• This record comes from PubMed

A New Activity Assay Method for Diamine Oxidase Based on Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry

. 2024 Oct 14 ; 29 (20) : . [epub] 20241014

Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
IGA_PrF_2022_025 Palacký University Olomouc

Copper-containing diamine oxidases are ubiquitous enzymes that participate in many important biological processes. These processes include the regulation of cell growth and division, programmed cell death, and responses to environmental stressors. Natural substrates include, for example, putrescine, spermidine, and histamine. Enzymatic activity is typically assayed using spectrophotometric, electrochemical, or fluorometric methods. The aim of this study was to develop a method for measuring activity using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry based on the intensity ratio of product to product-plus-substrate signals in the reaction mixtures. For this purpose, an enzyme purified to homogeneity from pea (Pisum sativum) seedlings was used. The method employed α-cyano-4-hydroxycinnamic acid as a matrix with the addition of cetrimonium bromide. Product signal intensities with pure compounds were evaluated in the presence of equal substrate amounts to determine intensity correction factors for data processing calculations. The kinetic parameters kcat and Km for the oxidative deamination of selected substrates were determined. These results were compared to parallel measurements using an established spectrophotometric method, which involved a coupled reaction of horseradish peroxidase and guaiacol, and were discussed in the context of data from the literature and the BRENDA database. It was found that the method provides accurate results that are well comparable with parallel spectrophotometry. This method offers advantages such as low sample consumption, rapid serial measurements, and potential applicability in assays where colored substances interfere with spectrophotometry.

See more in PubMed

Schober L., Dobiašová H., Jurkaš V., Parmeggiani F., Rudroff F., Winkler M. Enzymatic reactions towards aldehydes: An overview. Flavour Fragr. J. 2023;38:221–242. doi: 10.1002/ffj.3739. PubMed DOI PMC

Buffoni F., Ignesti G. The copper-containing amine oxidases: Biochemical aspects and functional role. Mol. Genet. Metab. 2000;71:559–564. doi: 10.1006/mgme.2000.3098. PubMed DOI

Cona A., Rea G., Angelini R., Federico R., Tavladoraki P. Functions of amine oxidases in plant development and defense. Trends Plant Sci. 2006;11:80–88. doi: 10.1016/j.tplants.2005.12.009. PubMed DOI

Klema V.J., Wilmot C.M. The role of protein crystallography in defining the mechanisms of biogenesis and catalysis in copper amine oxidase. Int. J. Mol. Sci. 2012;13:5375–5405. doi: 10.3390/ijms13055375. PubMed DOI PMC

Janes S.M., Mu D., Wemmer D., Smith A.J., Kaur S., Maltby D., Burlingame A.L., Klinman J.P. A new redox cofactor in eukaryotic enzymes: 6-hydroxydopa at the active site of bovine serum amine oxidase. Science. 1990;248:981–987. doi: 10.1126/science.2111581. PubMed DOI

Dooley D.M., McGuirl M., Brown D.E., Turowski P.N., McIntire W.S., Knowles P.F. A Cu(I)-semiquinone state in substrate-reduced amine oxidases. Nature. 1991;349:262–264. doi: 10.1038/349262a0. PubMed DOI

Murray J.M., Saysell C.G., Wilmot C.M., Tambyrajah W.S., Jaeger J., Knowles P.F., Phillips S.E.V., McPherson M.J. The active site base controls cofactor reactivity in Escherichia coli amine oxidase: X-ray crystallographic studies with mutational variants. Biochemistry. 1999;38:8217–8227. doi: 10.1021/bi9900469. PubMed DOI

Mu D., Janes S.M., Smith A.J., Brown D.E., Dooley D.M., Klinman J.P. Tyrosine codon corresponds to topa quinone at the active site of copper amine oxidases. J. Biol. Chem. 1992;267:7979–7982. doi: 10.1016/S0021-9258(18)42395-2. PubMed DOI

Johnson B.J., Cohen J., Welford R.W., Pearson A.R., Schulten K., Klinman J.P., Wilmot C.M. Exploring molecular oxygen pathways in Hansenula polymorpha copper-containing amine oxidase. J. Biol. Chem. 2007;282:17767–17776. doi: 10.1074/jbc.M701308200. PubMed DOI PMC

Kumar V., Dooley D.M., Freeman H.C., Guss J.M., Harvey I., McGuirl M.A., Wilce M.C.J., Zubak V.M. Crystal structure of a eukaryotic (pea seedling) copper-containing amine oxidase at 2.2 Å resolution. Structure. 1996;4:943–955. doi: 10.1016/S0969-2126(96)00101-3. PubMed DOI

Turowski P.N., McGuirl M.A., Dooley D.M. Intramolecular electron transfer rate between active-site copper and topa quinone in pea seedling amine oxidase. J. Biol. Chem. 1993;268:17680–17682. doi: 10.1016/S0021-9258(17)46757-3. PubMed DOI

Wilmot C.M., Murray J.M., Alton G., Parsons M.R., Convery M.A., Blakeley V., Corner A.S., Palcic M.M., Knowles P.F., McPherson M.J., et al. Catalytic mechanism of the quinoenzyme amine oxidase from Escherichia coli: Exploring the reductive half-reaction. Biochemistry. 1997;36:1608–1620. doi: 10.1021/bi962205j. PubMed DOI

Wilmot C.M., Hajdu J., McPherson M.J., Knowles P.F., Phillips S.E.V. Visualization of dioxygen bound to copper during enzyme catalysis. Science. 1999;286:1724–1728. doi: 10.1126/science.286.5445.1724. PubMed DOI

Johnson B.J., Yukl E.T., Klema V.J., Klinman J.P., Wilmot C.M. Structural snapshots from the oxidative half-reaction of a copper amine oxidase. Implications for O2 activation. J. Biol. Chem. 2013;288:28409–28417. doi: 10.1074/jbc.M113.501791. PubMed DOI PMC

Shoji M., Murakawa T., Nakanishi S., Boero M., Shigeta Y., Hayashi H., Okajima T. Molecular mechanism of a large conformational change of the quinone cofactor in the semiquinone intermediate of bacterial copper amine oxidase. Chem. Sci. 2022;13:10923–10938. doi: 10.1039/D2SC01356H. PubMed DOI PMC

Medda R., Padiglia A., Floris G. Plant copper-amine oxidase. Phytochemistry. 1995;39:1–9. doi: 10.1016/0031-9422(94)00756-J. DOI

Vianello F., Malek-Mirzayans A., Di Paolo M.L., Stevanato R., Rigo A. Purification and characterization of amine oxidase from pea seedling. Protein Express. Purif. 1999;15:196–201. doi: 10.1006/prep.1998.1012. PubMed DOI

Macholán L., Minář J. The depression of the synthesis of pea diamine oxidase due to light and the verification of its participation in growth processes using competitive inhibitors. Biol. Plant. 1974;16:86–93. doi: 10.1007/BF02920782. DOI

Tavladoraki P., Cona A., Angelini R. Copper-containing amine oxidases and FAD-dependent polyamine oxidases are key players in plant tissue differentiation and organ development. Front. Plant Sci. 2016;7:824. doi: 10.3389/fpls.2016.00824. PubMed DOI PMC

Pietrangeli P., Federico R., Mondovì B., Morpurgo L. Substrate specificity of copper-containing plant amine oxidases. J. Inorg. Chem. 2007;101:997–1004. doi: 10.1016/j.jinorgbio.2007.03.014. PubMed DOI

Niculescu M., Frébort I., Peč P., Galuszka P., Mattiasson B., Csöregi E. Amine oxidase based amperometric biosensors for histamine detection. Electroanalysis. 2000;12:369–375. doi: 10.1002/(SICI)1521-4109(20000301)12:5<369::AID-ELAN369>3.0.CO;2-J. DOI

Di Fabio E., Incocciati A., Boffi A., Bonamore A., Macone A. Biocatalytic production of aldehydes: Exploring the potential of Lathyrus cicera amine oxidase. Biomolecules. 2021;11:1540. doi: 10.3390/biom11101540. PubMed DOI PMC

Holmstedt B., Larsson L., Tham R. Further studies of a spectrophotometric method for the determination of diamine oxidase activity. Biochim. Biophys. Acta. 1961;48:182–186. doi: 10.1016/0006-3002(61)90530-3. PubMed DOI

Smith T.A. Polyamine oxidation by enzymes from Hordeum vulgare and Pisum sativum seedlings. Phytochemistry. 1974;13:1075–1081. doi: 10.1016/0031-9422(74)80077-4. DOI

Smith T.A., Barker J.H.A. The di- and polyamine oxidase of plants. In: Zappia V., Pegg A.E., editors. Progress in Polyamine Research: Novel Biochemical, Pharmacological, and Clinical Aspects. Volume 250. Plenum Press; New York, NY, USA: 1988. pp. 573–587. Advances in Experimental Medicine and Biology. PubMed DOI

Angelini R., Rea G., Federico R., D’Ovidio R. Spatial distribution and temporal accumulation of mRNA encoding diamine oxidase during lentil (Lens culinaris Medicus) seedling development. Plant Sci. 1996;119:103–113. doi: 10.1016/0168-9452(96)04453-6. DOI

Kounga P.C., Neree A.T., Pietrangeli P., Marcocci L., Mateescu M.A. Faster and sensitive zymographic detection of oxidases generating hydrogen peroxide. The case of diamine oxidase. Anal. Biochem. 2022;648:114676. doi: 10.1016/j.ab.2022.114676. PubMed DOI

Macholán L., Haubrová J. Isolation and some characteristics of diamine oxidase from etiolated pea seedlings. Collect. Czech. Chem. Commun. 1976;41:2987–2996. doi: 10.1135/cccc19762987. DOI

Schwelberger H.G., Feurle J. Luminometric determination of amine oxidase activity. Inflamm. Res. 2007;56:S53–S54. doi: 10.1007/s00011-006-0526-6. PubMed DOI

Pietta P., Calatroni A., Colombo R. Determination of diamine oxidase activity by high-performance liquid chromatograph. J. Chromatogr. A. 1982;243:123–129. doi: 10.1016/S0021-9673(00)88170-4. DOI

Šebela M. The use of matrix-assisted laser desorption/ionization mass spectrometry in enzyme activity assays and its position in the context of other available methods. Mass Spectrom. Rev. 2023;42:1008–1031. doi: 10.1002/mas.21733. PubMed DOI

Ling L., Xiao C., Wang S., Guo L., Guo X. A pyrene linked peptide probe for quantitative analysis of protease activity via MALDI TOF-MS. Talanta. 2019;200:236–241. doi: 10.1016/j.talanta.2019.03.055. PubMed DOI

Chang H.L., Su K.Y., Goodman S.D., Yen R.S., Cheng W.C., Yang Y.C., Lin L.I., Chang S.Y., Fang W. Measurement of uracil-DNA glycosylase activity by matrix assisted laser desorption/ionization time-of-flight mass spectrometry technique. DNA Repair. 2021;97:103028. doi: 10.1016/j.dnarep.2020.103028. PubMed DOI

Bungert D., Heinzle E., Tholey A. Quantitative matrix-assisted laser desorption/ionization mass spectrometry for the determination of enzyme activities. Anal. Biochem. 2004;326:167–175. doi: 10.1016/j.ab.2003.11.013. PubMed DOI

Anderson S.E., Fahey N.S., Park J., O’Kane P.T., Mirkin C.A., Mrksich M. A high-throughput SAMDI-mass spectrometry assay for isocitrate dehydrogenase 1. Analyst. 2020;145:3899–3908. doi: 10.1039/D0AN00174K. PubMed DOI PMC

Guo Z., Zhang Q., Zou H., Guo B., Ni J. A method for the analysis of low-mass molecules by MALDI-TOF mass spectrometry. Anal. Chem. 2002;74:1637–1641. doi: 10.1021/ac010979m. PubMed DOI

Šebela M., Luhová L., Frébort I., Hirota S., Faulhammer H.G., Stužka V., Peč P. Confirmation of the presence of a Cu(II)/topa quinone active site in the amine oxidase from fenugreek seedlings. J. Exp. Bot. 1997;48:1897–1907. doi: 10.1093/jxb/48.11.1897. DOI

Šebela M., Luhová L., Frébort I., Faulhammer H.G., Hirota S., Zajoncová L., Stužka V., Peč P. Analysis of the active sites of copper/topa quinone-containing amine oxidases from Lathyrus odoratus and L. sativus seedlings. Phytochem. Anal. 1998;9:211–222. doi: 10.1002/(SICI)1099-1565(199809/10)9:5<211::AID-PCA407>3.0.CO;2-X. DOI

Macholán L., Rozprimová L., Sedláčková E. Oxidative deamination of 2-hydroxy derivatives of putrescine and cadaverine by pea-seedling and pig-kidney diamine oxidase. Biochim. Biophys. Acta. 1967;136:258–264. doi: 10.1016/0304-4165(67)90070-0. PubMed DOI

Medda R., Bellelli A., Peč P., Federico R., Cona A., Floris G. Copper amine oxidases from plants. In: Floris G., Mondovì B., editors. Copper Amine Oxidases: Structures, Catalytic Mechanisms and Role in Pathophysiology. CRC Press; Boca Raton, FL, USA: 2009. pp. 39–50. DOI

Mantle T.J., Harris D.A. Chapter 7 Spectrophotometric assays. In: Gore M.G., editor. Spectrophotometry and Spectrofluorimetry: A Practical Approach. Oxford University Press; Oxford, UK: 2000. pp. 183–208. DOI

Nicu L., Leïchlé T. Biosensors and tools for surface functionalization from the macro- to the nanoscale: The way forward. J. Appl. Phys. 2008;104:111101. doi: 10.1063/1.2973147. DOI

Masopustová M., Goga A., Soural M., Kopečná M., Šebela M. N-carboxyacyl and N-α-aminoacyl derivatives of aminoaldehydes as shared substrates of plant aldehyde dehydrogenases 10 and 7. Amino Acids. 2024;56:52. doi: 10.1007/s00726-024-03415-4. PubMed DOI PMC

Duncan M.W., Roder H., Hunsucker S.W. Quantitative matrix-assisted laser desorption/ionization mass spectrometry. Brief Funct. Genom. Proteomic. 2008;7:355–370. doi: 10.1093/bfgp/eln041. PubMed DOI PMC

Luhová L., Šebela M., Frébort I., Zajoncová L., Faulhammer H.G., Peč P. Screening of the occurrence of copper amine oxidases in Fabaceae plants. Biol. Plant. 1998;41:241–254. doi: 10.1023/A:1001822831761. DOI

Kruger N.J. Errors and artifacts in coupled spectrophotometric assays of enzyme activity. Phytochemistry. 1995;38:1065–1071. doi: 10.1016/0031-9422(94)00787-T. PubMed DOI

Mancuso A.J., Huang S.L., Swern D. Oxidation of long-chain and related alcohols to carbonyls by dimethyl sulfoxide “activated” by oxalyl chloride. J. Org. Chem. 1978;43:2480–2482. doi: 10.1021/jo00406a041. DOI

Šebela M., Kopečný D., Lamplot Z., Havliš J., Thomas H., Shevchenko A. Thermostable β-cyclodextrin-conjugates of two similar plant amine oxidases and their properties. Biotechnol. Appl. Biochem. 2005;41:77–84. doi: 10.1042/BA20040047. PubMed DOI

Frébort I., Haviger A., Peč P. Employment of guaiacol for the determination of activities of enzymes generating hydrogen peroxide and for the determination of glucose in blood and urine. Biológia. 1989;44:729–737.

Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...