A New Activity Assay Method for Diamine Oxidase Based on Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
IGA_PrF_2022_025
Palacký University Olomouc
PubMed
39459245
PubMed Central
PMC11509957
DOI
10.3390/molecules29204878
PII: molecules29204878
Knihovny.cz E-resources
- Keywords
- MALDI, activity assay, amine oxidase, enzyme kinetics, polyamine, reaction rate,
- MeSH
- Enzyme Assays methods MeSH
- Amine Oxidase (Copper-Containing) * metabolism chemistry MeSH
- Pisum sativum enzymology chemistry MeSH
- Kinetics MeSH
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization * methods MeSH
- Substrate Specificity MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Amine Oxidase (Copper-Containing) * MeSH
Copper-containing diamine oxidases are ubiquitous enzymes that participate in many important biological processes. These processes include the regulation of cell growth and division, programmed cell death, and responses to environmental stressors. Natural substrates include, for example, putrescine, spermidine, and histamine. Enzymatic activity is typically assayed using spectrophotometric, electrochemical, or fluorometric methods. The aim of this study was to develop a method for measuring activity using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry based on the intensity ratio of product to product-plus-substrate signals in the reaction mixtures. For this purpose, an enzyme purified to homogeneity from pea (Pisum sativum) seedlings was used. The method employed α-cyano-4-hydroxycinnamic acid as a matrix with the addition of cetrimonium bromide. Product signal intensities with pure compounds were evaluated in the presence of equal substrate amounts to determine intensity correction factors for data processing calculations. The kinetic parameters kcat and Km for the oxidative deamination of selected substrates were determined. These results were compared to parallel measurements using an established spectrophotometric method, which involved a coupled reaction of horseradish peroxidase and guaiacol, and were discussed in the context of data from the literature and the BRENDA database. It was found that the method provides accurate results that are well comparable with parallel spectrophotometry. This method offers advantages such as low sample consumption, rapid serial measurements, and potential applicability in assays where colored substances interfere with spectrophotometry.
See more in PubMed
Schober L., Dobiašová H., Jurkaš V., Parmeggiani F., Rudroff F., Winkler M. Enzymatic reactions towards aldehydes: An overview. Flavour Fragr. J. 2023;38:221–242. doi: 10.1002/ffj.3739. PubMed DOI PMC
Buffoni F., Ignesti G. The copper-containing amine oxidases: Biochemical aspects and functional role. Mol. Genet. Metab. 2000;71:559–564. doi: 10.1006/mgme.2000.3098. PubMed DOI
Cona A., Rea G., Angelini R., Federico R., Tavladoraki P. Functions of amine oxidases in plant development and defense. Trends Plant Sci. 2006;11:80–88. doi: 10.1016/j.tplants.2005.12.009. PubMed DOI
Klema V.J., Wilmot C.M. The role of protein crystallography in defining the mechanisms of biogenesis and catalysis in copper amine oxidase. Int. J. Mol. Sci. 2012;13:5375–5405. doi: 10.3390/ijms13055375. PubMed DOI PMC
Janes S.M., Mu D., Wemmer D., Smith A.J., Kaur S., Maltby D., Burlingame A.L., Klinman J.P. A new redox cofactor in eukaryotic enzymes: 6-hydroxydopa at the active site of bovine serum amine oxidase. Science. 1990;248:981–987. doi: 10.1126/science.2111581. PubMed DOI
Dooley D.M., McGuirl M., Brown D.E., Turowski P.N., McIntire W.S., Knowles P.F. A Cu(I)-semiquinone state in substrate-reduced amine oxidases. Nature. 1991;349:262–264. doi: 10.1038/349262a0. PubMed DOI
Murray J.M., Saysell C.G., Wilmot C.M., Tambyrajah W.S., Jaeger J., Knowles P.F., Phillips S.E.V., McPherson M.J. The active site base controls cofactor reactivity in Escherichia coli amine oxidase: X-ray crystallographic studies with mutational variants. Biochemistry. 1999;38:8217–8227. doi: 10.1021/bi9900469. PubMed DOI
Mu D., Janes S.M., Smith A.J., Brown D.E., Dooley D.M., Klinman J.P. Tyrosine codon corresponds to topa quinone at the active site of copper amine oxidases. J. Biol. Chem. 1992;267:7979–7982. doi: 10.1016/S0021-9258(18)42395-2. PubMed DOI
Johnson B.J., Cohen J., Welford R.W., Pearson A.R., Schulten K., Klinman J.P., Wilmot C.M. Exploring molecular oxygen pathways in Hansenula polymorpha copper-containing amine oxidase. J. Biol. Chem. 2007;282:17767–17776. doi: 10.1074/jbc.M701308200. PubMed DOI PMC
Kumar V., Dooley D.M., Freeman H.C., Guss J.M., Harvey I., McGuirl M.A., Wilce M.C.J., Zubak V.M. Crystal structure of a eukaryotic (pea seedling) copper-containing amine oxidase at 2.2 Å resolution. Structure. 1996;4:943–955. doi: 10.1016/S0969-2126(96)00101-3. PubMed DOI
Turowski P.N., McGuirl M.A., Dooley D.M. Intramolecular electron transfer rate between active-site copper and topa quinone in pea seedling amine oxidase. J. Biol. Chem. 1993;268:17680–17682. doi: 10.1016/S0021-9258(17)46757-3. PubMed DOI
Wilmot C.M., Murray J.M., Alton G., Parsons M.R., Convery M.A., Blakeley V., Corner A.S., Palcic M.M., Knowles P.F., McPherson M.J., et al. Catalytic mechanism of the quinoenzyme amine oxidase from Escherichia coli: Exploring the reductive half-reaction. Biochemistry. 1997;36:1608–1620. doi: 10.1021/bi962205j. PubMed DOI
Wilmot C.M., Hajdu J., McPherson M.J., Knowles P.F., Phillips S.E.V. Visualization of dioxygen bound to copper during enzyme catalysis. Science. 1999;286:1724–1728. doi: 10.1126/science.286.5445.1724. PubMed DOI
Johnson B.J., Yukl E.T., Klema V.J., Klinman J.P., Wilmot C.M. Structural snapshots from the oxidative half-reaction of a copper amine oxidase. Implications for O2 activation. J. Biol. Chem. 2013;288:28409–28417. doi: 10.1074/jbc.M113.501791. PubMed DOI PMC
Shoji M., Murakawa T., Nakanishi S., Boero M., Shigeta Y., Hayashi H., Okajima T. Molecular mechanism of a large conformational change of the quinone cofactor in the semiquinone intermediate of bacterial copper amine oxidase. Chem. Sci. 2022;13:10923–10938. doi: 10.1039/D2SC01356H. PubMed DOI PMC
Medda R., Padiglia A., Floris G. Plant copper-amine oxidase. Phytochemistry. 1995;39:1–9. doi: 10.1016/0031-9422(94)00756-J. DOI
Vianello F., Malek-Mirzayans A., Di Paolo M.L., Stevanato R., Rigo A. Purification and characterization of amine oxidase from pea seedling. Protein Express. Purif. 1999;15:196–201. doi: 10.1006/prep.1998.1012. PubMed DOI
Macholán L., Minář J. The depression of the synthesis of pea diamine oxidase due to light and the verification of its participation in growth processes using competitive inhibitors. Biol. Plant. 1974;16:86–93. doi: 10.1007/BF02920782. DOI
Tavladoraki P., Cona A., Angelini R. Copper-containing amine oxidases and FAD-dependent polyamine oxidases are key players in plant tissue differentiation and organ development. Front. Plant Sci. 2016;7:824. doi: 10.3389/fpls.2016.00824. PubMed DOI PMC
Pietrangeli P., Federico R., Mondovì B., Morpurgo L. Substrate specificity of copper-containing plant amine oxidases. J. Inorg. Chem. 2007;101:997–1004. doi: 10.1016/j.jinorgbio.2007.03.014. PubMed DOI
Niculescu M., Frébort I., Peč P., Galuszka P., Mattiasson B., Csöregi E. Amine oxidase based amperometric biosensors for histamine detection. Electroanalysis. 2000;12:369–375. doi: 10.1002/(SICI)1521-4109(20000301)12:5<369::AID-ELAN369>3.0.CO;2-J. DOI
Di Fabio E., Incocciati A., Boffi A., Bonamore A., Macone A. Biocatalytic production of aldehydes: Exploring the potential of Lathyrus cicera amine oxidase. Biomolecules. 2021;11:1540. doi: 10.3390/biom11101540. PubMed DOI PMC
Holmstedt B., Larsson L., Tham R. Further studies of a spectrophotometric method for the determination of diamine oxidase activity. Biochim. Biophys. Acta. 1961;48:182–186. doi: 10.1016/0006-3002(61)90530-3. PubMed DOI
Smith T.A. Polyamine oxidation by enzymes from Hordeum vulgare and Pisum sativum seedlings. Phytochemistry. 1974;13:1075–1081. doi: 10.1016/0031-9422(74)80077-4. DOI
Smith T.A., Barker J.H.A. The di- and polyamine oxidase of plants. In: Zappia V., Pegg A.E., editors. Progress in Polyamine Research: Novel Biochemical, Pharmacological, and Clinical Aspects. Volume 250. Plenum Press; New York, NY, USA: 1988. pp. 573–587. Advances in Experimental Medicine and Biology. PubMed DOI
Angelini R., Rea G., Federico R., D’Ovidio R. Spatial distribution and temporal accumulation of mRNA encoding diamine oxidase during lentil (Lens culinaris Medicus) seedling development. Plant Sci. 1996;119:103–113. doi: 10.1016/0168-9452(96)04453-6. DOI
Kounga P.C., Neree A.T., Pietrangeli P., Marcocci L., Mateescu M.A. Faster and sensitive zymographic detection of oxidases generating hydrogen peroxide. The case of diamine oxidase. Anal. Biochem. 2022;648:114676. doi: 10.1016/j.ab.2022.114676. PubMed DOI
Macholán L., Haubrová J. Isolation and some characteristics of diamine oxidase from etiolated pea seedlings. Collect. Czech. Chem. Commun. 1976;41:2987–2996. doi: 10.1135/cccc19762987. DOI
Schwelberger H.G., Feurle J. Luminometric determination of amine oxidase activity. Inflamm. Res. 2007;56:S53–S54. doi: 10.1007/s00011-006-0526-6. PubMed DOI
Pietta P., Calatroni A., Colombo R. Determination of diamine oxidase activity by high-performance liquid chromatograph. J. Chromatogr. A. 1982;243:123–129. doi: 10.1016/S0021-9673(00)88170-4. DOI
Šebela M. The use of matrix-assisted laser desorption/ionization mass spectrometry in enzyme activity assays and its position in the context of other available methods. Mass Spectrom. Rev. 2023;42:1008–1031. doi: 10.1002/mas.21733. PubMed DOI
Ling L., Xiao C., Wang S., Guo L., Guo X. A pyrene linked peptide probe for quantitative analysis of protease activity via MALDI TOF-MS. Talanta. 2019;200:236–241. doi: 10.1016/j.talanta.2019.03.055. PubMed DOI
Chang H.L., Su K.Y., Goodman S.D., Yen R.S., Cheng W.C., Yang Y.C., Lin L.I., Chang S.Y., Fang W. Measurement of uracil-DNA glycosylase activity by matrix assisted laser desorption/ionization time-of-flight mass spectrometry technique. DNA Repair. 2021;97:103028. doi: 10.1016/j.dnarep.2020.103028. PubMed DOI
Bungert D., Heinzle E., Tholey A. Quantitative matrix-assisted laser desorption/ionization mass spectrometry for the determination of enzyme activities. Anal. Biochem. 2004;326:167–175. doi: 10.1016/j.ab.2003.11.013. PubMed DOI
Anderson S.E., Fahey N.S., Park J., O’Kane P.T., Mirkin C.A., Mrksich M. A high-throughput SAMDI-mass spectrometry assay for isocitrate dehydrogenase 1. Analyst. 2020;145:3899–3908. doi: 10.1039/D0AN00174K. PubMed DOI PMC
Guo Z., Zhang Q., Zou H., Guo B., Ni J. A method for the analysis of low-mass molecules by MALDI-TOF mass spectrometry. Anal. Chem. 2002;74:1637–1641. doi: 10.1021/ac010979m. PubMed DOI
Šebela M., Luhová L., Frébort I., Hirota S., Faulhammer H.G., Stužka V., Peč P. Confirmation of the presence of a Cu(II)/topa quinone active site in the amine oxidase from fenugreek seedlings. J. Exp. Bot. 1997;48:1897–1907. doi: 10.1093/jxb/48.11.1897. DOI
Šebela M., Luhová L., Frébort I., Faulhammer H.G., Hirota S., Zajoncová L., Stužka V., Peč P. Analysis of the active sites of copper/topa quinone-containing amine oxidases from Lathyrus odoratus and L. sativus seedlings. Phytochem. Anal. 1998;9:211–222. doi: 10.1002/(SICI)1099-1565(199809/10)9:5<211::AID-PCA407>3.0.CO;2-X. DOI
Macholán L., Rozprimová L., Sedláčková E. Oxidative deamination of 2-hydroxy derivatives of putrescine and cadaverine by pea-seedling and pig-kidney diamine oxidase. Biochim. Biophys. Acta. 1967;136:258–264. doi: 10.1016/0304-4165(67)90070-0. PubMed DOI
Medda R., Bellelli A., Peč P., Federico R., Cona A., Floris G. Copper amine oxidases from plants. In: Floris G., Mondovì B., editors. Copper Amine Oxidases: Structures, Catalytic Mechanisms and Role in Pathophysiology. CRC Press; Boca Raton, FL, USA: 2009. pp. 39–50. DOI
Mantle T.J., Harris D.A. Chapter 7 Spectrophotometric assays. In: Gore M.G., editor. Spectrophotometry and Spectrofluorimetry: A Practical Approach. Oxford University Press; Oxford, UK: 2000. pp. 183–208. DOI
Nicu L., Leïchlé T. Biosensors and tools for surface functionalization from the macro- to the nanoscale: The way forward. J. Appl. Phys. 2008;104:111101. doi: 10.1063/1.2973147. DOI
Masopustová M., Goga A., Soural M., Kopečná M., Šebela M. N-carboxyacyl and N-α-aminoacyl derivatives of aminoaldehydes as shared substrates of plant aldehyde dehydrogenases 10 and 7. Amino Acids. 2024;56:52. doi: 10.1007/s00726-024-03415-4. PubMed DOI PMC
Duncan M.W., Roder H., Hunsucker S.W. Quantitative matrix-assisted laser desorption/ionization mass spectrometry. Brief Funct. Genom. Proteomic. 2008;7:355–370. doi: 10.1093/bfgp/eln041. PubMed DOI PMC
Luhová L., Šebela M., Frébort I., Zajoncová L., Faulhammer H.G., Peč P. Screening of the occurrence of copper amine oxidases in Fabaceae plants. Biol. Plant. 1998;41:241–254. doi: 10.1023/A:1001822831761. DOI
Kruger N.J. Errors and artifacts in coupled spectrophotometric assays of enzyme activity. Phytochemistry. 1995;38:1065–1071. doi: 10.1016/0031-9422(94)00787-T. PubMed DOI
Mancuso A.J., Huang S.L., Swern D. Oxidation of long-chain and related alcohols to carbonyls by dimethyl sulfoxide “activated” by oxalyl chloride. J. Org. Chem. 1978;43:2480–2482. doi: 10.1021/jo00406a041. DOI
Šebela M., Kopečný D., Lamplot Z., Havliš J., Thomas H., Shevchenko A. Thermostable β-cyclodextrin-conjugates of two similar plant amine oxidases and their properties. Biotechnol. Appl. Biochem. 2005;41:77–84. doi: 10.1042/BA20040047. PubMed DOI
Frébort I., Haviger A., Peč P. Employment of guaiacol for the determination of activities of enzymes generating hydrogen peroxide and for the determination of glucose in blood and urine. Biológia. 1989;44:729–737.
Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. PubMed DOI