• This record comes from PubMed

Tetrameric INTS6-SOSS1 complex facilitates DNA:RNA hybrid autoregulation at double-strand breaks

. 2024 Nov 27 ; 52 (21) : 13036-13056.

Language English Country England, Great Britain Media print

Document type Journal Article

Grant support
R01GM078455 Sylvester Comprehensive Cancer Center
21-10464M Grant Agency of the Czech Republic
BVR01170 Cancer Research UK - United Kingdom
R01 GM078455 NIGMS NIH HHS - United States
649030 European Research Council - International
CZ.02.01.01/00/22_008/0004575 Ministry of Education
Lee Placito Fund
BVR01670 EPA Trust Fund
University of Oxford

DNA double-strand breaks (DSBs) represent a lethal form of DNA damage that can trigger cell death or initiate oncogenesis. The activity of RNA polymerase II (RNAPII) at the break site is required for efficient DSB repair. However, the regulatory mechanisms governing the transcription cycle at DSBs are not well understood. Here, we show that Integrator complex subunit 6 (INTS6) associates with the heterotrimeric sensor of ssDNA (SOSS1) complex (comprising INTS3, INIP and hSSB1) to form the tetrameric SOSS1 complex. INTS6 binds to DNA:RNA hybrids and promotes Protein Phosphatase 2A (PP2A) recruitment to DSBs, facilitating the dephosphorylation of RNAPII. Furthermore, INTS6 prevents the accumulation of damage-associated RNA transcripts (DARTs) and the stabilization of DNA:RNA hybrids at DSB sites. INTS6 interacts with and promotes the recruitment of senataxin (SETX) to DSBs, facilitating the resolution of DNA:RNA hybrids/R-loops. Our results underscore the significance of the tetrameric SOSS1 complex in the autoregulation of DNA:RNA hybrids and efficient DNA repair.

See more in PubMed

Jackson S.P., Bartek J.. The DNA-damage response in human biology and disease. Nature. 2009; 461:1071–1078. PubMed PMC

Long Q., Liu Z., Gullerova M.. Sweet melody or jazz? Transcription around DNA double-strand breaks. Front, Mol. Biosci. 2021; 8:655786. PubMed PMC

Hnízda A., Blundell T.L.. Multicomponent assemblies in DNA-double-strand break repair by NHEJ. Curr. Opin. Struct. Biol. 2019; 55:154–160. PubMed

Chapman J.R., Taylor M.R., Boulton S.J.. Playing the end game: DNA double-strand break repair pathway choice. Mol. Cell. 2012; 47:497–510. PubMed

Belotserkovskii B.P., Tornaletti S., D'Souza A.D., Hanawalt P.C. R-loop generation during transcription: formation, processing and cellular outcomes. DNA Repair (Amst.). 2018; 71:69–81. PubMed PMC

Skourti-Stathaki K., Kamieniarz-Gdula K., Proudfoot N.J.. R-loops induce repressive chromatin marks over mammalian gene terminators. Nature. 2014; 516:436–439. PubMed PMC

Skourti-Stathaki K., Proudfoot N.J.. A double-edged sword: r loops as threats to genome integrity and powerful regulators of gene expression. Genes Dev. 2014; 28:1384–1396. PubMed PMC

Kruhlak M., Crouch E.E., Orlov M., Montano C., Gorski S.A., Nussenzweig A., Misteli T., Phair R.D., Casellas R.. The ATM repair pathway inhibits RNA polymerase I transcription in response to chromosome breaks. Nature. 2007; 447:730–734. PubMed

Shanbhag N.M., Rafalska-Metcalf I.U., Balane-Bolivar C., Janicki S.M., Greenberg R.A.. ATM-dependent chromatin changes silence transcription in cis to DNA double-strand breaks. Cell. 2010; 141:970–981. PubMed PMC

Anindya R., Aygun O., Svejstrup J.Q.. Damage-induced ubiquitylation of human RNA polymerase II by the ubiquitin ligase Nedd4, but not Cockayne syndrome proteins or BRCA1. Mol. Cell. 2007; 28:386–397. PubMed

Ajit K., Alagia A., Burger K., Gullerova M.. Tyrosine 1-phosphorylated RNA polymerase II transcribes PROMPTs to facilitate proximal promoter pausing and induce global transcriptional repression in response to DNA damage. Genome Res. 2024; 34:201–216. PubMed PMC

Burger K., Schlackow M., Gullerova M.. Tyrosine kinase c-abl couples RNA polymerase II transcription to DNA double-strand breaks. Nucleic Acids Res. 2019; 47:3467–3484. PubMed PMC

Aymard F., Bugler B., Schmidt C.K., Guillou E., Caron P., Briois S., Iacovoni J.S., Daburon V., Miller K.M., Jackson S.P.et al. .. Transcriptionally active chromatin recruits homologous recombination at DNA double-strand breaks. Nat. Struct. Mol. Biol. 2014; 21:366–374. PubMed PMC

Ketley R.F., Battistini F., Alagia A., Mondielli C., Iehl F., Balikci E., Huber K.V.M., Orozco M., Gullerova M.. DNA double-strand break-derived RNA drives TIRR/53BP1 complex dissociation. Cell Rep. 2022; 41:111526. PubMed PMC

Ketley R.F., Gullerova M.. Jack of all trades? The versatility of RNA in DNA double-strand break repair. Essays Biochem. 2020; 64:721–735. PubMed PMC

Liu Z., Ajit K., Wu Y., Zhu W.G., Gullerova M.. The GATAD2B-NuRD complex drives DNA:RNA hybrid-dependent chromatin boundary formation upon DNA damage. EMBO J. 2024; 43:2453–2485. PubMed PMC

Michelini F., Pitchiaya S., Vitelli V., Sharma S., Gioia U., Pessina F., Cabrini M., Wang Y., Capozzo I., Iannelli F.et al. .. Damage-induced lncRNAs control the DNA damage response through interaction with DDRNAs at individual double-strand breaks. Nat. Cell Biol. 2017; 19:1400–1411. PubMed PMC

Francia S., Michelini F., Saxena A., Tang D., de Hoon M., Anelli V., Mione M., Carninci P., d’Adda di Fagagna F.. Site-specific DICER and DROSHA RNA products control the DNA-damage response. Nature. 2012; 488:231–235. PubMed PMC

Bonath F., Domingo-Prim J., Tarbier M., Friedlander M.R., Visa N.. Next-generation sequencing reveals two populations of damage-induced small RNAs at endogenous DNA double-strand breaks. Nucleic Acids Res. 2018; 46:11869–11882. PubMed PMC

Francia S., Cabrini M., Matti V., Oldani A., d’Adda di Fagagna F.. DICER, DROSHA and DNA damage response RNAs are necessary for the secondary recruitment of DNA damage response factors. J. Cell Sci. 2016; 129:1468–1476. PubMed PMC

Bader A.S., Bushell M.. DNA:RNA hybrids form at DNA double-strand breaks in transcriptionally active loci. Cell Death. Dis. 2020; 11:280. PubMed PMC

Cohen S., Puget N., Lin Y.L., Clouaire T., Aguirrebengoa M., Rocher V., Pasero P., Canitrot Y., Legube G.. Senataxin resolves RNA:DNA hybrids forming at DNA double-strand breaks to prevent translocations. Nat. Commun. 2018; 9:533. PubMed PMC

Marnef A., Legube G.. R-loops as Janus-faced modulators of DNA repair. Nat. Cell Biol. 2021; 23:305–313. PubMed

Yasuhara T., Kato R., Hagiwara Y., Shiotani B., Yamauchi M., Nakada S., Shibata A., Miyagawa K.. Human Rad52 promotes XPG-mediated R-loop processing to initiate transcription-associated homologous recombination repair. Cell. 2018; 175:558–570. PubMed

D’Alessandro G., Whelan D.R., Howard S.M., Vitelli V., Renaudin X., Adamowicz M., Iannelli F., Jones-Weinert C.W., Lee M., Matti V.et al. .. BRCA2 controls DNA:RNA hybrid level at DSBs by mediating RNase H2 recruitment. Nat. Commun. 2018; 9:5376. PubMed PMC

Hatchi E., Skourti-Stathaki K., Ventz S., Pinello L., Yen A., Kamieniarz-Gdula K., Dimitrov S., Pathania S., McKinney K.M., Eaton M.L.et al. .. BRCA1 recruitment to transcriptional pause sites is required for R-loop-driven DNA damage repair. Mol. Cell. 2015; 57:636–647. PubMed PMC

Mazina O.M., Somarowthu S., Kadyrova L.Y., Baranovskiy A.G., Tahirov T.H., Kadyrov F.A., Mazin A.V.. Replication protein A binds RNA and promotes R-loop formation. J. Biol. Chem. 2020; 295:14203–14213. PubMed PMC

Tan J., Duan M., Yadav T., Phoon L., Wang X., Zhang J.M., Zou L., Lan L.. An R-loop-initiated CSB-RAD52-POLD3 pathway suppresses ROS-induced telomeric DNA breaks. Nucleic Acids Res. 2020; 48:1285–1300. PubMed PMC

Hamperl S., Bocek M.J., Saldivar J.C., Swigut T., Cimprich K.A.. Transcription-replication conflict orientation modulates R-loop levels and activates distinct DNA damage responses. Cell. 2017; 170:774–786. PubMed PMC

Allison D.F., Wang G.G.. R-loops: formation, function, and relevance to cell stress. Cell Stress. 2019; 3:38–46. PubMed PMC

Baillat D., Hakimi M.A., Naar A.M., Shilatifard A., Cooch N., Shiekhattar R.. Integrator, a multiprotein mediator of small nuclear RNA processing, associates with the C-terminal repeat of RNA polymerase II. Cell. 2005; 123:265–276. PubMed

Welsh S.A., Gardini A.. Genomic regulation of transcription and RNA processing by the multitasking Integrator complex. Nat. Rev. Mol. Cell Biol. 2023; 24:204–220. PubMed PMC

Lai F., Gardini A., Zhang A., Shiekhattar R.. Integrator mediates the biogenesis of enhancer RNAs. Nature. 2015; 525:399–403. PubMed PMC

Wu Y., Albrecht T.R., Baillat D., Wagner E.J., Tong L.. Molecular basis for the interaction between Integrator subunits IntS9 and IntS11 and its functional importance. Proc. Natl Acad. Sci. U.S.A. 2017; 114:4394–4399. PubMed PMC

Vervoort S.J., Welsh S.A., Devlin J.R., Barbieri E., Knight D.A., Offley S., Bjelosevic S., Costacurta M., Todorovski I., Kearney C.J.et al. .. The PP2A-Integrator-CDK9 axis fine-tunes transcription and can be targeted therapeutically in cancer. Cell. 2021; 184:3143–3162. PubMed PMC

Zheng H., Qi Y., Hu S., Cao X., Xu C., Yin Z., Chen X., Li Y., Liu W., Li J.et al. .. Identification of Integrator-PP2A complex (INTAC), an RNA polymerase II phosphatase. Science. 2020; 370:eabb5872. PubMed

Fianu I., Ochmann M., Walshe J.L., Dybkov O., Cruz J.N., Urlaub H., Cramer P.. Structural basis of integrator-dependent RNA polymerase II termination. Nature. 2024; 629:219–227. PubMed PMC

Long Q., Sebesta M., Sedova K., Haluza V., Alagia A., Liu Z., Stefl R., Gullerova M.. The phosphorylated trimeric SOSS1 complex and RNA polymerase II trigger liquid-liquid phase separation at double-strand breaks. Cell Rep. 2023; 42:113489. PubMed

Li Y., Bolderson E., Kumar R., Muniandy P.A., Xue Y., Richard D.J., Seidman M., Pandita T.K., Khanna K.K., Wang W.. HSSB1 and hSSB2 form similar multiprotein complexes that participate in DNA damage response. J. Biol. Chem. 2009; 284:23525–23531. PubMed PMC

Jia Y., Cheng Z., Bharath S.R., Sun Q., Su N., Huang J., Song H.. Crystal structure of the INTS3/INTS6 complex reveals the functional importance of INTS3 dimerization in DSB repair. Cell Discov. 2021; 7:66. PubMed PMC

Li J., Ma X., Banerjee S., Baruah S., Schnicker N.J., Roh E., Ma W., Liu K., Bode A.M., Dong Z.. Structural basis for multifunctional roles of human Ints3 C-terminal domain. J. Biol. Chem. 2021; 296:100112. PubMed PMC

Zhang F., Ma T., Yu X.. A core hSSB1-INTS complex participates in the DNA damage response. J. Cell Sci. 2013; 126:4850–4855. PubMed PMC

Xu C., Li C., Chen J., Xiong Y., Qiao Z., Fan P., Li C., Ma S., Liu J., Song A.et al. .. R-loop-dependent promoter-proximal termination ensures genome stability. Nature. 2023; 621:610–619. PubMed PMC

Skourti-Stathaki K., Proudfoot N.J., Gromak N.. Human senataxin resolves RNA/DNA hybrids formed at transcriptional pause sites to promote Xrn2-dependent termination. Mol. Cell. 2011; 42:794–805. PubMed PMC

Hasanova Z., Klapstova V., Porrua O., Stefl R., Sebesta M.. Human senataxin is a bona fide R-loop resolving enzyme and transcription termination factor. Nucleic Acids Res. 2023; 51:2818–2837. PubMed PMC

Kannan A., Cuartas J., Gangwani P., Branzei D., Gangwani L.. Mutation in senataxin alters the mechanism of R-loop resolution in amyotrophic lateral sclerosis 4. Brain. 2022; 145:3072–3094. PubMed PMC

Richard P., Manley J.L.. R Loops and links to human disease. J. Mol. Biol. 2017; 429:3168–3180. PubMed PMC

Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B.et al. .. Fiji: an open-source platform for biological-image analysis. Nat. Methods. 2012; 9:676–682. PubMed PMC

Carpenter A.E., Jones T.R., Lamprecht M.R., Clarke C., Kang I.H., Friman O., Guertin D.A., Chang J.H., Lindquist R.A., Moffat J.et al. .. CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 2006; 7:R100. PubMed PMC

Kirstein N., Dokaneheifard S., Cingaram P.R., Valencia M.G., Beckedorff F., Gomes Dos Santos H., Blumenthal E., Tayari M.M., Gaidosh G.S., Shiekhattar R.. The integrator complex regulates microRNA abundance through RISC loading. Sci. Adv. 2023; 9:eadf0597. PubMed PMC

Dobin A., Davis C.A., Schlesinger F., Drenkow J., Zaleski C., Jha S., Batut P., Chaisson M., Gingeras T.R.. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013; 29:15–21. PubMed PMC

Ramirez F., Dundar F., Diehl S., Gruning B.A., Manke T.. deepTools: a flexible platform for exploring deep-sequencing data. Nucleic Acids Res. 2014; 42:W187–W191. PubMed PMC

Clouaire T., Rocher V., Lashgari A., Arnould C., Aguirrebengoa M., Biernacka A., Skrzypczak M., Aymard F., Fongang B., Dojer N.et al. .. Comprehensive mapping of histone modifications at DNA double-strand breaks deciphers repair pathway chromatin signatures. Mol. Cell. 2018; 72:250–262. PubMed PMC

Richardson C., Moynahan M.E., Jasin M.. Double-strand break repair by interchromosomal recombination: suppression of chromosomal translocations. Genes Dev. 1998; 12:3831–3842. PubMed PMC

Alagia A., Ketley R.F., Gullerova M.. Proximity ligation assay for detection of R-loop complexes upon DNA damage. Methods Mol. Biol. 2022; 2528:289–303. PubMed

Ambjorn S.M., Duxin J.P., Hertz E.P.T., Nasa I., Duro J., Kruse T., Lopez-Mendez B., Rymarczyk B., Cressey L.E., van Overeem Hansen T.et al. .. A complex of BRCA2 and PP2A-B56 is required for DNA repair by homologous recombination. Nat. Commun. 2021; 12:5748. PubMed PMC

Iacovoni J.S., Caron P., Lassadi I., Nicolas E., Massip L., Trouche D., Legube G.. High-resolution profiling of gammaH2AX around DNA double strand breaks in the mammalian genome. EMBO J. 2010; 29:1446–1457. PubMed PMC

Ashton N.W., Paquet N., Shirran S.L., Bolderson E., Kariawasam R., Touma C., Fallahbaghery A., Gamsjaeger R., Cubeddu L., Botting C.et al. .. hSSB1 phosphorylation is dynamically regulated by DNA-PK and PPP-family protein phosphatases. DNA Repair (Amst.). 2017; 54:30–39. PubMed

Wei L., Nakajima S., Bohm S., Bernstein K.A., Shen Z., Tsang M., Levine A.S., Lan L.. DNA damage during the G0/G1 phase triggers RNA-templated, Cockayne syndrome B-dependent homologous recombination. Proc. Natl Acad. Sci. U.S.A. 2015; 112:E3495–E3504. PubMed PMC

Suraweera A., Lim Y., Woods R., Birrell G.W., Nasim T., Becherel O.J., Lavin M.F.. Functional role for senataxin, defective in ataxia oculomotor apraxia type 2, in transcriptional regulation. Hum. Mol. Genet. 2009; 18:3384–3396. PubMed

Alzu A., Bermejo R., Begnis M., Lucca C., Piccini D., Carotenuto W., Saponaro M., Brambati A., Cocito A., Foiani M.et al. .. Senataxin associates with replication forks to protect fork integrity across RNA-polymerase-II-transcribed genes. Cell. 2012; 151:835–846. PubMed PMC

Rohban S., Rafiee M.-R., Ule J., Luscombe N.M.. Human Integrator provides a quality checkpoint during elongation to facilitate RNA polymerase II processivity. 2023; bioRxiv doi:17 February 2023, preprint: not peer reviewed10.1101/2023.02.17.528960. DOI

Fianu I., Chen Y., Dienemann C., Dybkov O., Linden A., Urlaub H., Cramer P.. Structural basis of integrator-mediated transcription regulation. Science. 2021; 374:883–887. PubMed

Razew M., Fraudeau A., Pfleiderer M.M., Linares R., Galej W.P.. Structural basis of the Integrator complex assembly and association with transcription factors. Mol. Cell. 2024; 84:2542–2552. PubMed

Huang J., Gong Z., Ghosal G., Chen J.. SOSS complexes participate in the maintenance of genomic stability. Mol. Cell. 2009; 35:384–393. PubMed PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...