GC-MS and PCA Analysis of Fatty Acid Profile in Various Ilex Species
Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
39459202
PubMed Central
PMC11510334
DOI
10.3390/molecules29204833
PII: molecules29204833
Knihovny.cz E-resources
- Keywords
- GC-MS, Ilex sp., PCA, correlation matrix, fatty acids,
- MeSH
- Principal Component Analysis MeSH
- Phytochemicals analysis chemistry MeSH
- Ilex paraguariensis chemistry MeSH
- Ilex * chemistry MeSH
- Fatty Acids * analysis chemistry MeSH
- Gas Chromatography-Mass Spectrometry * MeSH
- Plant Extracts chemistry analysis MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Phytochemicals MeSH
- Fatty Acids * MeSH
- Plant Extracts MeSH
Natural compounds are important source of desired biological activity which helps to improve nutritional status and brings many health benefits. Ilex paraguariensis St. Hill. which belongs to the family Aquifoliaceae is a plant rich in bioactive substances (polyphenols, saponins, alkaloids) with therapeutic potential including hepatic and digestive disorders, arthritis, rheumatism, and other inflammatory diseases, obesity, hypertension, hypercholesterolemia. In terms of phytochemical research I. paraguariensis has been the subject of most intensive investigations among Ilex species. Therefore, we concentrated on other available Ilex varieties and focused on the content of fatty acids of these shrubs. The fatty acid compounds present in Ilex sp. samples were analyzed by GC-MS. 27 different fatty acids were identified in the extracts. The results showed that many constituents with significant commercial or medicinal importance were present in high concentrations. The primary component in all samples was α linolenic acid(18:3 Δ9,12,15). Differences of this component concentration were observed between cultivars and extensively analyzed by PCA, one- way ANOVA and Kruskal-Wallis ANOVA. Significant correlations between compound concentrations were reported.
See more in PubMed
Czekalski M. Liściaste Krzewy Ozdobne II. Państwowe Wydawnictwo Rolnicze i Leśne; Warszawa, Poland: 2015. pp. 95–98.
Czekalski M. Krzewy ozdobne mało znane: Ostrokrzew kolczasty. Zieleń Miejska. 2015;3:28.
Tumiłowicz J., Banaszczak P. Drzewa i krzewy z rodziny Aquifoliaceae w arboretach w Rogowie i Glinnej. Rocz. Dendr. 2007;55:41–56.
Seneta W., Dolatowski J. Dendrologia. PWN; Warszawa, Poland: 2009.
Galle F.C. Hollies–The genus Ilex. Timber Press; Portland, OR, USA: 1998.
Czekalski M. Ostrokrzew Meservy. Zieleń Miejska. 2012;12:27.
Yao X., Zhang F., Corlett R.T. Utilization of the Hollies (Ilex L. spp.): A Review. Forests. 2022;13:94. doi: 10.3390/f13010094. DOI
Cansian R.L., Mossi A.J., Mosele S.H., Toniazzo G., Treichel H., Paroul N., Oliveira J.V., Mazutti M., Echeverrigaray S. Genetic conservation and medicinal properties of mate (Ilex paraguariensis St Hil.) Phcog Rev. 2008;2:326–338.
Zwyrzykowska A., Kupczyński R., Jarosz B., Szumny A., Kucharska A.Z. Qualitative and quantitative analysis of polyphenolic compounds in Ilex sp. Open Chem. 2015;13:1303–1312. doi: 10.1515/chem-2015-0142. DOI
Paluch E., Okińczyc P., Zwyrzykowska-Wodzińska A., Szperlik J., Żarowska B., Duda-Madej A., Bąbelewski P., Włodarczyk M., Wojtasik W., Kupczyński R., et al. Composition and Antimicrobial Activity of Ilex Leaves Water Extracts. Molecules. 2021;26:7442. doi: 10.3390/molecules26247442. PubMed DOI PMC
Balzan S., Hernandes A., Reichert C.L., Donaduzzi C., Pires V.A., Gasparotto A., Cardozo E.L. Lipid-lowering effects of standardized extracts of Ilex paraguariensis in high-fat-diet rats. Fitoterapia. 2013;86:115–122. doi: 10.1016/j.fitote.2013.02.008. PubMed DOI
Bracesco N., Sanchez A.G., Contreras V., Menini T., Gugliucci A. Recent advances on Ilex paraguariensis research: Minireview. J. Ethnopharmacol. 2011;136:378–384. doi: 10.1016/j.jep.2010.06.032. PubMed DOI
Heck C.I., de Mejia E.G. Yerba Mate Tea (Ilex paraguariensis): A comprehensive review on chemistry, health implications, and technological considerations. J. Food Sci. 2007;72:138–151. doi: 10.1111/j.1750-3841.2007.00535.x. PubMed DOI
Rustan A.C., Drevon C.A. Encyclopedia of Life Sciences. Wiley & Sons, Ltd.; Hoboken, NJ, USA: 2005. Fatty Acids: Structures and Properties.
Avato P., Tava A. Rare fatty acids and lipids in plant oilseeds: Occurrence and bioactivity. Phytochem. Rev. 2022;21:401–428. doi: 10.1007/s11101-021-09770-4. DOI
Yao X., Song Y., Yang J.B., Tan Y.H., Corlett R.T. Phylogeny and biogeography of the hollies (Ilex L., Aquifoliaceae) J. Syst. Evol. 2021;59:73–82. doi: 10.1111/jse.12567. DOI
Wang J., Liu Z., Liu H., Peng D., Zhang J., Chen M. Linum usitatissimum FAD2A and FAD3A enhance seed polyunsaturated fatty acid accumulation and seedling cold tolerance in Arabidopsis thaliana. Plant Sci. 2021;311:111014. doi: 10.1016/j.plantsci.2021.111014. PubMed DOI
Saffaryazdi A., Ganjeali A., Farhoosh R., Cheniany M. Variation in phenolic compounds, α-linolenic acid and linoleic acid contents and antioxidant activity of purslane (Portulaca oleracea L.) during phenological growth stages. Physiol. Mol. Biol. Plants. 2020;26:1519–1529. doi: 10.1007/s12298-020-00836-9. PubMed DOI PMC
Zhukov A.V. Palmitic acid and its role in the structure and functions of plant cell membranes. Russ. J. Plant Physiol. 2015;62:706–713. doi: 10.1134/S1021443715050192. DOI
Kunst L., Browse J., Somerville C. Enhanced thermal tolerance in a mutant of Arabidopsis deficient in palmitic acid unsaturation. Plant Physiol. 1989;91:401–408. doi: 10.1104/pp.91.1.401. PubMed DOI PMC
Ma K., Kou J., Rahman M.K.U., Du W., Liang X., Wu F., Li W., Pan K. Palmitic acid mediated change of rhizosphere and alleviation of Fusarium wilt disease in watermelon. Saudi J. Biol. Sci. 2021;28:3616–3623. doi: 10.1016/j.sjbs.2021.03.040. PubMed DOI PMC
Kurima K., Jimbo H., Fujihara T., Saito M., Ishikawa T., Wada H. High myristic acid in glycerolipids enhances the repair of photodamaged photosystem II under strong light. Plant Cell Physiol. 2024;65:790–797. doi: 10.1093/pcp/pcae021. PubMed DOI PMC
Li S., Xu C., Wang J., Guo B., Yang L., Chen J., Ding W. Cinnamic, myristic and fumaric acids in tobacco root exudates induce the infection of plants by Ralstonia solanacearum. Plant Soil. 2017;412:381–395. doi: 10.1007/s11104-016-3060-5. DOI
Jimbo H., Takagi K., Hirashima T., Nishiyama Y., Wada H. Long-chain saturated fatty acids, palmitic and stearic acids, enhance the repair of photosystem II. Int. J. Mol. Sci. 2020;21:7509. doi: 10.3390/ijms21207509. PubMed DOI PMC
Ullah S., Khan M.N., Lodhi S.S., Ahmed I., Tayyab M., Mehmood T., Din I.U., Khan M., Sohail Q., Akram M. Targeted metabolomics reveals fatty acid abundance adjustments as playing a crucial role in drought-stress response and post-drought recovery in wheat. Front. Genet. 2022;13:972696. doi: 10.3389/fgene.2022.972696. PubMed DOI PMC
Lakhssassi N., Colantonio V., Flowers N.D., Zhou Z., Henry J., Liu S., Meksem K. Stearoyl-acyl carrier protein desaturase mutations uncover an impact of stearic acid in leaf and nodule structure. Plant Physiol. 2017;174:1531–1543. doi: 10.1104/pp.16.01929. PubMed DOI PMC
Bach L., Faure J.D. Role of very-long-chain fatty acids in plant development, when chain length does matter. C R. Biol. 2010;333:361–370. doi: 10.1016/j.crvi.2010.01.014. PubMed DOI
McDonald P., Greenhalgh J.F.D., Morgan C., Edwards R., Sinclair L., Wilkinson R. Animal Nutrition. 8th ed. Pearson Education; Harlow, UK: 2022.
Grela E.R. Optymalizacja żywienia świń z wykorzystaniem nowej generacji dodatków paszowych. Pr. Mat. Zootech. 2004;15:53–63.
[(accessed on 9 June 2024)]. Available online: https://www.consilium.europa.eu/en/policies/from-farm-to-fork/
[(accessed on 9 June 2024)]. Available online: https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_en.
Prost E.K. Zwierzęta Rzeźne i Mięso-Ocena i Higiena. LTN; Lublin, Poland: 2006.
Sears A., Gonzalez O., Alberto A., Young A., de Souza J., Relling A., Batistel F. Effect of feeding a palmitic acid-enriched supplement on production responses and nitrogen metabolism of mid-lactating Holstein and Jersey cows. J. Dairy Sci. 2020;103:8898–8909. doi: 10.3168/jds.2020-18232. PubMed DOI
Odongo N.E., Or-Rashid M.M., Kebreab E., France J., McBride B.W. Effect of supplementing myristic acid in dairy cow rations on ruminal methanogenesis and fatty acid profile in milk. J. Dairy Sci. 2007;90:1851–1858. doi: 10.3168/jds.2006-541. PubMed DOI
Zwyrzykowska-Wodzińska A., Bielas W., Niżański W., Jankowska-Mąkosa A., Knecht D. Dietary Supplementation with Linseed Oil Ethyl Esters Improves Sexual Behavior and Chosen Seminal Parameters in Porcine Species. Animals. 2023;13:1347. doi: 10.3390/ani13081347. PubMed DOI PMC
Sierżant K., Korzeniowska M., Półbrat T., Rybarczyk A., Smoliński J. The use of an optimised concentration of quercetin limits peroxidation of lipids in the meat of broiler chickens fed a diet containing flaxseed oil rich in omega-3. Animal. 2022;16:100603. doi: 10.1016/j.animal.2022.100603. PubMed DOI
Po E., Horsburgh K., Raadsma H.W., Celi P. Yerba mate (Ilex paraguarensis) as a novel feed supplement or growing lambs. Small Rumint Res. 2012;106:131–136. doi: 10.1016/j.smallrumres.2012.05.016. DOI
Po E., Xu Z., Celi P. The effect of yerba mate (Ilex paraguarensis) supplementation on the productive performance of Dorper ewes and their progeny. Asian-Australas. J. Anim. Sci. 2012;25:945–949. doi: 10.5713/ajas.2012.12031. PubMed DOI PMC
Celi P., Gabai G. Oxidant/Antioxidant Balance in Animal Nutrition and Health: The Role of Protein Oxidation. Front. Vet. Sci. 2015;2:48. doi: 10.3389/fvets.2015.00048. PubMed DOI PMC
Celi P., Robinson A. Effects of Yerba Mate (Ilex paraguariensis) supplementation on the performance of dairy calves. Anim. Prod. Sci. 2010;50:376–381. doi: 10.1071/AN09169. DOI
Celi P. Yerba mate (Ilex paraguariensis) as strategic supplement for dairy cows. In: Makkar H.P.S., editor. Enhancing Animal Welfare and Farmer Income through Strategic Animal Feeding—Some Case Studies. FAO Animal Production and Health; Rome, Italy: 2013.
Hartemink E., Giorgio D., Kaur R., Di Trana A., Celi P. The Effect of Yerba Mate (Ilex Paraguariensis) Supplementation on Nutrient Degradability in Dairy Cows: An In sacco and In vitro Study. Asian-Australas. J. Anim. Sci. 2015;28:1606–1613. doi: 10.5713/ajas.15.0206. PubMed DOI PMC
Folch J., Lees M., Stanley G.H.S. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957;226:497–509. doi: 10.1016/S0021-9258(18)64849-5. PubMed DOI