Current Adenosinergic Therapies: What Do Cancer Cells Stand to Gain and Lose?

. 2021 Nov 22 ; 22 (22) : . [epub] 20211122

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34830449

Grantová podpora
EATRIS-CZ, LM2018133 Ministry of Education Youth and Sports
CZ-OPENSCREEN, LM2018130 Ministry of Education Youth and Sports
ENOCH No. CZ.02.1.01/0.0/0.0/16_019/0000868 European Regional Development Fund
GACR 19-08124S Czech Science Foundation
Czech National Centres of Competence, project "PerMed" Personalized Medicine - Diagnostics and Therapy (TN01000013). Technology Agency of the Czech Republic

A key objective in immuno-oncology is to reactivate the dormant immune system and increase tumour immunogenicity. Adenosine is an omnipresent purine that is formed in response to stress stimuli in order to restore physiological balance, mainly via anti-inflammatory, tissue-protective, and anti-nociceptive mechanisms. Adenosine overproduction occurs in all stages of tumorigenesis, from the initial inflammation/local tissue damage to the precancerous niche and the developed tumour, making the adenosinergic pathway an attractive but challenging therapeutic target. Many current efforts in immuno-oncology are focused on restoring immunosurveillance, largely by blocking adenosine-producing enzymes in the tumour microenvironment (TME) and adenosine receptors on immune cells either alone or combined with chemotherapy and/or immunotherapy. However, the effects of adenosinergic immunotherapy are not restricted to immune cells; other cells in the TME including cancer and stromal cells are also affected. Here we summarise recent advancements in the understanding of the tumour adenosinergic system and highlight the impact of current and prospective immunomodulatory therapies on other cell types within the TME, focusing on adenosine receptors in tumour cells. In addition, we evaluate the structure- and context-related limitations of targeting this pathway and highlight avenues that could possibly be exploited in future adenosinergic therapies.

Zobrazit více v PubMed

Moser G.H., Schrader J., Deussen A. Turnover of adenosine in plasma of human and dog-blood. Am. J. Physiol. 1989;256:C799–C806. doi: 10.1152/ajpcell.1989.256.4.C799. PubMed DOI

Lofgren L., Pehrsson S., Hagglund G., Tjellstrom H., Nylander S. Accurate measurement of endogenous adenosine in human blood. PLoS ONE. 2018;13:e0205707. doi: 10.1371/journal.pone.0205707. PubMed DOI PMC

Fredholm B.B. Physiological and pathophysiological roles of adenosine. Sleep Biol. Rhythm. 2011;9:24–28. doi: 10.1111/j.1479-8425.2010.00460.x. DOI

Andine P., Rudolphi K.A., Fredholm B.B., Hagberg H. Effect of propentofylline (HWA-285) on extracellular purines and excitatory amino-acids in ca1 of rat hippocampus during transient ischemia. Br. J. Pharmacol. 1990;100:814–818. doi: 10.1111/j.1476-5381.1990.tb14097.x. PubMed DOI PMC

Pedata F., Corsi C., Melani A., Bordoni F., Latini S. Adenosine extracellular brain concentrations and role of A(2A) receptors in ischemia. Ann. N. Y. Acad. Sci. 2001;939:74–84. doi: 10.1111/j.1749-6632.2001.tb03614.x. PubMed DOI

Blay J., White T.D., Hoskin D.W. The extracellular fluid of solid carcinomas contains immunosuppressive concentrations of adenosine. Cancer Res. 1997;57:2602–2605. PubMed

Boison D., Yegutkin G.G. Adenosine Metabolism: Emerging Concepts for Cancer Therapy. Cancer Cell. 2019;36:582–596. doi: 10.1016/j.ccell.2019.10.007. PubMed DOI PMC

Chiarella A.M., Ryu Y.K., Manji G.A., Rustgi A.K. Extracellular ATP and Adenosine in Cancer Pathogenesis and Treatment. Trends Cancer. 2021;7:731–750. doi: 10.1016/j.trecan.2021.04.008. PubMed DOI

Williams-Karnesky R.L., Sandau U.S., Lusardi T.A., Lytle N.K., Farrell J.M., Pritchard E.M., Kaplan D.L., Boison D. Epigenetic changes induced by adenosine augmentation therapy prevent epileptogenesis. J. Clin. Investig. 2013;123:3552–3563. doi: 10.1172/JCI65636. PubMed DOI PMC

Boswell-Casteel R.C., Hays F.A. Equilibrative nucleoside transporters A review. Nucleosides Nucleotides Nucleic Acids. 2017;36:7–30. doi: 10.1080/15257770.2016.1210805. PubMed DOI PMC

Yegutkin G.G. Enzymes involved in metabolism of extracellular nucleotides and nucleosides: Functional implications and measurement of activities. Crit. Rev. Biochem. Mol. Biol. 2014;49:473–497. doi: 10.3109/10409238.2014.953627. PubMed DOI

Drury A.N., Szent-Gyorgyi A. The physiological activity of adenine compounds with especial reference to their action upon the mammalian heart. J. Physiol. 1929;68:213–237. doi: 10.1113/jphysiol.1929.sp002608. PubMed DOI PMC

Allard B., Allard D., Buisseret L., Stagg J. The adenosine pathway in immuno-oncology. Nat. Rev. Clin. Oncol. 2020;17:611–629. doi: 10.1038/s41571-020-0382-2. PubMed DOI

Pasquini S., Contri C., Borea P.A., Vincenzi F., Varani K. Adenosine and Inflammation: Here, There and Everywhere. Int. J. Mol. Sci. 2021;22:7685. doi: 10.3390/ijms22147685. PubMed DOI PMC

Azambuja J.H., Ludwig N., Braganhol E., Whiteside T.L. Inhibition of the Adenosinergic Pathway in Cancer Rejuvenates Innate and Adaptive Immunity. Int. J. Mol. Sci. 2019;20:5698. doi: 10.3390/ijms20225698. PubMed DOI PMC

Xu R., Boudreau A., Bissell M.J. Tissue architecture and function: Dynamic reciprocity via extra- and intra-cellular matrices. Cancer Metastasis Rev. 2009;28:167–176. doi: 10.1007/s10555-008-9178-z. PubMed DOI PMC

Lyssiotis C.A., Kimmelman A.C. Metabolic Interactions in the Tumor Microenvironment. Trends Cell Biol. 2017;27:873–885. doi: 10.1016/j.tcb.2017.06.003. PubMed DOI PMC

Stagg J., Smyth M.J. Extracellular adenosine triphosphate and adenosine in cancer. Oncogene. 2010;29:5346–5358. doi: 10.1038/onc.2010.292. PubMed DOI

Hernandez C., Huebener P., Schwabe R.F. Damage-associated molecular patterns in cancer: A double-edged sword. Oncogene. 2016;35:5931–5941. doi: 10.1038/onc.2016.104. PubMed DOI PMC

Antonioli L., Pacher P., Vizi E.S., Hasko G. CD39 and CD73 in immunity and inflammation. Trends Mol. Med. 2013;19:355–367. doi: 10.1016/j.molmed.2013.03.005. PubMed DOI PMC

Vijayan D., Young A., Teng M.W.L., Smyth M.J. Targeting immunosuppressive adenosine in cancer. Nat. Rev. Cancer. 2017;17:709–724. doi: 10.1038/nrc.2017.86. PubMed DOI

Borea P.A., Gessi S., Merighi S., Varani K. Adenosine as a Multi-Signalling Guardian Angel in Human Diseases: When, Where and How Does it Exert its Protective Effects? Trends Pharmacol. Sci. 2016;37:419–434. doi: 10.1016/j.tips.2016.02.006. PubMed DOI

Michaud M., Martins I., Sukkurwala A.Q., Adjemian S., Ma Y., Pellegatti P., Shen S., Kepp O., Scoazec M., Mignot G., et al. Autophagy-Dependent Anticancer Immune Responses Induced by Chemotherapeutic Agents in Mice. Science. 2011;334:1573–1577. doi: 10.1126/science.1208347. PubMed DOI

Allard D., Chrobak P., Allard B., Messaoudi N., Stagg J. Targeting the CD73-adenosine axis in immuno-oncology. Immunol. Lett. 2019;205:31–39. doi: 10.1016/j.imlet.2018.05.001. PubMed DOI

Long J.S., Crighton D., O’Prey J., MacKay G., Zheng L., Palmer T.M., Gottlieb E., Ryanl K.M. Extracellular Adenosine Sensing-A Metabolic Cell Death Priming Mechanism Downstream of p53. Mol. Cell. 2013;50:394–406. doi: 10.1016/j.molcel.2013.03.016. PubMed DOI

Di Virgilio F., Sarti A.C., Falzoni S., De Marchi E., Adinolfi E. Extracellular ATP and P2 purinergic signalling in the tumour microenvironment. Nat. Rev. Cancer. 2018;18:601–618. doi: 10.1038/s41568-018-0037-0. PubMed DOI

Maj T., Wang W., Crespo J., Zhang H., Wang W., Wei S., Zhao L., Vatan L., Shao I., Szeliga W., et al. Oxidative stress controls regulatory T cell apoptosis and suppressor activity and PD-L1-blockade resistance in tumor. Nat. Immunol. 2017;18:1332–1341. doi: 10.1038/ni.3868. PubMed DOI PMC

Eltzschig H.K., Abdulla P., Hoffman E., Hamilton K.E., Daniels D., Schonfeld C., Loffler M., Reyes G., Duszenko M., Karhausen J., et al. HIF-1-dependent repression of equilibrative nucleoside transporter (ENT) in hypoxia. J. Exp. Med. 2005;202:1493–1505. doi: 10.1084/jem.20050177. PubMed DOI PMC

Chambers E.D., White A., Vang A., Wang Z.K., Ayala A., Weng T.T., Blackburn M., Choudhary G., Rounds S., Lu Q. Blockade of equilibrative nucleoside transporter 1/2 protects against Pseudomonas aeruginosa-induced acute lung injury and NLRP3 inflammasome activation. FASEB J. 2020;34:1516–1531. doi: 10.1096/fj.201902286R. PubMed DOI PMC

Barletta K.E., Ley K., Mehrad B. Regulation of Neutrophil Function by Adenosine. Arterioscler. Thromb. Vasc. Biol. 2012;32:856–864. doi: 10.1161/ATVBAHA.111.226845. PubMed DOI PMC

Bhowmick N.A., Neilson E.G., Moses H.L. Stromal fibroblasts in cancer initiation and progression. Nature. 2004;432:332–337. doi: 10.1038/nature03096. PubMed DOI PMC

Yu M., Guo G., Huang L., Deng L.B., Chang C.S., Achyut B.R., Canning M., Xu N.C., Arbab A.S., Bollag R.J., et al. CD73 on cancer-associated fibroblasts enhanced by the A(2B)-mediated feedforward circuit enforces an immune checkpoint. Nat. Commun. 2020;11:515. doi: 10.1038/s41467-019-14060-x. PubMed DOI PMC

Hatfield S.M., Kjaergaard J., Lukashev D., Schreiber T.H., Belikoff B., Abbott R., Sethumadhavan S., Philbrook P., Ko K., Cannici R., et al. Immunological mechanisms of the antitumor effects of supplemental oxygenation. Sci. Transl. Med. 2015;7:277ra30. doi: 10.1126/scitranslmed.aaa1260. PubMed DOI PMC

Sitkovsky M.V., Hatfield S., Abbott R., Belikoff B., Lukashev D., Ohta A. Hostile, Hypoxia-A2-Adenosinergic Tumor Biology as the Next Barrier to Overcome for Tumor Immunologists. Cancer Immunol. Res. 2014;2:598–605. doi: 10.1158/2326-6066.CIR-14-0075. PubMed DOI PMC

Losenkova K., Zuccarini M., Karikoski M., Laurila J., Boison D., Jalkanen S., Yegutkin G.G. Compartmentalization of adenosine metabolism in cancer cells and its modulation during acute hypoxia. J. Cell Sci. 2020;133:jcs241463. doi: 10.1242/jcs.241463. PubMed DOI PMC

Young A., Mittal D., Stagg J., Smyth M.J. Targeting Cancer-Derived Adenosine: New Therapeutic Approaches. Cancer Discov. 2014;4:879–888. doi: 10.1158/2159-8290.CD-14-0341. PubMed DOI

Yan J.M., Li X.Y., Aguilera A.R., Xiao C., Jacoberger-Foisac C., Nowlan B., Robson S.C., Beers C., Moesta A.K., Geetha N., et al. Control of Metastases via Myeloid CD39 and NK Cell Effector Function. Cancer Immunol. Res. 2020;8:356–367. doi: 10.1158/2326-6066.CIR-19-0749. PubMed DOI

Yang R., Elsaadi S., Misund K., Abdollahi P., Vandsemb E.N., Moen S.H., Kusnierczyk A., Slupphaug G., Standal T., Waage A., et al. Conversion of ATP to adenosine by CD39 and CD73 in multiple myeloma can be successfully targeted together with adenosine receptor A2A blockade. J. Immunother. Cancer. 2020;8:e000610. doi: 10.1136/jitc-2020-000610. PubMed DOI PMC

Harvey J.B., Phan L.H., Villarreal O.E., Bowser J.L. CD73’s Potential as an Immunotherapy Target in Gastrointestinal Cancers. Front. Immunol. 2020;11:508. doi: 10.3389/fimmu.2020.00508. PubMed DOI PMC

Chen L.M., Diao L.X., Yang Y.B., Yi X.H., Rodriguez L., Li Y.L., Villalobos P.A., Cascone T., Liu X., Tan L., et al. CD38-Mediated Immunosuppression as a Mechanism of Tumor Cell Escape from PD-1/PD-L1 Blockade. Cancer Discov. 2018;8:1156–1175. doi: 10.1158/2159-8290.CD-17-1033. PubMed DOI PMC

Masjedi A., Ahmadi A., Ghani S., Malakotikhah F., Afjadi M.N., Irandoust M., Kiani F.K., Asl S.H., Atyabi F., Hassannia H., et al. Silencing adenosine A2a receptor enhances dendritic cell-based cancer immunotherapy. Nanomed. Nanotechnol. Biol. Med. 2020;29:102240. doi: 10.1016/j.nano.2020.102240. PubMed DOI

Borodovsky A., Barbon C.M., Wang Y.J., Ye M.W., Prickett L., Chandra D., Shaw J., Deng N.H., Sachsenmeier K., Clarke J.D., et al. Small molecule AZD4635 inhibitor of A(2A)R signaling rescues immune cell function including CD103(+) dendritic cells enhancing anti-tumor immunity. J. Immunother. Cancer. 2020;8:e000417. doi: 10.1136/jitc-2019-000417. PubMed DOI PMC

Zhang J.Y., Zhang Y., Qu B.X., Yang H.Y., Hu S.Q., Dong X.W. If small molecules immunotherapy comes, can the prime be far behind? Eur. J. Med. Chem. 2021;218:113356. doi: 10.1016/j.ejmech.2021.113356. PubMed DOI

Masoumi E., Jafarzadeh L., Mirzaei H.R., Alishah K., Fallah-Mehrjardi K., Rostamian H., Khakpoor-Koosheh M., Meshkani R., Noorbakhsh F., Hadjati J. Genetic and pharmacological targeting of A2a receptor improves function of anti-mesothelin CAR T cells. J. Exp. Clin. Cancer Res. 2020;39:49. doi: 10.1186/s13046-020-01546-6. PubMed DOI PMC

Beavis P.A., Henderson M.A., Giuffrida L., Mills J.K., Sek K., Cross R.S., Davenport A.J., John L.B., Mardiana S., Slaney C.Y., et al. Targeting the adenosine 2A receptor enhances chimeric antigen receptor T cell efficacy. J. Clin. Investig. 2017;127:929–941. doi: 10.1172/JCI89455. PubMed DOI PMC

Fong L., Hotson A., Powderly J.D., Sznol M., Heist R.S., Choueiri T.K., George S., Hughes B.G.M., Hellmann M.D., Shepard D.R., et al. Adenosine 2A Receptor Blockade as an Immunotherapy for Treatment-Refractory Renal Cell Cancer. Cancer Discov. 2020;10:40–53. doi: 10.1158/2159-8290.CD-19-0980. PubMed DOI PMC

Willingham S.B., Ho P.Y., Hotson A., Hill C., Piccione E.C., Hsieh J., Liu L., Buggy J.J., McCaffery I., Miller R.A. A2AR Antagonism with CPI-444 Induces Antitumor Responses and Augments Efficacy to Anti-PD-(L)1 and Anti-CTLA-4 in Preclinical Models. Cancer Immunol. Res. 2018;6:1136–1149. doi: 10.1158/2326-6066.CIR-18-0056. PubMed DOI

Sidders B., Zhang P., Goodwin K., O’Connor G., Russell D.L., Borodovsky A., Armenia J., McEwen R., Linghu B., Bendell J.C., et al. Adenosine Signaling Is Prognostic for Cancer Outcome and Has Predictive Utility for Immunotherapeutic Response. Clin. Cancer Res. 2020;26:2176–2187. doi: 10.1158/1078-0432.CCR-19-2183. PubMed DOI

Fredholm B.B., Ijzerman A.P., Jacobson K.A., Klotz K.N., Linden J. International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol. Rev. 2001;53:527–552. PubMed PMC

Fredholm B.B., Arslan G., Halldner L., Kull B., Schulte G., Wasserman W. Structure and function of adenosine receptors and their genes. Naunyn-Schmiedebergs Arch. Pharmacol. 2000;362:364–374. doi: 10.1007/s002100000313. PubMed DOI

Borea P.A., Gessi S., Merighi S., Vincenzi F., Varani K. Pharmacology of adenosine receptors: The state of the art. Physiol. Rev. 2018;98:1591–1625. doi: 10.1152/physrev.00049.2017. PubMed DOI

Navarro G., Cordomi A., Zelman-Femiak M., Brugarolas M., Moreno E., Aguinaga D., Perez-Benito L., Cortes A., Casado V., Mallol J., et al. Quaternary structure of a G-protein-coupled receptor heterotetramer in complex with G(i) and G(s) BMC Biol. 2016;14:26. doi: 10.1186/s12915-016-0247-4. PubMed DOI PMC

Fredholm B.B., Ijzerman A.P., Jacobson K.A., Linden J., Muller C.E. International Union of Basic and Clinical Pharmacology. LXXXI. Nomenclature and Classification of Adenosine Receptors—An Update. Pharmacol. Rev. 2011;63:1–34. doi: 10.1124/pr.110.003285. PubMed DOI PMC

Townsendnicholson A., Baker E., Schofield P.R., Sutherland G.R. Localization of the adenosine-A1-receptor subtype gene (ADORA1) to chromosome 1Q32.1. Genomics. 1995;26:423–425. doi: 10.1016/0888-7543(95)80236-F. PubMed DOI

Le F., TownsendNicholson A., Baker E., Sutherland G.R., Schofield P.R. Characterization and chromosomal localization of the human A2a adenosine receptor gene: ADORA2A. Biochem. Biophys. Res. Commun. 1996;223:461–467. doi: 10.1006/bbrc.1996.0916. PubMed DOI

Steingold J.M., Hatfield S.M. Targeting Hypoxia-A2A Adenosinergic Immunosuppression of Antitumor T Cells During Cancer Immunotherapy. Front. Immunol. 2020;11:7. doi: 10.3389/fimmu.2020.570041. PubMed DOI PMC

Yan L., Burbiel J.C., Maass A., Muller C.E. Adenosine receptor agonists: From basic medicinal chemistry to clinical development. Expert Opin. Emerg. Drugs. 2003;8:537–576. doi: 10.1517/14728214.8.2.537. PubMed DOI

Monitto C.L., Levitt R.C., Disilvestre D., Holroyd K.J. LOCALIZATION OF THE A(3) ADENOSINE RECEPTOR GENE (ADORA3) TO HUMAN-CHROMOSOME 1P. Genomics. 1995;26:637–638. doi: 10.1016/0888-7543(95)80194-Q. PubMed DOI

Salvatore C.A., Jacobson M.A., Taylor H.E., Linden J., Johnson R.G. Molecular-cloning and characterization of the human-A(3) adenosine receptor. Proc. Natl. Acad. Sci. USA. 1993;90:10365–10369. doi: 10.1073/pnas.90.21.10365. PubMed DOI PMC

Chen J.F., Eltzschig H.K., Fredholm B.B. Adenosine receptors as drug targets—What are the challenges? Nat. Rev. Drug Discov. 2013;12:265–286. doi: 10.1038/nrd3955. PubMed DOI PMC

Madi L., Ochaion A., Rath-Wolfson L., Bar-Yehuda S., Erlanger A., Ohana G., Harish A., Merimski O., Barer F., Fishman P. The A(3) adenosine receptor is highly expressed in tumor versus normal cells: Potential target for tumor growth inhibition. Clin. Cancer Res. 2004;10:4472–4479. doi: 10.1158/1078-0432.CCR-03-0651. PubMed DOI

Lin X., Wang Z.Y., Xue G., Qin X.J., Wu J.F., Zhang G. ADORA1 is a diagnostic-related biomarker and correlated with immune infiltrates in papillary thyroid carcinoma. J. Cancer. 2021;12:3997–4010. doi: 10.7150/jca.50743. PubMed DOI PMC

Kamai T., Kijima T., Tsuzuki T., Nukui A., Abe H., Arai K., Yoshida K.I. Increased expression of adenosine 2A receptors in metastatic renal cell carcinoma is associated with poorer response to anti-vascular endothelial growth factor agents and anti-PD-1/Anti-CTLA4 antibodies and shorter survival. Cancer Immunol. Immunother. 2021;70:2009–2021. doi: 10.1007/s00262-020-02843-x. PubMed DOI PMC

Ni S., Wei Q., Yang L. ADORA1 Promotes Hepatocellular Carcinoma Progression via PI3K/AKT Pathway. OncoTargets Ther. 2020;13:12409–12419. doi: 10.2147/OTT.S272621. PubMed DOI PMC

Pan S.M., Liang S.X., Wang X.Y. ADORA1 promotes nasopharyngeal carcinoma cell progression through regulation of PI3K/AKT/GSK-3 beta/beta-catenin signaling. Life Sci. 2021;278:119581. doi: 10.1016/j.lfs.2021.119581. PubMed DOI

Ma H.Y., Li Q.Z., Wang J., Pan J., Su Z.D., Liu S. Dual Inhibition of Ornithine Decarboxylase and A(1) Adenosine Receptor Efficiently Suppresses Breast Tumor Cells. Front. Oncol. 2021;11:636373. doi: 10.3389/fonc.2021.636373. PubMed DOI PMC

Shi L.S., Wu Z.Y., Miao J., Du S.C., Ai S.C., Xu E., Feng M., Song J., Guan W.X. Adenosine interaction with adenosine receptor A2a promotes gastric cancer metastasis by enhancing PI3K-AKT-mTOR signaling. Mol. Biol. Cell. 2019;30:2527–2534. doi: 10.1091/mbc.E19-03-0136. PubMed DOI PMC

Ma X.-L., Shen M.-N., Hu B., Wang B.-L., Yang W.-J., Lv L.-H., Wang H., Zhou Y., Jin A.-L., Sun Y.-F., et al. CD73 promotes hepatocellular carcinoma progression and metastasis via activating PI3K/AKT signaling by inducing Rap1-mediated membrane localization of P110 and predicts poor prognosis. J. Hematol. Oncol. 2019;12:37. doi: 10.1186/s13045-019-0724-7. PubMed DOI PMC

Sitkovsky M.V. Lessons from the A2A Adenosine Receptor Antagonist-Enabled Tumor Regression and Survival in Patients with Treatment-Refractory Renal Cell Cancer. Cancer Discov. 2020;10:16–19. doi: 10.1158/2159-8290.CD-19-1280. PubMed DOI

Seitz L., Jin L.X., Leleti M., Ashok D., Jeffrey J., Rieger A., Tiessen R.G., Arold G., Tan J.B.L., Powers J.P., et al. Safety, tolerability, and pharmacology of AB928, a novel dual adenosine receptor antagonist, in a randomized, phase 1 study in healthy volunteers. Investig. New Drugs. 2019;37:711–721. doi: 10.1007/s10637-018-0706-6. PubMed DOI

Harshman L.C., Chu M., George S., Gordon B., Hughes M., Carthon B.C., Fong L., Merchan J.R., Kwei L., Hotson A.N., et al. Adenosine receptor blockade with ciforadenant plus/- atezolizumab in advanced metastatic castration-resistant prostate cancer (mCRPC) J. Clin. Oncol. 2020;38:129. doi: 10.1200/JCO.2020.38.6_suppl.129. DOI

Wilkat M., Bast H., Drees R., Dunser J., Mahr A., Azoitei N., Marienfeld R., Frank F., Brhel M., Ushmorov A., et al. Adenosine receptor 2B activity promotes autonomous growth, migration as well as vascularization of head and neck squamous cell carcinoma cells. Int. J. Cancer. 2020;147:202–217. doi: 10.1002/ijc.32835. PubMed DOI

Yi Y., Zhou Y.H., Chug X., Zheng X.P., Fei D., Lei J., Qi H.Y., Dai Y.B. Blockade of Adenosine A2b Receptor Reduces Tumor Growth and Migration in Renal Cell Carcinoma. J. Cancer. 2020;11:421–431. doi: 10.7150/jca.31245. PubMed DOI PMC

Koussemou M., Klotz K.N. Agonists activate different A(2B) adenosine receptor signaling pathways in MBA-MD-231 breast cancer cells with distinct potencies. Naunyn-Schmiedebergs Arch. Pharmacol. 2019;392:1515–1521. doi: 10.1007/s00210-019-01695-2. PubMed DOI

Koussemou M., Lorenz K., Klotz K.-N. The A(2B) adenosine receptor in MDA-MB-231 breast cancer cells diminishes ERK1/2 phosphorylation by activation of MAPK-phosphatase-1. PLoS ONE. 2018;13:e0202914. doi: 10.1371/journal.pone.0202914. PubMed DOI PMC

Pottie E., Tosh D.K., Gao Z.G., Jacobson K.A., Stove C.P. Assessment of biased agonism at the A(3) adenosine receptor using beta-arrestin and miniG alpha(i) recruitment assays. Biochem. Pharmacol. 2020;177:113934. doi: 10.1016/j.bcp.2020.113934. PubMed DOI PMC

Smith J.S., Lefkowitz R.J., Rajagopal S. Biased signalling: From simple switches to allosteric microprocessors. Nat. Rev. Drug Discov. 2018;17:243–260. doi: 10.1038/nrd.2017.229. PubMed DOI PMC

Long J.S., Schoonen P.M., Graczyk D., O’Prey J., Ryan K.M. p73 engages A2B receptor signalling to prime cancer cells to chemotherapy-induced death. Oncogene. 2015;34:5152–5162. doi: 10.1038/onc.2014.436. PubMed DOI PMC

Young A., Ngiow S.F., Madore J., Reinhardt J., Landsberg J., Chitsazan A., Rautela J., Bald T., Barkauskas D.S., Ahern E., et al. Targeting Adenosine in BRAF-Mutant Melanoma Reduces Tumor Growth and Metastasis. Cancer Res. 2017;77:4684–4696. doi: 10.1158/0008-5472.CAN-17-0393. PubMed DOI

Fishman P., Bar-Yehuda S., Barer F., Madi L., Multani A.S., Pathak S. The A3 adenosine receptor as a new target for cancer therapy and chemoprotection. Exp. Cell Res. 2001;269:230–236. doi: 10.1006/excr.2001.5327. PubMed DOI

Merighi S., Benini A., Mirandola P., Gessi S., Varani K., Leung E., Maclennan S., Borea P.A. A(3) adenosine receptor activation inhibits cell proliferation via phosphatidylinositol 3-kinase/Akt-dependent inhibition of the extracellular signal-regulated kinase 1/2 phosphorylation in A375 human melanoma cells. J. Biol. Chem. 2005;280:19516–19526. doi: 10.1074/jbc.M413772200. PubMed DOI

Cohen S., Stemmer S.M., Zozulya G., Ochaion A., Patoka R., Barer F., Bar-Yehuda S., Rath-Wolfson L., Jacobson K.A., Fishman P. CF102 an A(3) Adenosine Receptor Agonist Mediates Anti-Tumor and Anti-Inflammatory Effects in the Liver. J. Cell. Physiol. 2011;226:2438–2447. doi: 10.1002/jcp.22593. PubMed DOI PMC

Stemmer S.M., Manojlovic N.S., Marinca M.V., Petrov P., Cherciu N., Ganea D., Ciuleanu T.E., Pusca I.A., Beg M.S., Purcell W.T., et al. Namodenoson in Advanced Hepatocellular Carcinoma and Child-Pugh B Cirrhosis: Randomized Placebo-Controlled Clinical Trial. Cancers. 2021;13:187. doi: 10.3390/cancers13020187. PubMed DOI PMC

Hanahan D., Weinberg R.A. Hallmarks of Cancer: The Next Generation. Cell. 2011;144:646–674. doi: 10.1016/j.cell.2011.02.013. PubMed DOI

Schito L., Semenza G.L. Hypoxia-Inducible Factors: Master Regulators of Cancer Progression. Trends Cancer. 2016;2:758–770. doi: 10.1016/j.trecan.2016.10.016. PubMed DOI

Wong C.C.-L., Zhang H., Gilkes D.M., Chen J., Wei H., Chaturvedi P., Hubbi M.E., Semenza G.L. Inhibitors of hypoxia-inducible factor 1 block breast cancer metastatic niche formation and lung metastasis. J. Mol. Med. 2012;90:803–815. doi: 10.1007/s00109-011-0855-y. PubMed DOI PMC

Hatfield S.M., Kjaergaard J., Lukashev D., Belikoff B., Schreiber T.H., Sethumadhavan S., Abbott R., Philbrook P., Thayer M., Shujia D., et al. Systemic oxygenation weakens the hypoxia and hypoxia inducible factor 1 alpha-dependent and extracellular adenosine-mediated tumor protection. J. Mol. Med. 2014;92:1283–1292. doi: 10.1007/s00109-014-1189-3. PubMed DOI PMC

Hatfield S.M., Sitkovsky M.V. Antihypoxic oxygenation agents with respiratory hyperoxia to improve cancer immunotherapy. J. Clin. Investig. 2020;130:5629–5637. doi: 10.1172/JCI137554. PubMed DOI PMC

Sitkovsky M.V. T regulatory cells: Hypoxia-adenosinergic suppression and re-direction of the immune response. Trends Immunol. 2009;30:102–108. doi: 10.1016/j.it.2008.12.002. PubMed DOI

Bullen J.W., Tchernyshyov I., Holewinski R.J., DeVine L., Wu F., Venkatraman V., Kass D.L., Cole R.N., Van Eyk J., Semenza G.L. Protein kinase A-dependent phosphorylation stimulates the transcriptional activity of hypoxia-inducible factor 1. Sci. Signal. 2016;9:ra56. doi: 10.1126/scisignal.aaf0583. PubMed DOI PMC

Kim S.E., Ko I.G., Jin J.J., Hwang L., Kim C.J., Kim S.H., Han J.H., Jeon J.W. Polydeoxyribonucleotide Exerts Therapeutic Effect by Increasing VEGF and Inhibiting Inflammatory Cytokines in Ischemic Colitis Rats. BioMed Res. Int. 2020;2020:2169083. doi: 10.1155/2020/2169083. PubMed DOI PMC

Ernens I., Leonard F., Vausort M., Rolland-Turner M., Devaux Y., Wagner D.R. Adenosine up-regulates vascular endothelial growth factor in human macrophages. Biochem. Biophys. Res. Commun. 2010;392:351–356. doi: 10.1016/j.bbrc.2010.01.023. PubMed DOI

Kong T., Westerman K.A., Faigle M., Eltzschig H.K., Colgan S.P. HIF-dependent induction of adenosine A2B receptor in hypoxia. FASEB J. 2006;20:2242–2250. doi: 10.1096/fj.06-6419com. PubMed DOI

Ngamsri K.C., Fabian F., Fuhr A., Gamper-Tsigaras J., Straub A., Fecher D., Steinke M., Walles H., Reutershan J., Konrad F.M. Sevoflurane Exerts Protective Effects in Murine Peritonitis-induced Sepsis via Hypoxia-inducible Factor 1 alpha/Adenosine A2B Receptor Signaling. Anesthesiology. 2021;135:136–150. doi: 10.1097/aln.0000000000003788. PubMed DOI

Novitskiy S.V., Ryzhov S., Zaynagetdinov R., Goldstein A.E., Huang Y.H., Tikhomirov O.Y., Blackburn M.R., Biaggioni I., Carbone D.P., Feoktistov I., et al. Adenosine receptors in regulation of dendritic cell differentiation and function. Blood. 2008;112:1822–1831. doi: 10.1182/blood-2008-02-136325. PubMed DOI PMC

Lan J., Lu H., Samanta D., Salman S., Lu Y., Semenza G.L. Hypoxia-inducible factor 1-dependent expression of adenosine receptor 2B promotes breast cancer stem cell enrichment. Proc. Natl. Acad. Sci. USA. 2018;115:E9640–E9648. doi: 10.1073/pnas.1809695115. PubMed DOI PMC

Torres-Pineda D.B., Mora-Garcia M.D., Garcia-Rocha R., Hernandez-Montes J., Weiss-Steider B., Montesinos-Montesinos J.J., Don-Lopez C.A., Marin-Aquino L.A., Munoz-Godinez R., Ibarra L.R.A., et al. Corrigendum to “Adenosine augments the production of IL-10 in cervical cancer cells through interaction with the A2B adenosine receptor, resulting in protection against the activity of cytotoxic T cells” [Cytokine 130 (2020) 155082] Cytokine. 2020;133:155110. doi: 10.1016/j.cyto.2020.155110. PubMed DOI

Kotanska M., Szafarz M.L., Mika K., Dziubina A., Bednarski M., Muller C.E., Sapa J., Kiec-Kononowicz K. PSB 603-a known selective adenosine A2B receptor antagonist—Has anti-inflammatory activity in mice. Biomed. Pharmacother. 2021;135 doi: 10.1016/j.biopha.2020.111164. PubMed DOI

Song X., Zhang Y., Zhang L., Song W., Shi L. Hypoxia enhances indoleamine 2,3-dioxygenase production in dendritic cells. Oncotarget. 2018;9:11572–11580. doi: 10.18632/oncotarget.24098. PubMed DOI PMC

Liu M., Wang X., Wang L., Ma X., Gong Z., Zhang S., Li Y. Targeting the IDO1 pathway in cancer: From bench to bedside. J. Hematol. Oncol. 2018;11:100. doi: 10.1186/s13045-018-0644-y. PubMed DOI PMC

Antonioli L., Fornai M., Pellegrini C., D’Antongiovanni V., Turiello R., Morello S., Hasko G., Blandizzi C. Adenosine Signaling in the Tumor Microenvironment. In: Birbrair A., editor. Tumor Microenvironment: Signaling Pathways—Part B (Advances in Experimental Medicine and Biology) Vol. 1270. Springer; Cham, Switzerland: 2021. pp. 145–167. PubMed

Rolland-Turner M., Goretti E., Bousquenaud M., Leonard F., Nicolas C., Zhang L., Maskali F., Marie P.-Y., Devaux Y., Wagner D. Adenosine Stimulates the Migration of Human Endothelial Progenitor Cells. Role ofCXCR4 and MicroRNA-150. PLoS ONE. 2013;8:e54135. doi: 10.1371/journal.pone.0054135. PubMed DOI PMC

Du X., Ou X., Song T., Zhang W., Cong F., Zhang S., Xiong Y. Adenosine A(2B) receptor stimulates angiogenesis by inducing VEGF and eNOS in human microvascular endothelial cells. Exp. Biol. Med. 2015;240:1472–1479. doi: 10.1177/1535370215584939. PubMed DOI PMC

Ushio-Fukai M., Nakamura Y. Reactive oxygen species and angiogenesis: NADPH oxidase as target for cancer therapy. Cancer Lett. 2008;266:37–52. doi: 10.1016/j.canlet.2008.02.044. PubMed DOI PMC

Ryzhov S.V., Pickup M.W., Chytil A., Gorska A.E., Zhang Q., Owens P., Feoktistov I., Moses H.L., Novitskiy S.V. Role of TGF-beta Signaling in Generation of CD39(+)CD73(+) Myeloid Cells in Tumors. J. Immunol. 2014;193:3155–3164. doi: 10.4049/jimmunol.1400578. PubMed DOI PMC

Vasiukov G., Novitskaya T., Zijlstra A., Owens P., Ye F., Zhao Z.G., Moses H.L., Blackwell T., Feoktistov I., Novitskiy S.V. Myeloid Cell-Derived TGF beta Signaling Regulates ECM Deposition in Mammary Carcinoma via Adenosine-Dependent Mechanisms. Cancer Res. 2020;80:2628–2638. doi: 10.1158/0008-5472.CAN-19-3954. PubMed DOI PMC

Howe A.K. Regulation of actin-based cell migration by cAMP/PKA. Biochim. Et Biophys. Acta-Mol. Cell Res. 2004;1692:159–174. doi: 10.1016/j.bbamcr.2004.03.005. PubMed DOI

Angioni R., Liboni C., Herkenne S., Sanchez-Rodriguez R., Borile G., Marcuzzi E., Cali B., Muraca M., Viola A. CD73(+) extracellular vesicles inhibit angiogenesis through adenosine A(2B) receptor signalling. J. Extracell. Vesicles. 2020;9:1757900. doi: 10.1080/20013078.2020.1757900. PubMed DOI PMC

Thakur S., Du J., Hourani S., Ledent C., Li J.-M. Inactivation of Adenosine A(2A) Receptor Attenuates Basal and Angiotensin II-induced ROS Production by Nox2 in Endothelial Cells. J. Biol. Chem. 2010;285:40104–40113. doi: 10.1074/jbc.M110.184606. PubMed DOI PMC

Chen L., Li L.D., Zhou C.S., Chen X., Cao Y.Q. Adenosine A2A receptor activation reduces brain metastasis via SDF-1/CXCR4 axis and protecting blood-brain barrier. Mol. Carcinog. 2020;59:390–398. doi: 10.1002/mc.23161. PubMed DOI

Bours M.J.L., Swennen E.L.R., Di Virgilio F., Cronstein B.N., Dagnelie P.C. Adenosine 5′-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation. Pharmacol. Ther. 2006;112:358–404. doi: 10.1016/j.pharmthera.2005.04.013. PubMed DOI

Popielarski M., Ponamarczuk H., Stasiak M., Gdula A., Bednarek R., Wolska N., Swiatkowska M. P2Y(12) receptor antagonists and AR receptor agonists regulates Protein Disulfide Isomerase secretion from platelets and endothelial cells. Biochem. Biophys. Res. Commun. 2020;526:756–763. doi: 10.1016/j.bbrc.2020.03.143. PubMed DOI

Bowser J.L., Broaddus R.R. CD73s protection of epithelial integrity: Thinking beyond the barrier. Tissue Barriers. 2016;4:11. doi: 10.1080/21688370.2016.1224963. PubMed DOI PMC

Ntantie E., Gonyo P., Lorimer E.L., Hauser A.D., Schuld N., McAllister D., Kalyanaraman B., Dwinell M.B., Auchampach J.A., Williams C.L. An Adenosine-Mediated Signaling Pathway Suppresses Prenylation of the GTPase Rap1B and Promotes Cell Scattering. Sci. Signal. 2013;6:ra39. doi: 10.1126/scisignal.2003374. PubMed DOI PMC

Hinz S., Jung D., Hauert D., Bachmann H.S. Molecular and Pharmacological Characterization of the Interaction between Human Geranylgeranyltransferase Type I and Ras-Related Protein Rap1B. Int. J. Mol. Sci. 2021;22:2501. doi: 10.3390/ijms22052501. PubMed DOI PMC

Lupia M., Angiolini F., Bertalot G., Freddi S., Sachsenmeier K.F., Chisci E., Kutryb-Zajac B., Confalonieri S., Smolenski R.T., Giovannoni R., et al. CD73 Regulates Stemness and Epithelial-Mesenchymal Transition in Ovarian Cancer-Initiating Cells. Stem Cell Rep. 2018;10:1412–1425. doi: 10.1016/j.stemcr.2018.02.009. PubMed DOI PMC

Ma X.-L., Hu B., Tang W.-G., Xie S.-H., Ren N., Guo L., Lu R.-Q. CD73 sustained cancer-stem-cell traits by promoting SOX9 expression and stability in hepatocellular carcinoma. J. Hematol. Oncol. 2020;13:11. doi: 10.1186/s13045-020-0845-z. PubMed DOI PMC

Tsiampali J., Neumann S., Giesen B., Koch K., Maciaczyk D., Janiak C., Hanggi D., Maciaczyk J. Enzymatic Activity of CD73 Modulates Invasion of Gliomas via Epithelial-Mesenchymal Transition-Like Reprogramming. Pharmaceuticals. 2020;13:378. doi: 10.3390/ph13110378. PubMed DOI PMC

Schwabe U., Ukena D., Lohse M.J. Xanthine derivatives as antagonists at A1 and A2 adenosine receptors. Naunyn-Schmiedebergs Arch. Pharmacol. 1985;330:212–221. doi: 10.1007/BF00572436. PubMed DOI

Torres A., Vargas Y., Uribe D., Jaramillo C., Gleisner A., Salazar-Onfray F., Lopez M.N., Melo R., Oyarzun C., San Martin R., et al. Adenosine A(3) receptor elicits chemoresistance mediated by multiple resistance-associated protein-1 in human glioblastoma stem-like cells. Oncotarget. 2016;7:67373–67386. doi: 10.18632/oncotarget.12033. PubMed DOI PMC

Gessi S., Sacchetto V., Fogli E., Merighi S., Varani K., Baraldi P.G., Tabrizi M.A., Leung E., Maclennan S., Borea P.A. Modulation of metalloproteinase-9 in U87MG glioblastoma cells by A(3) adenosine receptors. Biochem. Pharmacol. 2010;79:1483–1495. doi: 10.1016/j.bcp.2010.01.009. PubMed DOI

Torres A., Erices J.I., Sanchez F., Ehrenfeld P., Turchi L., Virolle T., Uribe D., Niechi I., Spichiger C., Rocha J.D., et al. Extracellular adenosine promotes cell migration/invasion of Glioblastoma Stem-like Cells through A(3) Adenosine Receptor activation under hypoxia. Cancer Lett. 2019;446:112–122. doi: 10.1016/j.canlet.2019.01.004. PubMed DOI

Liu T.Z., Wang X., Bai Y.F., Liao H.Z., Qiu S.C., Yang Y.Q., Yan X.H., Chen J., Guo H.B., Zhang S.Z. The HIF-2alpha dependent induction of PAP and adenosine synthesis regulates glioblastoma stem cell function through the A2B adenosine receptor. Int. J. Biochem. Cell Biol. 2014;49:8–16. doi: 10.1016/j.biocel.2014.01.007. PubMed DOI

Giacomelli C., Daniele S., Romei C., Tavanti L., Neri T., Piano I., Celi A., Martini C., Trincavelli M.L. The A(2B) Adenosine Receptor Modulates the Epithelial-Mesenchymal Transition through the Balance of cAMP/PKA and MAPK/ERK Pathway Activation in Human Epithelial Lung Cells. Front. Pharmacol. 2018;9:54. doi: 10.3389/fphar.2018.00054. PubMed DOI PMC

Daniele S., Zappelli E., Natali L., Martini C., Trincavelli M.L. Modulation of A(1) and A(2B) adenosine receptor activity: A new strategy to sensitise glioblastoma stem cells to chemotherapy. Cell Death Dis. 2014;5:e1539. doi: 10.1038/cddis.2014.487. PubMed DOI PMC

Jafari S.M., Joshaghani H.R., Panjehpour M., Aghaei M., Balajam N.Z. Apoptosis and cell cycle regulatory effects of adenosine by modulation of GLI-1 and ERK1/2 pathways in CD44(+) and CD24(−) breast cancer stem cells. Cell Prolif. 2017;50:e12345. doi: 10.1111/cpr.12345. PubMed DOI PMC

Jafari S.M., Joshaghani H.R., Panjehpour M., Aghaei M. A2B adenosine receptor agonist induces cell cycle arrest and apoptosis in breast cancer stem cells via ERK1/2 phosphorylation. Cell. Oncol. 2018;41:61–72. doi: 10.1007/s13402-017-0359-z. PubMed DOI

Jafari S.M., Panjehpour M., Aghaei M., Joshaghani H.R., Enderami S.E. A3 Adenosine Receptor Agonist Inhibited Survival of Breast Cancer Stem Cells via GLI-1 and ERK1/2 Pathway. J. Cell. Biochem. 2017;118:2909–2920. doi: 10.1002/jcb.25945. PubMed DOI

Pan D., Roy S., Gascard P., Zhao J., Chen-Tanyolac C., Tlsty T.D. SOX2, OCT3/4 and NANOG expression and cellular plasticity in rare human somatic cells requires CD73. Cell. Signal. 2016;28:1923–1932. doi: 10.1016/j.cellsig.2016.09.008. PubMed DOI PMC

Roy S., Gascard P., Dumont N., Zhao J., Pan D., Petrie S., Margeta M., Tlsty T.D. Rare somatic cells from human breast tissue exhibit extensive lineage plasticity. Proc. Natl. Acad. Sci. USA. 2013;110:4598–4603. doi: 10.1073/pnas.1218682110. PubMed DOI PMC

Kitabatake K., Kaji T., Tsukimoto M. Involvement of CD73 and A2B Receptor in Radiation-Induced DNA Damage Response and Cell Migration in Human Glioblastoma A172 Cells. Biol. Pharm. Bull. 2021;44:197–210. doi: 10.1248/bpb.b20-00654. PubMed DOI

Tanaka Y., Kitabatake K., Abe R., Tsukimoto M. Involvement of A2B Receptor in DNA Damage Response and Radiosensitizing Effect of A2B Receptor Antagonists on Mouse B16 Melanoma. Biol. Pharm. Bull. 2020;43:516–525. doi: 10.1248/bpb.b19-00976. PubMed DOI

Kitabatake K., Yoshida E., Kaji T., Tsukimoto M. Involvement of adenosine A2B receptor in radiation-induced translocation of epidermal growth factor receptor and DNA damage response leading to for radioresistance in human lung cancer cells. Biochim. Biophys. Acta—Gen. Subj. 2020;1864:14. doi: 10.1016/j.bbagen.2019.129457. PubMed DOI

Moeller B.J., Cao Y.T., Li C.Y., Dewhirst M.W. Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: Role of reoxygenation, free radicals, and stress granules. Cancer Cell. 2004;5:429–441. doi: 10.1016/S1535-6108(04)00115-1. PubMed DOI

Jin H., Lee J.S., Kim D.C., Ko Y.S., Lee G.W., Kim H.J. Increased Extracellular Adenosine in Radiotherapy-Resistant Breast Cancer Cells Enhances Tumor Progression through A2AR-Akt-beta-Catenin Signaling. Cancers. 2021;13:2105. doi: 10.3390/cancers13092105. PubMed DOI PMC

Oren Y., Tsabar M., Cuoco M.S., Amir-Zilberstein L., Cabanos H.F., Hutter J.-C., Hu B., Thakore P.I., Tabaka M., Fulco C.P., et al. Cycling cancer persister cells arise from lineages with distinct programs. Nature. 2021;596:576–582. doi: 10.1038/s41586-021-03796-6. PubMed DOI PMC

Raposo G., Stoorvogel W. Extracellular vesicles: Exosomes, microvesicles, and friends. J. Cell Biol. 2013;200:373–383. doi: 10.1083/jcb.201211138. PubMed DOI PMC

Di Iorio P., Ciccarelli R. Adenine-Based Purines and Related Metabolizing Enzymes: Evidence for Their Impact on Tumor Extracellular Vesicle Activities. Cells. 2021;10:188. doi: 10.3390/cells10010188. PubMed DOI PMC

Srinivasan S., Vannberg F.O., Dixon J.B. Lymphatic transport of exosomes as a rapid route of information dissemination to the lymph node. Sci. Rep. 2016;6:24436. doi: 10.1038/srep24436. PubMed DOI PMC

Clayton A., Al-Taei S., Webber J., Mason M.D., Tabi Z. Cancer Exosomes Express CD39 and CD73, Which Suppress T Cells through Adenosine Production. J. Immunol. 2011;187:676–683. doi: 10.4049/jimmunol.1003884. PubMed DOI

Tadokoro H., Hirayama A., Kudo R., Hasebe M., Yoshioka Y., Matsuzaki J., Yamamoto Y., Sugimoto M., Soga T., Ochiya T. Adenosine leakage from perforin-burst extracellular vesicles inhibits perforin secretion by cytotoxic T-lymphocytes. PLoS ONE. 2020;15:e0231430. doi: 10.1371/journal.pone.0231430. PubMed DOI PMC

Ludwig N., Yerneni S.S., Azambuja J.H., Gillespie D.G., Menshikova E.V., Jackson E.K., Whiteside T.L. Tumor-derived exosomes promote angiogenesis via adenosine A(2B) receptor signaling. Angiogenesis. 2020;23:599–610. doi: 10.1007/s10456-020-09728-8. PubMed DOI PMC

Smyth L.A., Ratnasothy K., Tsang J.Y.S., Boardman D., Warley A., Lechler R., Lombardi G. CD73 expression on extracellular vesicles derived from CD4(+)CD25(+)Foxp3(+) T cells contributes to their regulatory function. Eur. J. Immunol. 2013;43:2430–2440. doi: 10.1002/eji.201242909. PubMed DOI

Zhang F., Li R., Yang Y., Shi C., Shen Y., Lu C., Chen Y., Zhou W., Lin A., Yu L., et al. Specific Decrease in B-Cell-Derived Extracellular Vesicles Enhances Post-Chemotherapeutic CD8(+) T Cell Responses. Immunity. 2019;50:738–750. doi: 10.1016/j.immuni.2019.01.010. PubMed DOI

Ostrowski M., Carmo N.B., Krumeich S., Fanget I., Raposo G., Savina A., Moita C.F., Schauer K., Hume A.N., Freitas R.P., et al. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat. Cell Biol. 2010;12:19–30. doi: 10.1038/ncb2000. PubMed DOI

Leiva A., Guzman-Gutierrez E., Contreras-Duarte S., Fuenzalida B., Cantin C., Carvajal L., Salsoso R., Gutierrez J., Pardo F., Sobrevia L. Adenosine receptors: Modulators of lipid availability that are controlled by lipid levels. Mol. Asp. Med. 2017;55:26–44. doi: 10.1016/j.mam.2017.01.007. PubMed DOI

Ludwig N., Azambuja J.H., Rao A., Gillespie D.G., Jackson E.K., Whiteside T.L. Adenosine receptors regulate exosome production. Purinergic Signal. 2020;16:231–240. doi: 10.1007/s11302-020-09700-7. PubMed DOI PMC

Man S., Lu Y., Yin L., Cheng X., Ma L. Potential and promising anticancer drugs from adenosine and its analogs. Drug Discov. Today. 2021;26:1490–1500. doi: 10.1016/j.drudis.2021.02.020. PubMed DOI

Hendriks R.W., Yuvaraj S., Kil L.P. Targeting Bruton’s tyrosine kinase in B cell malignancies. Nat. Rev. Cancer. 2014;14:219–232. doi: 10.1038/nrc3702. PubMed DOI

Jeske S.S., Brand M., Ziebart A., Laban S., Doescher J., Greve J., Jackson E.K., Hoffmann T.K., Brunner C., Schuler P.J. Adenosine-producing regulatory B cells in head and neck cancer. Cancer Immunol. Immunother. 2020;69:1205–1216. doi: 10.1007/s00262-020-02535-6. PubMed DOI PMC

Wang X.H., Kokabee L., Kokabee M., Conklin D.S. Bruton’s Tyrosine Kinase and Its Isoforms in Cancer. Front. Cell Dev. Biol. 2021;9:668996. doi: 10.3389/fcell.2021.668996. PubMed DOI PMC

de Gorter D.J.J., Beuling E.A., Kersseboom R., Middendorp S., van Gils J.M., Hendriks R.W., Pals S.T., Spaargaren M. Bruton’s tyrosine kinase and phospholipase C gamma 2 mediate chemokine-controlled B cell migration and homing. Immunity. 2007;26:93–104. doi: 10.1016/j.immuni.2006.11.012. PubMed DOI

Lou T.-F., Sethuraman D., Dospoy P., Srivastva P., Kim H.S., Kim J., Ma X., Chen P.-H., Huffman K.E., Frink R.E., et al. Cancer-Specific Production of N-Acetylaspartate via NAT8L Overexpression in Non-Small Cell Lung Cancer and Its Potential as a Circulating Biomarker. Cancer Prev. Res. 2016;9:43–52. doi: 10.1158/1940-6207.CAPR-14-0287. PubMed DOI PMC

Zand B., Previs R.A., Zacharias N.M., Rupaimoole R., Mitamura T., Nagaraja A.S., Guindani M., Dalton H.J., Yang L., Baddour J., et al. Role of Increased n-acetylaspartate Levels in Cancer. J. Natl. Cancer Inst. 2016;108 doi: 10.1093/jnci/djv426. PubMed DOI PMC

Dong M., Yang Z.L., Li X.F., Zhang Z.X., Yin A.K. Screening of Methylation Gene Sites as Prognostic Signature in Lung Adenocarcinoma. Yonsei Med. J. 2020;61:1013–1023. doi: 10.3349/ymj.2020.61.12.1013. PubMed DOI PMC

Menga A., Favia M., Spera I., Vegliante M.C., Gissi R., De Grassi A., Laera L., Campanella A., Gerbino A., Carra G., et al. N-acetylaspartate release by glutaminolytic ovarian cancer cells sustains protumoral macrophages. EMBO Rep. 2021;22:e51981. doi: 10.15252/embr.202051981. PubMed DOI PMC

Liu X.H., Wu X.R., Lan N., Zheng X.B., Zhou C., Hu T., Chen Y.F., Cai Z.R., Chen Z.X., Lan P., et al. CD73 promotes colitis-associated tumorigenesis in mice. Oncol. Lett. 2020;20:1221–1230. doi: 10.3892/ol.2020.11670. PubMed DOI PMC

Abel B., Tosh D.K., Durell S.R., Murakami M., Vahedi S., Jacobson K.A., Ambudkar S.V. Evidence for the Interaction of A(3) Adenosine Receptor Agonists at the Drug-Binding Site(s) of Human P-glycoprotein (ABCB1) Mol. Pharmacol. 2019;96:180–192. doi: 10.1124/mol.118.115295. PubMed DOI PMC

Mlejnek P., Dolezel P., Kosztyu P. P-glycoprotein mediates resistance to A3 adenosine receptor agonist 2-chloro-N-6-(3-iodobenzyl)-adenosine-5′-n-methyluronamide in human leukemia cells. J. Cell. Physiol. 2012;227:676–685. doi: 10.1002/jcp.22775. PubMed DOI

Ostuni A., Carmosino M., Miglionico R., Abruzzese V., Martinelli F., Russo D., Laurenzana I., Petillo A., Bisaccia F. Inhibition of ABCC6 Transporter Modifies Cytoskeleton and Reduces Motility of HepG2 Cells via Purinergic Pathway. Cells. 2020;9:1410. doi: 10.3390/cells9061410. PubMed DOI PMC

Miglionico R., Armentano M.F., Carmosino M., Salvia A.M., Cuviello F., Bisaccia F., Ostuni A. Dysregulation of gene expression in ABCC6 knockdown HepG2 cells. Cell. Mol. Biol. Lett. 2014;19:517–526. doi: 10.2478/s11658-014-0208-2. PubMed DOI PMC

Shali S., Yu J., Zhang X., Wang X., Jin Y., Su M., Liao X., Yu J., Zhi X., Zhou P. Ecto-5-nucleotidase (CD73) is a potential target of hepatocellular carcinoma. J. Cell. Physiol. 2019;234:10248–10259. doi: 10.1002/jcp.27694. PubMed DOI

Gao Z.-w., Wang H.-p., Lin F., Wang X., Long M., Zhang H.-z., Dong K. CD73 promotes proliferation and migration of human cervical cancer cells independent of its enzyme activity. BMC Cancer. 2017;17:135. doi: 10.1186/s12885-017-3128-5. PubMed DOI PMC

Lappas C.M., Rieger J.M., Linden J. A(2A) adenosine receptor induction inhibits IFN-gamma production in murine CD4(+) T cells. J. Immunol. 2005;174:1073–1080. doi: 10.4049/jimmunol.174.2.1073. PubMed DOI

Himer L., Csoka B., Selmeczy Z., Koscso B., Pocza T., Pacher P., Nemeth Z.H., Deitch E.A., Vizi E.S., Cronstein B.N., et al. Adenosine A(2A) receptor activation protects CD4(+) T lymphocytes against activation-induced cell death. FASEB J. 2010;24:2631–2640. doi: 10.1096/fj.10-155192. PubMed DOI PMC

Shou J., Jing J., Xie J., You L., Jing Z., Yao J., Han W., Pan H. Nuclear factor of activated T cells in cancer development and treatment. Cancer Lett. 2015;361:174–184. doi: 10.1016/j.canlet.2015.03.005. PubMed DOI

Mokrani M.B., Klibi J., Bluteau D., Bismuth G., Mami-Chouaib F. Smad and NFAT Pathways Cooperate To Induce CD103 Expression in Human CD8 T Lymphocytes. J. Immunol. 2014;192:2471–2479. doi: 10.4049/jimmunol.1302192. PubMed DOI

Kjaergaard J., Hatfield S., Jones G., Ohta A., Sitkovsky M. A(2A) Adenosine Receptor Gene Deletion or Synthetic A2A Antagonist Liberate Tumor-Reactive CD8(+) T Cells from Tumor-Induced Immunosuppression. J. Immunol. 2018;201:782–791. doi: 10.4049/jimmunol.1700850. PubMed DOI PMC

Nie J., Liu A., Tan Q., Zhao K., Hu K., Li Y., Yan B., Zhou L. AICAR activates ER stress-dependent apoptosis in gallbladder cancer cells. Biochem. Biophys. Res. Commun. 2017;482:246–252. doi: 10.1016/j.bbrc.2016.11.050. PubMed DOI

Wu L.-F., Wei B.-L., Guo Y.-T., Ye Y.-Q., Li G.-P., Pu Z.-J., Feng J.-L. Apoptosis induced by adenosine involves endoplasmic reticulum stress in EC109 cells. Int. J. Mol. Med. 2012;30:797–804. doi: 10.3892/ijmm.2012.1085. PubMed DOI

Wu L.-F., Guo Y.-T., Zhang Q.-H., Xiang M.-Q., Deng W., Ye Y.-Q., Pu Z.-J., Feng J.-L., Huang G.-Y. Enhanced Antitumor Effects of Adenoviral-Mediated siRNA against GRP78 Gene on Adenosine-Induced Apoptosis in Human Hepatoma HepG2 Cells. Int. J. Mol. Sci. 2014;15:525–544. doi: 10.3390/ijms15010525. PubMed DOI PMC

Tosh D.K., Brackett C.M., Jung Y.H., Gao Z.G., Banerjee M., Blagg B.S.J., Jacobson K.A. Biological Evaluation of 5′-(N-Ethylcarboxamido)adenosine Analogues as Grp94-Selective Inhibitors. ACS Med. Chem. Lett. 2021;12:373–379. doi: 10.1021/acsmedchemlett.0c00509. PubMed DOI PMC

Kumari N., Reabroi S., North B.J. Unraveling the Molecular Nexus between GPCRs, ERS, and EMT. Mediat. Inflamm. 2021;2021:6655417. doi: 10.1155/2021/6655417. PubMed DOI PMC

Hassanian S.M., Dinarvand P., Rezaie A.R. Adenosine Regulates the Proinflammatory Signaling Function of Thrombin in Endothelial Cells. J. Cell. Physiol. 2014;229:1292–1300. doi: 10.1002/jcp.24568. PubMed DOI PMC

Takahashi H.K., Iwagaki H., Hamano R., Wake H., Kanke T., Liu K., Yoshino T., Tanaka N., Nishibori M. Effects of adenosine on adhesion molecule expression and cytokine production in human PBMC depend on the receptor subtype activated. Br. J. Pharmacol. 2007;150:816–822. doi: 10.1038/sj.bjp.0707126. PubMed DOI PMC

Xu Y., Wang Y., Yan S., Yang Q., Zhou Y., Zeng X., Liu Z., An X., Toque H.A., Dong Z., et al. Regulation of endothelial intracellular adenosine via adenosine kinase epigenetically modulates vascular inflammation. Nat. Commun. 2017;8:943. doi: 10.1038/s41467-017-00986-7. PubMed DOI PMC

Schuster E., Taftaf R., Reduzzi C., Albert M.K., Romero-Calvo I., Liu H. Better together: Circulating tumor cell clustering in metastatic cancer. Trends Cancer. 2021;7:1020–1032. doi: 10.1016/j.trecan.2021.07.001. PubMed DOI PMC

Gkountela S., Castro-Giner F., Szczerba B.M., Vetter M., Landin J., Scherrer R., Krol I., Scheidmann M.C., Beisel C., Stirnimann C.U., et al. Circulating Tumor Cell Clustering Shapes DNA Methylation to Enable Metastasis Seeding. Cell. 2019;176:98–112. doi: 10.1016/j.cell.2018.11.046. PubMed DOI PMC

Vecchio E.A., Baltos J.A., Nguyen A.T.N., Christopoulos A., White P.J., May L.T. New paradigms in adenosine receptor pharmacology: Allostery, oligomerization and biased agonism. Br. J. Pharmacol. 2018;175:4036–4046. doi: 10.1111/bph.14337. PubMed DOI PMC

Guidolin D., Marcoli M., Tortorella C., Maura G., Agnati L.F. Receptor-Receptor Interactions as a Widespread Phenomenon: Novel Targets for Drug Development? Front. Endocrinol. 2019;10:53. doi: 10.3389/fendo.2019.00053. PubMed DOI PMC

Park S., Jiang H., Zhang H., Smith R.G. Modification of ghrelin receptor signaling by somatostatin receptor-5 regulates insulin release. Proc. Natl. Acad. Sci. USA. 2012;109:19003–19008. doi: 10.1073/pnas.1209590109. PubMed DOI PMC

Jonas K.C., Hanyaloglu A.C. Impact of G protein-coupled receptor heteromers in endocrine systems. Mol. Cell. Endocrinol. 2017;449:21–27. doi: 10.1016/j.mce.2017.01.030. PubMed DOI

Cervetto C., Venturini A., Passalacqua M., Guidolin D., Genedani S., Fuxe K., Borroto-Esquela D.O., Cortelli P., Woods A., Maura G., et al. A2A-D2 receptor-receptor interaction modulates gliotransmitter release from striatal astrocyte processes. J. Neurochem. 2017;140:268–279. doi: 10.1111/jnc.13885. PubMed DOI

Tonazzini I., Trincavelli M.L., Montali M., Martini C. Regulation of A(1) adenosine receptor functioning induced by P2Y(1) purinergic receptor activation in human astroglial cells. J. Neurosci. Res. 2008;86:2857–2866. doi: 10.1002/jnr.21727. PubMed DOI

Tonazzini I., Trincavelli M.L., Storm-Mathisen J., Martini C., Bergersen L.H. Co-localization and functional cross-talk between A(1) and P2Y(1) purine receptors in rat hippocampus. Eur. J. Neurosci. 2007;26:890–902. doi: 10.1111/j.1460-9568.2007.05697.x. PubMed DOI PMC

Conde S.V., Obeso A., Monteiro E.C., Gonzalez C. The A(2B)-D-2 Receptor Interaction that Controls Carotid Body Catecholamines Release Locates Between the Last Two Steps of Hypoxic Transduction Cascade. Arter. Chemorecept. 2009;648:161–168. doi: 10.1007/978-90-481-2259-2_18. PubMed DOI

Conde S.V., Gonzalez C., Batuca J.R., Monteiro E.C., Obeso A. An antagonistic interaction between A(2B) adenosine and D-2 dopamine receptors modulates the function of rat carotid body chemoreceptor cells. J. Neurochem. 2008;107:1369–1381. doi: 10.1111/j.1471-4159.2008.05704.x. PubMed DOI

Moreno E., Andradas C., Medrano M., Caffarel M.M., Perez-Gomez E., Blasco-Benito S., Gomez-Canas M., Ruth Pazos M., Irving A.J., Lluis C., et al. Targeting CB2-GPR55 Receptor Heteromers Modulates Cancer Cell Signaling. J. Biol. Chem. 2014;289:21960–21972. doi: 10.1074/jbc.M114.561761. PubMed DOI PMC

Thomsen A.R.B., Plouffe B., Cahill T.J., Shukla A.K., Tarrasch J.T., Dosey A.M., Kahsai A.W., Strachan R.T., Pani B., Mahoney J.P., et al. GPCR-G Protein-beta-Arrestin Super-Complex Mediates Sustained G Protein Signaling. Cell. 2016;166:907–919. doi: 10.1016/j.cell.2016.07.004. PubMed DOI PMC

Wang X., van Westen G.J.P., Heitman L.H., Ijzerman A.P. G protein-coupled receptors expressed and studied in yeast. The adenosine receptor as a prime example. Biochem. Pharmacol. 2021;187:114370. doi: 10.1016/j.bcp.2020.114370. PubMed DOI

Wang X.S., Jespers W., Bongers B.J., Jansen M., Stangenberger C.M., Dilweg M.A., Gutierrez-de-Teran H., Ijzerman A.P., Heitman L.H., van Westen G.J.P. Characterization of cancer-related somatic mutations in the adenosine A2B receptor. Eur. J. Pharmacol. 2020;880:173126. doi: 10.1016/j.ejphar.2020.173126. PubMed DOI

Vecchio E.A., Tan C.Y.R., Gregory K.J., Christopoulos A., White P.J., May L.T. Ligand-Independent Adenosine A(2B) Receptor Constitutive Activity as a Promoter of Prostate Cancer Cell Proliferation. J. Pharmacol. Exp. Ther. 2016;357:36–44. doi: 10.1124/jpet.115.230003. PubMed DOI

McNeill S.M., Baltos J.A., White P.J., May L.T. Biased agonism at adenosine receptors. Cell. Signal. 2021;82:109954. doi: 10.1016/j.cellsig.2021.109954. PubMed DOI

Storme J., Cannaert A., Van Craenenbroeck K., Stove C.P. Molecular dissection of the human A(3) adenosine receptor coupling with beta-arrestin2. Biochem. Pharmacol. 2018;148:298–307. doi: 10.1016/j.bcp.2018.01.008. PubMed DOI

Yu J.H., Ahn S., Kim H.J., Lee M., Kim J., Jin S.H., Lee E., Kim G., Cheong J.H., Jacobson K.A., et al. Polypharmacology of N-6-(3-lodobenzyl)adenosine-5′-N-methyluronamide (IB-MECA) and Related A(3) Adenosine Receptor Ligands: Peroxisome Proliferator Activated Receptor (PPAR) gamma Partial Agonist and PPAR delta Antagonist Activity Suggests Their Antidiabetic Potential. J. Med. Chem. 2017;60:7459–7475. doi: 10.1021/acs.jmedchem.7b00805. PubMed DOI PMC

Jensen K., Johnson L.A.A., Jacobson P.A., Kachler S., Kirstein M.N., Lamba J., Klotz K.-N. Cytotoxic purine nucleoside analogues bind to A(1), A(2A), and A(3) adenosine receptors. Naunyn-Schmiedebergs Arch. Pharmacol. 2012;385:519–525. doi: 10.1007/s00210-011-0719-6. PubMed DOI PMC

Tang J.X., Zou Y., Li L., Lu F.P., Xu H.T., Ren P.X., Bai F., Niedermann G., Zhu X.K. BAY 60-6583 Enhances the Antitumor Function of Chimeric Antigen Receptor-Modified T Cells Independent of the Adenosine A2b Receptor. Front. Pharmacol. 2021;12:274. doi: 10.3389/fphar.2021.619800. PubMed DOI PMC

Carpenter B., Lebon G. Human Adenosine A(2A) Receptor: Molecular Mechanism of Ligand Binding and Activation. Front. Pharmacol. 2017;8:898. doi: 10.3389/fphar.2017.00898. PubMed DOI PMC

Seibt B.F., Schiedel A.C., Thimm D., Hinz S., Sherbiny F.F., Mueller C.E. The second extracellular loop of GPCRs determines subtype-selectivity and controls efficacy as evidenced by loop exchange study at A(2) adenosine receptors. Biochem. Pharmacol. 2013;85:1317–1329. doi: 10.1016/j.bcp.2013.03.005. PubMed DOI

De Filippo E., Hinz S., Pellizzari V., Deganutti G., El-Tayeb A., Navarro G., Franco R., Moro S., Schiedel A.C., Mueller C.E. A(2A) and A(2B) adenosine receptors: The extracellular loop 2 determines high (A(2A)) or low affinity (A(2B)) for adenosine. Biochem. Pharmacol. 2020;172:113718. doi: 10.1016/j.bcp.2019.113718. PubMed DOI

Bowser J.L., Blackburn M.R., Shipley G.L., Molina J.G., Dunner K., Jr., Broaddus R.R. Loss of CD73-mediated actin polymerization promotes endometrial tumor progression. J. Clin. Investig. 2016;126:220–238. doi: 10.1172/JCI79380. PubMed DOI PMC

Kurnit K.C., Draisey A., Kazen R.C., Chung C., Phan L.H., Harvey J.B., Feng J.P., Xie S.S., Broaddus R.R., Bowser J.L. Loss of CD73 shifts transforming growth factor-beta 1 (TGF-beta 1) from tumor suppressor to promoter in endometrial cancer. Cancer Lett. 2021;505:75–86. doi: 10.1016/j.canlet.2021.01.030. PubMed DOI PMC

Dziedzic K., Wegrzyn P., Galezowski M., Bonkowska M., Grycuk K., Satala G., Wiatrowska K., Wiklik K., Brzozka K., Nowak M. Release of adenosine-induced immunosuppression: Comprehensive characterization of dual A(2A)/A(2B) receptor antagonist. Int. Immunopharmacol. 2021;96:107645. doi: 10.1016/j.intimp.2021.107645. PubMed DOI

Moriyama K., Sitkovsky M.V. Adenosine A2A Receptor Is Involved in Cell Surface Expression of A2B Receptor. J. Biol. Chem. 2010;285:39271–39288. doi: 10.1074/jbc.M109.098293. PubMed DOI PMC

Arruga F., Serra S., Vitale N., Guerra G., Papait A., Gyau B.B., Tito F., Efremov D., Vaisitti T., Deaglio S. Targeting the A2A adenosine receptor counteracts immunosuppression in vivo in a mouse model of chronic lymphocytic leukemia. Haematologica. 2021;106:1343–1353. doi: 10.3324/haematol.2019.242016. PubMed DOI PMC

Ott M., Tomaszowski K.H., Marisetty A., Kong L.Y., Wei J., Duna M., Blumberg K., Ji X.R., Jacobs C., Fuller G.N., et al. Profiling of patients with glioma reveals the dominant immunosuppressive axis is refractory to immune function restoration. JCI Insight. 2020;5:e134386. doi: 10.1172/jci.insight.134386. PubMed DOI PMC

Vasiukov G., Menshikh A., Owens P., Novitskaya T., Hurley P., Blackwell T., Feoktistov I., Novitskiy S.V. Adenosine/TGF beta axis in regulation of mammary fibroblast functions. PLoS ONE. 2021;16:e0252424. doi: 10.1371/journal.pone.0252424. PubMed DOI PMC

Merighi S., Mirandola P., Milani D., Varani K., Gessi S., Klotz K.N., Leung E., Baraldi P.G., Borea P.A. Adenosine receptors as mediators of both cell proliferation and cell death of cultured human melanoma cells. J. Investig. Dermatol. 2002;119:923–933. doi: 10.1046/j.1523-1747.2002.00111.x. PubMed DOI

Gomez G., Sitkovsky M.V. Differential requirement for A2a and A3 adenosine receptors for the protective effect of inosine in vivo. Blood. 2003;102:4472–4478. doi: 10.1182/blood-2002-11-3624. PubMed DOI

Welihinda A.A., Kaur M., Greene K., Zhai Y., Amento E.P. The adenosine metabolite inosine is a functional agonist of the adenosine A(2A) receptor with a unique signaling bias. Cell. Signal. 2016;28:552–560. doi: 10.1016/j.cellsig.2016.02.010. PubMed DOI PMC

Serrano-del Valle A., Naval J., Anel A., Marzo I. Novel Forms of Immunomodulation for Cancer Therapy. Trends Cancer. 2020;6:518–532. doi: 10.1016/j.trecan.2020.02.015. PubMed DOI

Mager L.F., Burkhard R., Pett N., Cooke N.C.A., Brown K., Ramay H., Paik S., Stagg J., Groves R.A., Gallo M., et al. Microbiome-derived inosine modulates response to checkpoint inhibitor immunotherapy. Science. 2020;369:1481–1489. doi: 10.1126/science.abc3421. PubMed DOI

Luo B.H., Zhang Y.B., Zhang C.Q., Liu X.Q., Shi C.H. Intestinal microbiota: A potential target for enhancing the antitumor efficacy and reducing the toxicity of immune checkpoint inhibitors. Cancer Lett. 2021;509:53–62. doi: 10.1016/j.canlet.2021.04.001. PubMed DOI

Jacobson K.A., Reitman M.L. Adenosine-Related Mechanisms in Non-Adenosine Receptor Drugs. Cells. 2020;9:956. doi: 10.3390/cells9040956. PubMed DOI PMC

Giuffrida L., Sek K., Henderson M.A., Lai J.Y., Chen A.X.Y., Meyran D., Todd K.L., Petley E.V., Mardiana S., Molck C., et al. CRISPR/Cas9 mediated deletion of the adenosine A2A receptor enhances CAR T cell efficacy. Nat. Commun. 2021;12:3236. doi: 10.1038/s41467-021-23331-5. PubMed DOI PMC

Kipniss N.H., Dingal P.C.D.P., Abbott T.R., Gao Y., Wang H., Dominguez A.A., Labanieh L., Qi L.S. Engineering cell sensing and responses using a GPCR-coupled CRISPR-Cas system. Nat. Commun. 2017;8:2212. doi: 10.1038/s41467-017-02075-1. PubMed DOI PMC

Vargason A.M., Anselmo A.C., Mitragotri S. The evolution of commercial drug delivery technologies. Nat. Biomed. Eng. 2021;5:951–967. doi: 10.1038/s41551-021-00698-w. PubMed DOI

Esfahani K., Elkrief A., Calabrese C., Lapointe R., Hudson M., Routy B., Miller W.H., Calabrese L. Moving towards personalized treatments of immune-related adverse events. Nat. Rev. Clin. Oncol. 2020;17:504–515. doi: 10.1038/s41571-020-0352-8. PubMed DOI

Newton H.S., Chimote A.A., Arnold M.J., Wise-Draper T.M., Conforti L. Targeted knockdown of the adenosine A(2A) receptor by lipid NPs rescues the chemotaxis of head and neck cancer memory T cells. Mol. Ther.-Methods Clin. Dev. 2021;21:133–143. doi: 10.1016/j.omtm.2021.03.001. PubMed DOI PMC

Ghasemi-Chaleshtari M., Kiaie S.H., Irandoust M., Karami H., Afjadi M.N., Ghani S., Vanda N.A., Sede M.J.G., Ahmadi A., Masjedi A., et al. Concomitant blockade of A2AR and CTLA-4 by siRNA-loaded polyethylene glycol-chitosan-alginate nanoparticles synergistically enhances antitumor T-cell responses. J. Cell. Physiol. 2020;235:10068–10080. doi: 10.1002/jcp.29822. PubMed DOI

Pineux F., Federico S., Klotz K.N., Kachler S., Michiels C., Sturlese M., Prato M., Spalluto G., Moro S., Bonifazi D. Targeting G Protein-Coupled Receptors with Magnetic Carbon Nanotubes: The Case of the A(3)Adenosine Receptor. Chemmedchem. 2020;15:1909–1920. doi: 10.1002/cmdc.202000466. PubMed DOI

Reis R.I., Moraes I. Probing Membrane Protein Assembly into Nanodiscs by In Situ Dynamic Light Scattering: A(2A) Receptor as a Case Study. Biology. 2020;9:400. doi: 10.3390/biology9110400. PubMed DOI PMC

Psaraki A., Ntari L., Karakostas C., Korrou-Karava D., Roubelakis M.G. Extracellular vesicles derived from Mesenchymal Stem/Stromal Cells: The regenerative impact in liver diseases. Hepatology. 2021:Accepted. doi: 10.1002/hep.32129. PubMed DOI

Zhang L., Yu D. Exosomes in cancer development, metastasis, and immunity. Biochim. Biophys. Acta-Rev. Cancer. 2019;1871:455–468. doi: 10.1016/j.bbcan.2019.04.004. PubMed DOI PMC

Cheng J., Chen M.Z., Wang S.Y., Liang T.J., Chen H., Chen C.J., Feng Z.W., Xie X.Q. Binding Characterization of Agonists and Antagonists by MCCS: A Case Study from Adenosine A(2A) Receptor. ACS Chem. Neurosci. 2021;12:1606–1620. doi: 10.1021/acschemneuro.1c00082. PubMed DOI

Lee Y., Hou X., Lee J.H., Nayak A., Alexander V., Sharma P.K., Chang H., Phan K., Gao Z.-G., Jacobson K.A., et al. Subtle Chemical Changes Cross the Boundary between Agonist and Antagonist: New A3 Adenosine Receptor Homology Models and Structural Network Analysis Can Predict This Boundary. J. Med. Chem. 2021;64:12525–12536. doi: 10.1021/acs.jmedchem.1c00239. PubMed DOI PMC

Martynowycz M.W., Shiriaeva A., Ge X., Hattne J., Nannenga B.L., Cherezov V., Gonen T. MicroED structure of the human adenosine receptor determined from a single nanocrystal in LCP. Proc. Natl. Acad. Sci. USA. 2021;118:e2106041118. doi: 10.1073/pnas.2106041118. PubMed DOI PMC

Congreve M., de Graaf C., Swain N.A., Tate C.G. Impact of GPCR Structures on Drug Discovery. Cell. 2020;181:81–91. doi: 10.1016/j.cell.2020.03.003. PubMed DOI

Voronova V., Peskov K., Kosinsky Y., Helmlinger G., Chu L.L., Borodovsky A., Woessner R., Sachsenmeier K., Shao W.L., Kumar R., et al. Evaluation of Combination Strategies for the A(2A)R Inhibitor AZD4635 Across Tumor Microenvironment Conditions via a Systems Pharmacology Model. Front. Immunol. 2021;12:16. doi: 10.3389/fimmu.2021.617316. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...