Changes in Cx43 and AQP4 Proteins, and the Capture of 3 kDa Dextran in Subpial Astrocytes of the Rat Medial Prefrontal Cortex after Both Sham Surgery and Sciatic Nerve Injury
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
MUNI/A/1563/2023
Masaryk University
PubMed
39456773
PubMed Central
PMC11507206
DOI
10.3390/ijms252010989
PII: ijms252010989
Knihovny.cz E-zdroje
- Klíčová slova
- aquaporins, astrocytes, fluoro-ruby, gap junction, image analysis, in situ proteomics, nerve injury, reactivity, tissue injury,
- MeSH
- akvaporin 4 * metabolismus MeSH
- astrocyty * metabolismus MeSH
- dextrany * metabolismus MeSH
- konexin 43 * metabolismus MeSH
- krysa rodu Rattus MeSH
- nervus ischiadicus * zranění metabolismus MeSH
- potkani Sprague-Dawley MeSH
- prefrontální mozková kůra * metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- akvaporin 4 * MeSH
- Aqp4 protein, rat MeSH Prohlížeč
- dextrany * MeSH
- konexin 43 * MeSH
A subpopulation of astrocytes on the brain's surface, known as subpial astrocytes, constitutes the "glia limitans superficialis" (GLS), which is an interface between the brain parenchyma and the cerebrospinal fluid (CSF) in the subpial space. Changes in connexin-43 (Cx43) and aquaporin-4 (AQP4) proteins in subpial astrocytes were examined in the medial prefrontal cortex at postoperative day 1, 3, 7, 14, and 21 after sham operation and sciatic nerve compression (SNC). In addition, we tested the altered uptake of TRITC-conjugated 3 kDa dextran by reactive subpial astrocytes. Cellular immunofluorescence (IF) detection and image analysis were used to examine changes in Cx43 and AQP4 protein levels, as well as TRITC-conjugated 3 kDa dextran, in subpial astrocytes. The intensity of Cx43-IF was significantly increased, but AQP4-IF decreased in subpial astrocytes of sham- and SNC-operated rats during all survival periods compared to naïve controls. Similarly, the uptake of 3 kDa dextran in the GLS was reduced following both sham and SNC operations. The results suggest that both sciatic nerve injury and peripheral tissue injury alone can induce changes in subpial astrocytes related to the spread of their reactivity across the cortical surface mediated by increased amounts of gap junctions. At the same time, water transport and solute uptake were impaired in subpial astrocytes.
Zobrazit více v PubMed
Giovannoni F., Quintana F.J. The Role of Astrocytes in CNS Inflammation. Trends Immunol. 2020;41:805–819. doi: 10.1016/j.it.2020.07.007. PubMed DOI PMC
Anderson M.A., Ao Y., Sofroniew M.V. Heterogeneity of Reactive Astrocytes. Neurosci. Lett. 2014;565:23–29. doi: 10.1016/j.neulet.2013.12.030. PubMed DOI PMC
Miller S.J. Astrocyte Heterogeneity in the Adult Central Nervous System. Front. Cell. Neurosci. 2018;12:401. doi: 10.3389/fncel.2018.00401. PubMed DOI PMC
Rakic P. Elusive Radial Glial Cells: Historical and Evolutionary Perspective. Glia. 2003;43:19–32. doi: 10.1002/glia.10244. PubMed DOI
Engelhardt B., Coisne C. Fluids and Barriers of the CNS Establish Immune Privilege by Confining Immune Surveillance to a Two-Walled Castle Moat Surrounding the CNS Castle. Fluids Barriers CNS. 2011;8:4. doi: 10.1186/2045-8118-8-4. PubMed DOI PMC
Liu X., Zhang Z., Guo W., Burnstock G., He C., Xiang Z. The Superficial Glia Limitans of Mouse and Monkey Brain and Spinal Cord: Glia Limitans of Brain and Spinal Cord. Anat. Rec. 2013;296:995–1007. doi: 10.1002/ar.22717. PubMed DOI
Verkhratsky A., Butt A.M. Chapter 3—Astroglial Physiology. In: Verkhratsky A., Butt A.M., editors. Neuroglia. Academic Press, Ltd.; London, UK: 2023. pp. 89–197.
Weller R.O., Sharp M.M., Christodoulides M., Carare R.O., Møllgård K. The Meninges as Barriers and Facilitators for the Movement of Fluid, Cells and Pathogens Related to the Rodent and Human CNS. Acta Neuropathol. 2018;135:363–385. doi: 10.1007/s00401-018-1809-z. PubMed DOI
Abbott N.J., Pizzo M.E., Preston J.E., Janigro D., Thorne R.G. The Role of Brain Barriers in Fluid Movement in the CNS: Is There a ‘Glymphatic’ System? Acta Neuropathol. 2018;135:387–407. doi: 10.1007/s00401-018-1812-4. PubMed DOI
Eto K., Kim S.K., Takeda I., Nabekura J. The Roles of Cortical Astrocytes in Chronic Pain and Other Brain Pathologies. Neurosci. Res. 2018;126:3–8. doi: 10.1016/j.neures.2017.08.009. PubMed DOI
Boulay A.-C., Gilbert A., Moreira V.O., Blugeon C., Perrin S., Pouch J., Le Crom S., Ducos B., Cohen-Salmon M. Connexin 43 Controls the Astrocyte Immunoregulatory Phenotype. Brain Sci. 2018;8:50. doi: 10.3390/brainsci8040050. PubMed DOI PMC
Nagy J.I., Rash J.E. Cx36, Cx43 and Cx45 in Mouse and Rat Cerebellar Cortex: Species-Specific Expression, Compensation in Cx36 Null Mice and Co-Localization in Neurons vs. Glia. Eur. J. Neurosci. 2017;46:1790–1804. doi: 10.1111/ejn.13614. PubMed DOI
Kielian T. Glial Connexins and Gap Junctions in CNS Inflammation and Disease. J. Neurochem. 2008;106:1000–1016. doi: 10.1111/j.1471-4159.2008.05405.x. PubMed DOI PMC
Iliff J.J., Wang M., Liao Y., Plogg B.A., Peng W., Gundersen G.A., Benveniste H., Vates G.E., Deane R., Goldman S.A., et al. A Paravascular Pathway Facilitates CSF Flow through the Brain Parenchyma and the Clearance of Interstitial Solutes, Including Amyloid β. Sci. Transl. Med. 2012;4:147ra111. doi: 10.1126/scitranslmed.3003748. PubMed DOI PMC
Mestre H., Hablitz L.M., Xavier A.L., Feng W., Zou W., Pu T., Monai H., Murlidharan G., Castellanos Rivera R.M., Simon M.J., et al. Aquaporin-4-Dependent Glymphatic Solute Transport in the Rodent Brain. eLife. 2018;7:e40070. doi: 10.7554/eLife.40070. PubMed DOI PMC
Zhou Z., Zhan J., Cai Q., Xu F., Chai R., Lam K., Luan Z., Zhou G., Tsang S., Kipp M., et al. The Water Transport System in Astrocytes–Aquaporins. Cells. 2022;11:2564. doi: 10.3390/cells11162564. PubMed DOI PMC
Patabendige A., Singh A., Jenkins S., Sen J., Chen R. Astrocyte Activation in Neurovascular Damage and Repair Following Ischaemic Stroke. Int. J. Mol. Sci. 2021;22:4280. doi: 10.3390/ijms22084280. PubMed DOI PMC
Cohen-Salmon M., Slaoui L., Mazaré N., Gilbert A., Oudart M., Alvear-Perez R., Elorza-Vidal X., Chever O., Boulay A.-C. Astrocytes in the Regulation of Cerebrovascular Functions. Glia. 2021;69:817–841. doi: 10.1002/glia.23924. PubMed DOI
Beggs S., Liu X.J., Kwan C., Salter M.W. Peripheral Nerve Injury and TRPV1-Expressing Primary Afferent C-Fibers Cause Opening of the Blood-Brain Barrier. Mol. Pain. 2010;6:74. doi: 10.1186/1744-8069-6-74. PubMed DOI PMC
Li Q.-Y., Chen S.-X., Liu J.-Y., Yao P.-W., Duan Y.-W., Li Y.-Y., Zang Y. Neuroinflammation in the Anterior Cingulate Cortex: The Potential Supraspinal Mechanism Underlying the Mirror-Image Pain Following Motor Fiber Injury. J. Neuroinflamm. 2022;19:162. doi: 10.1186/s12974-022-02525-8. PubMed DOI PMC
Austin P.J., Fiore N.T. Supraspinal Neuroimmune Crosstalk in Chronic Pain States. Curr. Opin. Physiol. 2019;11:7–15. doi: 10.1016/j.cophys.2019.03.008. DOI
Joukal M., Klusáková I., Solár P., Kuklová A., Dubový P. Cellular Reactions of the Choroid Plexus Induced by Peripheral Nerve Injury. Neurosci. Lett. 2016;628:73–77. doi: 10.1016/j.neulet.2016.06.019. PubMed DOI
Dellarole A., Morton P., Brambilla R., Walters W., Summers S., Bernardes D., Grilli M., Bethea J.R. Neuropathic Pain-Induced Depressive-like Behavior and Hippocampal Neurogenesis and Plasticity Are Dependent on TNFR1 Signaling. Brain. Behav. Immun. 2014;41:65–81. doi: 10.1016/j.bbi.2014.04.003. PubMed DOI PMC
Zhuo M. Neural Mechanisms Underlying Anxiety–Chronic Pain Interactions. Trends Neurosci. 2016;39:136–145. doi: 10.1016/j.tins.2016.01.006. PubMed DOI
Sang K., Bao C., Xin Y., Hu S., Gao X., Wang Y., Bodner M., Zhou Y.-D., Dong X.-W. Plastic Change of Prefrontal Cortex Mediates Anxiety-like Behaviors Associated with Chronic Pain in Neuropathic Rats. Mol. Pain. 2018;14:1744806918783931. doi: 10.1177/1744806918783931. PubMed DOI PMC
Bretová K., Svobodová V., Dubový P. Astrocyte Reactivity in the Glia Limitans Superficialis of the Rat Medial Prefrontal Cortex Following Sciatic Nerve Injury. Histochem. Cell Biol. 2023;159:185–198. doi: 10.1007/s00418-022-02161-6. PubMed DOI
Wagner H.-J., Barthel J., Pilgrim C. Permeability of the External Glial Limiting Membrane of Rat Parietal Cortex. Anat. Embryol. 1983;166:427–437. doi: 10.1007/BF00305928. PubMed DOI
Rite I., Machado A., Cano J., Venero J.L. Intracerebral VEGF Injection Highly Upregulates AQP4 mRNA and Protein in the Perivascular Space and Glia Limitans Extema. Neurochem. Int. 2008;52:897–903. doi: 10.1016/j.neuint.2007.10.004. PubMed DOI
Hoddevik E.H., Khan F.H., Rahmani S., Ottersen O.P., Boldt H.B., Amiry-Moghaddam M. Factors Determining the Density of AQP4 Water Channel Molecules at the Brain–Blood Interface. Brain Struct. Funct. 2017;222:1753–1766. doi: 10.1007/s00429-016-1305-y. PubMed DOI PMC
Markou A., Kitchen P., Aldabbagh A., Repici M., Salman M.M., Bill R.M., Balklava Z. Mechanisms of Aquaporin-4 Vesicular Trafficking in Mammalian Cells. J. Neurochem. 2024;168:100–114. doi: 10.1111/jnc.16029. PubMed DOI PMC
Mastorakos P., McGavern D. The Anatomy and Immunology of Vasculature in the Central Nervous System. Sci. Immunol. 2019;4:eaav0492. doi: 10.1126/sciimmunol.aav0492. PubMed DOI PMC
Pannasch U., Rouach N. Emerging Role for Astroglial Networks in Information Processing: From Synapse to Behavior. Trends Neurosci. 2013;36:405–417. doi: 10.1016/j.tins.2013.04.004. PubMed DOI
Dong A., Liu S., Li Y. Gap Junctions in the Nervous System: Probing Functional Connections Using New Imaging Approaches. Front. Cell. Neurosci. 2018;12:320. doi: 10.3389/fncel.2018.00320. PubMed DOI PMC
Weber P.A., Chang H.-C., Spaeth K.E., Nitsche J.M., Nicholson B.J. The Permeability of Gap Junction Channels to Probes of Different Size Is Dependent on Connexin Composition and Permeant-Pore Affinities. Biophys. J. 2004;87:958–973. doi: 10.1529/biophysj.103.036350. PubMed DOI PMC
Brightman M.W., Reese T.S. Junctions between intimately apposed cell membranes in the vertebrate brain. J. Cell Biol. 1969;40:648–677. doi: 10.1083/jcb.40.3.648. PubMed DOI PMC
Metz A.E., Yau H.-J., Centeno M.V., Apkarian A.V., Martina M. Morphological and Functional Reorganization of Rat Medial Prefrontal Cortex in Neuropathic Pain. Proc. Natl. Acad. Sci. USA. 2009;106:2423–2428. doi: 10.1073/pnas.0809897106. PubMed DOI PMC
Fiore N.T., Austin P.J. Peripheral Nerve Injury Triggers Neuroinflammation in the Medial Prefrontal Cortex and Ventral Hippocampus in a Subgroup of Rats with Coincident Affective Behavioural Changes. Neuroscience. 2019;416:147–167. doi: 10.1016/j.neuroscience.2019.08.005. PubMed DOI
Kummer K.K., Mitrić M., Kalpachidou T., Kress M. The Medial Prefrontal Cortex as a Central Hub for Mental Comorbidities Associated with Chronic Pain. Int. J. Mol. Sci. 2020;21:3440. doi: 10.3390/ijms21103440. PubMed DOI PMC
Chen G., Park C.-K., Xie R.-G., Berta T., Nedergaard M., Ji R.-R. Connexin-43 Induces Chemokine Release from Spinal Cord Astrocytes to Maintain Late-Phase Neuropathic Pain in Mice. Brain. 2014;137:2193–2209. doi: 10.1093/brain/awu140. PubMed DOI PMC
Chen F.-L., Dong Y.-L., Zhang Z.-J., Cao D.-L., Xu J., Hui J., Zhu L., Gao Y.-J. Activation of Astrocytes in the Anterior Cingulate Cortex Contributes to the Affective Component of Pain in an Inflammatory Pain Model. Brain Res. Bull. 2012;87:60–66. doi: 10.1016/j.brainresbull.2011.09.022. PubMed DOI
Doyen P.J., Vergouts M., Pochet A., Desmet N., van Neerven S., Brook G., Hermans E. Inflammation-Associated Regulation of RGS in Astrocytes and Putative Implication in Neuropathic Pain. J. Neuroinflamm. 2017;14:209. doi: 10.1186/s12974-017-0971-x. PubMed DOI PMC
Morioka N., Nakamura Y., Zhang F.F., Hisaoka-Nakashima K., Nakata Y. Role of Connexins in Chronic Pain and Their Potential as Therapeutic Targets for Next-Generation Analgesics. Biol. Pharm. Bull. 2019;42:857–866. doi: 10.1248/bpb.b19-00195. PubMed DOI
Xing L., Yang T., Cui S., Chen G. Connexin Hemichannels in Astrocytes: Role in CNS Disorders. Front. Mol. Neurosci. 2019;12:23. doi: 10.3389/fnmol.2019.00023. PubMed DOI PMC
Donnelly C.R., Andriessen A.S., Chen G., Wang K., Jiang C., Maixner W., Ji R.-R. Central Nervous System Targets: Glial Cell Mechanisms in Chronic Pain. Neurotherapeutics. 2020;17:846–860. doi: 10.1007/s13311-020-00905-7. PubMed DOI PMC
Ye Z.-C., Wyeth M.S., Baltan-Tekkok S., Ransom B.R. Functional Hemichannels in Astrocytes: A Novel Mechanism of Glutamate Release. J. Neurosci. 2003;23:3588–3596. doi: 10.1523/JNEUROSCI.23-09-03588.2003. PubMed DOI PMC
Bennett M.V.L., Contreras J.E., Bukauskas F.F., Sáez J.C. New Roles for Astrocytes: Gap Junction Hemichannels Have Something to Communicate. Trends Neurosci. 2003;26:610–617. doi: 10.1016/j.tins.2003.09.008. PubMed DOI PMC
Giaume C., Leybaert L., Naus C.C., Saez J.C. Connexin and Pannexin Hernichannels in Brain Glial Cells: Properties, Pharmacology, and Roles. Front. Pharmacol. 2013;4:88. doi: 10.3389/fphar.2013.00088. PubMed DOI PMC
Jiang H., Zhang Y., Wang Z.-Z., Chen N.-H. Connexin 43: An Interface Connecting Neuroinflammation to Depression. Molecules. 2023;28:1820. doi: 10.3390/molecules28041820. PubMed DOI PMC
Dubový P. Wallerian Degeneration and Peripheral Nerve Conditions for Both Axonal Regeneration and Neuropathic Pain Induction. Ann. Anat.-Anat. Anz. 2011;193:267–275. doi: 10.1016/j.aanat.2011.02.011. PubMed DOI
Gaudet A.D., Popovich P.G., Ramer M.S. Wallerian Degeneration: Gaining Perspective on Inflammatory Events after Peripheral Nerve Injury. J. Neuroinflamm. 2011;8:110. doi: 10.1186/1742-2094-8-110. PubMed DOI PMC
Verkman A.S. Aquaporin Water Channels and Endothelial Cell Function. J. Anat. 2002;200:617–627. doi: 10.1046/j.1469-7580.2002.00058.x. PubMed DOI PMC
Manley G.T., Binder D.K., Papadopoulos M.C., Verkman A.S. New Insights into Water Transport and Edema in the Central Nervous System from Phenotype Analysis of Aquaporin-4 Null Mice. Neuroscience. 2004;129:983–991. doi: 10.1016/j.neuroscience.2004.06.088. PubMed DOI
Vindedal G.F., Thoren A.E., Jensen V., Klungland A., Zhang Y., Holtzman M.J., Ottersen O.P., Nagelhus E.A. Removal of Aquaporin-4 from Glial and Ependymal Membranes Causes Brain Water Accumulation. Mol. Cell. Neurosci. 2016;77:47–52. doi: 10.1016/j.mcn.2016.10.004. PubMed DOI PMC
Nesic O., Lee J., Ye Z., Unabia G.C., Rafati D., Hulsebosch C.E., Perez-Polo J.R. Acute and Chronic Changes in Aquaporin 4 Expression after Spinal Cord Injury. Neuroscience. 2006;143:779–792. doi: 10.1016/j.neuroscience.2006.08.079. PubMed DOI PMC
Chen G.Y., Nuñez G. Sterile Inflammation: Sensing and Reacting to Damage. Nat. Rev. Immunol. 2010;10:826–837. doi: 10.1038/nri2873. PubMed DOI PMC
Chiang C.-Y., Sessle B.J., Dostrovsky J.O. Role of Astrocytes in Pain. Neurochem. Res. 2012;37:2419–2431. doi: 10.1007/s11064-012-0801-6. PubMed DOI
Bojarskaite L., Nafari S., Ravnanger A.K., Frey M.M., Skauli N., Åbjørsbråten K.S., Roth L.C., Amiry-Moghaddam M., Nagelhus E.A., Ottersen O.P., et al. Role of Aquaporin-4 Polarization in Extracellular Solute Clearance. Fluids Barriers CNS. 2024;21:28. doi: 10.1186/s12987-024-00527-7. PubMed DOI PMC
In ’T Veen J.P.M., Van Den Berg M.P., Romeijn S.G., Verhoef J.C., Merkus F.W.H.M. Uptake of Fluorescein Isothiocyanate-Labelled Dextran into the CSF after Intranasal and Intravenous Administration to Rats. Eur. J. Pharma. Biopharma. 2005;61:27–31. doi: 10.1016/j.ejpb.2005.02.015. PubMed DOI
Matter K., Balda M.S. Functional Analysis of Tight Junctions. Methods. 2003;30:228–234. doi: 10.1016/S1046-2023(03)00029-X. PubMed DOI
Lippoldt A., Liebner S., Andbjer B., Kalbacher H., Wolburg H., Haller H., Fuxe K. Organization of Choroid Plexus Epithelial and Endothelial Cell Tight Junctions and Regulation of Claudin-1, -2 and -5 Expression by Protein Kinase C. NeuroReport. 2000;11:1427. doi: 10.1097/00001756-200005150-00015. PubMed DOI
Kratzer I., Ek J., Stolp H. The Molecular Anatomy and Functions of the Choroid Plexus in Healthy and Diseased Brain. Biochim. Biophys. Acta Biomembr. 2020;1862:183430. doi: 10.1016/j.bbamem.2020.183430. PubMed DOI
Katoozi S., Skauli N., Zahl S., Deshpande T., Ezan P., Palazzo C., Steinhäuser C., Frigeri A., Cohen-Salmon M., Ottersen O.P., et al. Uncoupling of the Astrocyte Syncytium Differentially Affects AQP4 Isoforms. Cells. 2020;9:382. doi: 10.3390/cells9020382. PubMed DOI PMC
Rao S.B., Skauli N., Jovanovic N., Katoozi S., Frigeri A., Froehner S.C., Adams M.E., Ottersen O.P., Amiry-Moghaddam M. Orchestrating Aquaporin-4 and Connexin-43 Expression in Brain: Differential Roles of A1- and Β1-Syntrophin. Biochim. Biophys. Acta Biomembr. 2021;1863:183616. doi: 10.1016/j.bbamem.2021.183616. PubMed DOI
Kim S.K., Hayashi H., Ishikawa T., Shibata K., Shigetomi E., Shinozaki Y., Inada H., Roh S.E., Kim S.J., Lee G., et al. Cortical Astrocytes Rewire Somatosensory Cortical Circuits for Peripheral Neuropathic Pain. J. Clin. Investig. 2016;126:1983. doi: 10.1172/JCI82859. PubMed DOI PMC
Kurabe M., Sasaki M., Furutani K., Furue H., Kamiya Y., Baba H. Structural and Functional Properties of Spinal Dorsal Horn Neurons after Peripheral Nerve Injury Change Overtime via Astrocyte Activation. iScience. 2022;25:105555. doi: 10.1016/j.isci.2022.105555. PubMed DOI PMC
Lawrence J.M., Schardien K., Wigdahl B., Nonnemacher M.R. Roles of Neuropathology-Associated Reactive Astrocytes: A Systematic Review. Acta Neuropathol. Commun. 2023;11:42. doi: 10.1186/s40478-023-01526-9. PubMed DOI PMC
Jean-Toussaint R., Tian Y., Chaudhuri A.D., Haughey N.J., Sacan A., Ajit S.K. Proteome Characterization of Small Extracellular Vesicles from Spared Nerve Injury Model of Neuropathic Pain. J. Proteom. 2020;211:103540. doi: 10.1016/j.jprot.2019.103540. PubMed DOI PMC
Luo X., Jean-Toussaint R., Tian Y., Balashov S.V., Sacan A., Ajit S.K. Small Extracellular Vesicles From Spared Nerve Injury Model and Sham Control Mice Differentially Regulate Gene Expression in Primary Microglia. J. Pain. 2023;24:1570–1581. doi: 10.1016/j.jpain.2023.03.015. PubMed DOI PMC
Tang Y., Wu J., Liu C., Gan L., Chen H., Sun Y.-L., Liu J., Tao Y.-X., Zhu T., Chen C. Schwann Cell-Derived Extracellular Vesicles Promote Memory Impairment Associated with Chronic Neuropathic Pain. J. Neuroinflamm. 2024;21:99. doi: 10.1186/s12974-024-03081-z. PubMed DOI PMC
Wang L., Lu X., Szalad A., Liu X.S., Zhang Y., Wang X., Golembieski W.A., Powell B., Mccann M., Lu M., et al. Schwann Cell-Derived Exosomes Ameliorate Peripheral Neuropathy Induced by Ablation of Dicer in Schwann Cells. Front. Cell. Neurosci. 2024;18:1462228. doi: 10.3389/fncel.2024.1462228. PubMed DOI PMC
Zhang C., Gao R., Zhou R., Chen H., Liu C., Zhu T., Chen C. The Emerging Power and Promise of Non-Coding RNAs in Chronic Pain. Front. Mol. Neurosci. 2022;15:1037929. doi: 10.3389/fnmol.2022.1037929. PubMed DOI PMC
He X., Yang H., Zheng Y., Zhao X., Wang T. The Role of Non-Coding RNAs in Neuropathic Pain. Pflugers Arch.-Eur. J. Physiol. 2024;476:1625–1643. doi: 10.1007/s00424-024-02989-y. PubMed DOI
Jullienne A., Fukuda A.M., Ichkova A., Nishiyama N., Aussudre J., Obenaus A., Badaut J. Modulating the Water Channel AQP4 Alters miRNA Expression, Astrocyte Connectivity and Water Diffusion in the Rodent Brain. Sci. Rep. 2018;8:4186. doi: 10.1038/s41598-018-22268-y. PubMed DOI PMC
Xian S., Ding R., Li M., Chen F. LncRNA NEAT1/miR-128-3p/AQP4 Axis Regulating Spinal Cord Injury-Induced Neuropathic Pain Progression. J. Neuroimmunol. 2021;351:577457. doi: 10.1016/j.jneuroim.2020.577457. PubMed DOI
Neumann E., Hermanns H., Barthel F., Werdehausen R., Brandenburger T. Expression Changes of MicroRNA-1 and Its Targets Connexin 43 and Brain-Derived Neurotrophic Factor in the Peripheral Nervous System of Chronic Neuropathic Rats. Mol. Pain. 2015;11:39. doi: 10.1186/s12990-015-0045-y. PubMed DOI PMC
Yi Y., Zhang S., Dai J., Zheng H., Peng X., Cheng L., Chen H., Hu Y. MiR-23b-3p Improves Brain Damage after Status Epilepticus by Reducing the Formation of Pathological High-Frequency Oscillations via Inhibition of Cx43 in Rat Hippocampus. ACS Chem. Neurosci. 2024;15:2633–2642. doi: 10.1021/acschemneuro.4c00112. PubMed DOI
EL Andaloussi S., Mäger I., Breakefield X.O., Wood M.J.A. Extracellular Vesicles: Biology and Emerging Therapeutic Opportunities. Nat. Rev. Drug Discov. 2013;12:347–357. doi: 10.1038/nrd3978. PubMed DOI
Zamboni L., Demartin C. Buffered Picric Acid-Formaldehyde—A New Rapid Fixative for Electron Microscopy. J. Cell Biol. 1967;35:A148
Paxinos G., Watson C. The Rat Brain in Stereotaxic Coordinates. J. Anat. 1997;191:315–317. doi: 10.1046/j.1469-7580.1997.191203153.x. DOI
Hylden J.L.K., Wilcox G.L. Intrathecal Morphine in Mice: A New Technique. Eur. J. Pharmacol. 1980;67:313–316. doi: 10.1016/0014-2999(80)90515-4. PubMed DOI
Dubový P., Svízenská I., Klusáková I. Computer-Assisted Quantitative Analysis of Immunofluorescence Staining of the Extracellular Matrix in Rat Dorsal and Ventral Spinal Roots. Acta Histochem. 2002;104:371–374. doi: 10.1078/0065-1281-00664. PubMed DOI