an RNA polymerase II phosphatase. Science. 2020; 370:eabb5872. PubMed
Fianu I., Ochmann M., Walshe J.L., Dybkov O., Cruz J.N., Urlaub H., Cramer P.. Structural basis of integrator-dependent RNA polymerase II termination. Nature. 2024; 629:219–227. PubMed PMC
Long Q., Sebesta M., Sedova K., Haluza V., Alagia A., Liu Z., Stefl R., Gullerova M.. The phosphorylated trimeric SOSS1 complex and RNA polymerase II trigger liquid-liquid phase separation at double-strand breaks. Cell Rep. 2023; 42:113489. PubMed
Li Y., Bolderson E., Kumar R., Muniandy P.A., Xue Y., Richard D.J., Seidman M., Pandita T.K., Khanna K.K., Wang W.. HSSB1 and hSSB2 form similar multiprotein complexes that participate in DNA damage response. J. Biol. Chem. 2009; 284:23525–23531. PubMed PMC
Jia Y., Cheng Z., Bharath S.R., Sun Q., Su N., Huang J., Song H.. Crystal structure of the INTS3/INTS6 complex reveals the functional importance of INTS3 dimerization in DSB repair. Cell Discov. 2021; 7:66. PubMed PMC
Li J., Ma X., Banerjee S., Baruah S., Schnicker N.J., Roh E., Ma W., Liu K., Bode A.M., Dong Z.. Structural basis for multifunctional roles of human Ints3 C-terminal domain. J. Biol. Chem. 2021; 296:100112. PubMed PMC
Zhang F., Ma T., Yu X.. A core hSSB1-INTS complex participates in the DNA damage response. J. Cell Sci. 2013; 126:4850–4855. PubMed PMC
Xu C., Li C., Chen J., Xiong Y., Qiao Z., Fan P., Li C., Ma S., Liu J., Song A.et al. .. R-loop-dependent promoter-proximal termination ensures genome stability. Nature. 2023; 621:610–619. PubMed PMC
Skourti-Stathaki K., Proudfoot N.J., Gromak N.. Human senataxin resolves RNA/DNA hybrids formed at transcriptional pause sites to promote Xrn2-dependent termination. Mol. Cell. 2011; 42:794–805. PubMed PMC
Hasanova Z., Klapstova V., Porrua O., Stefl R., Sebesta M.. Human senataxin is a bona fide R-loop resolving enzyme and transcription termination factor. Nucleic Acids Res. 2023; 51:2818–2837. PubMed PMC
Kannan A., Cuartas J., Gangwani P., Branzei D., Gangwani L.. Mutation in senataxin alters the mechanism of R-loop resolution in amyotrophic lateral sclerosis 4. Brain. 2022; 145:3072–3094. PubMed PMC
Richard P., Manley J.L.. R Loops and links to human disease. J. Mol. Biol. 2017; 429:3168–3180. PubMed PMC
Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B.et al. .. Fiji: an open-source platform for biological-image analysis. Nat. Methods. 2012; 9:676–682. PubMed PMC
Carpenter A.E., Jones T.R., Lamprecht M.R., Clarke C., Kang I.H., Friman O., Guertin D.A., Chang J.H., Lindquist R.A., Moffat J.et al. .. CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 2006; 7:R100. PubMed PMC
Kirstein N., Dokaneheifard S., Cingaram P.R., Valencia M.G., Beckedorff F., Gomes Dos Santos H., Blumenthal E., Tayari M.M., Gaidosh G.S., Shiekhattar R.. The integrator complex regulates microRNA abundance through RISC loading. Sci. Adv. 2023; 9:eadf0597. PubMed PMC
Dobin A., Davis C.A., Schlesinger F., Drenkow J., Zaleski C., Jha S., Batut P., Chaisson M., Gingeras T.R.. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013; 29:15–21. PubMed PMC
Ramirez F., Dundar F., Diehl S., Gruning B.A., Manke T.. deepTools: a flexible platform for exploring deep-sequencing data. Nucleic Acids Res. 2014; 42:W187–W191. PubMed PMC
Clouaire T., Rocher V., Lashgari A., Arnould C., Aguirrebengoa M., Biernacka A., Skrzypczak M., Aymard F., Fongang B., Dojer N.et al. .. Comprehensive mapping of histone modifications at DNA double-strand breaks deciphers repair pathway chromatin signatures. Mol. Cell. 2018; 72:250–262. PubMed PMC
Richardson C., Moynahan M.E., Jasin M.. Double-strand break repair by interchromosomal recombination: suppression of chromosomal translocations. Genes Dev. 1998; 12:3831–3842. PubMed PMC
Alagia A., Ketley R.F., Gullerova M.. Proximity ligation assay for detection of R-loop complexes upon DNA damage. Methods Mol. Biol. 2022; 2528:289–303. PubMed
Ambjorn S.M., Duxin J.P., Hertz E.P.T., Nasa I., Duro J., Kruse T., Lopez-Mendez B., Rymarczyk B., Cressey L.E., van Overeem Hansen T.et al. .. A complex of BRCA2 and PP2A-B56 is required for DNA repair by homologous recombination. Nat. Commun. 2021; 12:5748. PubMed PMC
Iacovoni J.S., Caron P., Lassadi I., Nicolas E., Massip L., Trouche D., Legube G.. High-resolution profiling of gammaH2AX around DNA double strand breaks in the mammalian genome. EMBO J. 2010; 29:1446–1457. PubMed PMC
Ashton N.W., Paquet N., Shirran S.L., Bolderson E., Kariawasam R., Touma C., Fallahbaghery A., Gamsjaeger R., Cubeddu L., Botting C.et al. .. hSSB1 phosphorylation is dynamically regulated by DNA-PK and PPP-family protein phosphatases. DNA Repair (Amst.). 2017; 54:30–39. PubMed
Wei L., Nakajima S., Bohm S., Bernstein K.A., Shen Z., Tsang M., Levine A.S., Lan L.. DNA damage during the G0/G1 phase triggers RNA-templated, Cockayne syndrome B-dependent homologous recombination. Proc. Natl Acad. Sci. U.S.A. 2015; 112:E3495–E3504. PubMed PMC
Suraweera A., Lim Y., Woods R., Birrell G.W., Nasim T., Becherel O.J., Lavin M.F.. Functional role for senataxin, defective in ataxia oculomotor apraxia type 2, in transcriptional regulation. Hum. Mol. Genet. 2009; 18:3384–3396. PubMed
Alzu A., Bermejo R., Begnis M., Lucca C., Piccini D., Carotenuto W., Saponaro M., Brambati A., Cocito A., Foiani M.et al. .. Senataxin associates with replication forks to protect fork integrity across RNA-polymerase-II-transcribed genes. Cell. 2012; 151:835–846. PubMed PMC
Rohban S., Rafiee M.-R., Ule J., Luscombe N.M.. Human Integrator provides a quality checkpoint during elongation to facilitate RNA polymerase II processivity. 2023; bioRxiv doi:17 February 2023, preprint: not peer reviewed10.1101/2023.02.17.528960. DOI
Fianu I., Chen Y., Dienemann C., Dybkov O., Linden A., Urlaub H., Cramer P.. Structural basis of integrator-mediated transcription regulation. Science. 2021; 374:883–887. PubMed
Razew M., Fraudeau A., Pfleiderer M.M., Linares R., Galej W.P.. Structural basis of the Integrator complex assembly and association with transcription factors. Mol. Cell. 2024; 84:2542–2552. PubMed
Huang J., Gong Z., Ghosal G., Chen J.. SOSS complexes participate in the maintenance of genomic stability. Mol. Cell. 2009; 35:384–393. PubMed PMC