-
Something wrong with this record ?
Structure and topology around the cleavage site regulate post-translational cleavage of the HIV-1 gp160 signal peptide
EL. Snapp, N. McCaul, M. Quandte, Z. Cabartova, I. Bontjer, C. Källgren, I. Nilsson, A. Land, G. von Heijne, RW. Sanders, I. Braakman,
Language English Country England, Great Britain
Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't
NLK
Directory of Open Access Journals
from 2013
Free Medical Journals
from 2012
PubMed Central
from 2012
Europe PubMed Central
from 2012
ProQuest Central
from 2012-01-01
Open Access Digital Library
from 2012-01-01
Open Access Digital Library
from 2013-01-01
Health & Medicine (ProQuest)
from 2012-01-01
ROAD: Directory of Open Access Scholarly Resources
from 2012
PubMed
28753126
DOI
10.7554/elife.26067
Knihovny.cz E-resources
- MeSH
- Cell Line MeSH
- HIV Envelope Protein gp160 chemistry metabolism MeSH
- HIV-1 physiology MeSH
- Protein Conformation MeSH
- Humans MeSH
- Protein Sorting Signals * MeSH
- Proteolysis MeSH
- Protein Folding * MeSH
- Protein Transport MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
Like all other secretory proteins, the HIV-1 envelope glycoprotein gp160 is targeted to the endoplasmic reticulum (ER) by its signal peptide during synthesis. Proper gp160 folding in the ER requires core glycosylation, disulfide-bond formation and proline isomerization. Signal-peptide cleavage occurs only late after gp160 chain termination and is dependent on folding of the soluble subunit gp120 to a near-native conformation. We here detail the mechanism by which co-translational signal-peptide cleavage is prevented. Conserved residues from the signal peptide and residues downstream of the canonical cleavage site form an extended alpha-helix in the ER membrane, which covers the cleavage site, thus preventing cleavage. A point mutation in the signal peptide breaks the alpha helix allowing co-translational cleavage. We demonstrate that postponed cleavage of gp160 enhances functional folding of the molecule. The change to early cleavage results in decreased viral fitness compared to wild-type HIV.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc18024791
- 003
- CZ-PrNML
- 005
- 20180710093833.0
- 007
- ta
- 008
- 180709s2017 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.7554/eLife.26067 $2 doi
- 035 __
- $a (PubMed)28753126
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Snapp, Erik Lee $u Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States.
- 245 10
- $a Structure and topology around the cleavage site regulate post-translational cleavage of the HIV-1 gp160 signal peptide / $c EL. Snapp, N. McCaul, M. Quandte, Z. Cabartova, I. Bontjer, C. Källgren, I. Nilsson, A. Land, G. von Heijne, RW. Sanders, I. Braakman,
- 520 9_
- $a Like all other secretory proteins, the HIV-1 envelope glycoprotein gp160 is targeted to the endoplasmic reticulum (ER) by its signal peptide during synthesis. Proper gp160 folding in the ER requires core glycosylation, disulfide-bond formation and proline isomerization. Signal-peptide cleavage occurs only late after gp160 chain termination and is dependent on folding of the soluble subunit gp120 to a near-native conformation. We here detail the mechanism by which co-translational signal-peptide cleavage is prevented. Conserved residues from the signal peptide and residues downstream of the canonical cleavage site form an extended alpha-helix in the ER membrane, which covers the cleavage site, thus preventing cleavage. A point mutation in the signal peptide breaks the alpha helix allowing co-translational cleavage. We demonstrate that postponed cleavage of gp160 enhances functional folding of the molecule. The change to early cleavage results in decreased viral fitness compared to wild-type HIV.
- 650 _2
- $a buněčné linie $7 D002460
- 650 _2
- $a HIV obalový protein gp160 $x chemie $x metabolismus $7 D019302
- 650 _2
- $a HIV-1 $x fyziologie $7 D015497
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a konformace proteinů $7 D011487
- 650 12
- $a sbalování proteinů $7 D017510
- 650 12
- $a proteiny - lokalizační signály $7 D021382
- 650 _2
- $a transport proteinů $7 D021381
- 650 _2
- $a proteolýza $7 D059748
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a Research Support, N.I.H., Extramural $7 D052061
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a McCaul, Nicholas $u Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, Utrecht, Netherlands.
- 700 1_
- $a Quandte, Matthias $u Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, Utrecht, Netherlands.
- 700 1_
- $a Cabartova, Zuzana $u National Institute of Public Health, National Reference Laboratory for Viral Hepatitis, Prague, Czech Republic.
- 700 1_
- $a Bontjer, Ilja $u Department of Medical Microbiology, Laboratory of Experimental Virology, Center for Infection and Immunity Amsterdam, Academic Medical Center, Amsterdam, Netherlands.
- 700 1_
- $a Källgren, Carolina $u Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden. Science for Life Laboratory, Stockholm University, Solna, Sweden.
- 700 1_
- $a Nilsson, IngMarie $u Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden. Science for Life Laboratory, Stockholm University, Solna, Sweden.
- 700 1_
- $a Land, Aafke $u Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, Utrecht, Netherlands.
- 700 1_
- $a von Heijne, Gunnar $u Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden. Science for Life Laboratory, Stockholm University, Solna, Sweden.
- 700 1_
- $a Sanders, Rogier W $u Department of Medical Microbiology, Laboratory of Experimental Virology, Center for Infection and Immunity Amsterdam, Academic Medical Center, Amsterdam, Netherlands.
- 700 1_
- $a Braakman, Ineke $u Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, Utrecht, Netherlands.
- 773 0_
- $w MED00188753 $t eLife $x 2050-084X $g Roč. 6, č. - (2017)
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/28753126 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20180709 $b ABA008
- 991 __
- $a 20180710094123 $b ABA008
- 999 __
- $a ok $b bmc $g 1316922 $s 1021712
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2017 $b 6 $c - $e 20170728 $i 2050-084X $m eLife $n eLife $x MED00188753
- LZP __
- $a Pubmed-20180709