Current Adenosinergic Therapies: What Do Cancer Cells Stand to Gain and Lose?
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
EATRIS-CZ, LM2018133
Ministry of Education Youth and Sports
CZ-OPENSCREEN, LM2018130
Ministry of Education Youth and Sports
ENOCH No. CZ.02.1.01/0.0/0.0/16_019/0000868
European Regional Development Fund
GACR 19-08124S
Czech Science Foundation
Czech National Centres of Competence, project "PerMed" Personalized Medicine - Diagnostics and Therapy (TN01000013).
Technology Agency of the Czech Republic
PubMed
34830449
PubMed Central
PMC8617980
DOI
10.3390/ijms222212569
PII: ijms222212569
Knihovny.cz E-zdroje
- Klíčová slova
- adenosine, adenosine receptors, adenosinergic therapy, adverse effects, cancer, immuno-oncology, immunosurveillance, tumour microenvironment,
- MeSH
- adenosin biosyntéza genetika imunologie terapeutické užití MeSH
- cílená molekulární terapie * MeSH
- imunoterapie trendy MeSH
- karcinogeneze účinky léků imunologie MeSH
- lidé MeSH
- nádorové mikroprostředí účinky léků imunologie MeSH
- nádory genetika imunologie terapie MeSH
- purinergní receptory P1 imunologie terapeutické užití MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- adenosin MeSH
- purinergní receptory P1 MeSH
A key objective in immuno-oncology is to reactivate the dormant immune system and increase tumour immunogenicity. Adenosine is an omnipresent purine that is formed in response to stress stimuli in order to restore physiological balance, mainly via anti-inflammatory, tissue-protective, and anti-nociceptive mechanisms. Adenosine overproduction occurs in all stages of tumorigenesis, from the initial inflammation/local tissue damage to the precancerous niche and the developed tumour, making the adenosinergic pathway an attractive but challenging therapeutic target. Many current efforts in immuno-oncology are focused on restoring immunosurveillance, largely by blocking adenosine-producing enzymes in the tumour microenvironment (TME) and adenosine receptors on immune cells either alone or combined with chemotherapy and/or immunotherapy. However, the effects of adenosinergic immunotherapy are not restricted to immune cells; other cells in the TME including cancer and stromal cells are also affected. Here we summarise recent advancements in the understanding of the tumour adenosinergic system and highlight the impact of current and prospective immunomodulatory therapies on other cell types within the TME, focusing on adenosine receptors in tumour cells. In addition, we evaluate the structure- and context-related limitations of targeting this pathway and highlight avenues that could possibly be exploited in future adenosinergic therapies.
Zobrazit více v PubMed
Moser G.H., Schrader J., Deussen A. Turnover of adenosine in plasma of human and dog-blood. Am. J. Physiol. 1989;256:C799–C806. doi: 10.1152/ajpcell.1989.256.4.C799. PubMed DOI
Lofgren L., Pehrsson S., Hagglund G., Tjellstrom H., Nylander S. Accurate measurement of endogenous adenosine in human blood. PLoS ONE. 2018;13:e0205707. doi: 10.1371/journal.pone.0205707. PubMed DOI PMC
Fredholm B.B. Physiological and pathophysiological roles of adenosine. Sleep Biol. Rhythm. 2011;9:24–28. doi: 10.1111/j.1479-8425.2010.00460.x. DOI
Andine P., Rudolphi K.A., Fredholm B.B., Hagberg H. Effect of propentofylline (HWA-285) on extracellular purines and excitatory amino-acids in ca1 of rat hippocampus during transient ischemia. Br. J. Pharmacol. 1990;100:814–818. doi: 10.1111/j.1476-5381.1990.tb14097.x. PubMed DOI PMC
Pedata F., Corsi C., Melani A., Bordoni F., Latini S. Adenosine extracellular brain concentrations and role of A(2A) receptors in ischemia. Ann. N. Y. Acad. Sci. 2001;939:74–84. doi: 10.1111/j.1749-6632.2001.tb03614.x. PubMed DOI
Blay J., White T.D., Hoskin D.W. The extracellular fluid of solid carcinomas contains immunosuppressive concentrations of adenosine. Cancer Res. 1997;57:2602–2605. PubMed
Boison D., Yegutkin G.G. Adenosine Metabolism: Emerging Concepts for Cancer Therapy. Cancer Cell. 2019;36:582–596. doi: 10.1016/j.ccell.2019.10.007. PubMed DOI PMC
Chiarella A.M., Ryu Y.K., Manji G.A., Rustgi A.K. Extracellular ATP and Adenosine in Cancer Pathogenesis and Treatment. Trends Cancer. 2021;7:731–750. doi: 10.1016/j.trecan.2021.04.008. PubMed DOI
Williams-Karnesky R.L., Sandau U.S., Lusardi T.A., Lytle N.K., Farrell J.M., Pritchard E.M., Kaplan D.L., Boison D. Epigenetic changes induced by adenosine augmentation therapy prevent epileptogenesis. J. Clin. Investig. 2013;123:3552–3563. doi: 10.1172/JCI65636. PubMed DOI PMC
Boswell-Casteel R.C., Hays F.A. Equilibrative nucleoside transporters A review. Nucleosides Nucleotides Nucleic Acids. 2017;36:7–30. doi: 10.1080/15257770.2016.1210805. PubMed DOI PMC
Yegutkin G.G. Enzymes involved in metabolism of extracellular nucleotides and nucleosides: Functional implications and measurement of activities. Crit. Rev. Biochem. Mol. Biol. 2014;49:473–497. doi: 10.3109/10409238.2014.953627. PubMed DOI
Drury A.N., Szent-Gyorgyi A. The physiological activity of adenine compounds with especial reference to their action upon the mammalian heart. J. Physiol. 1929;68:213–237. doi: 10.1113/jphysiol.1929.sp002608. PubMed DOI PMC
Allard B., Allard D., Buisseret L., Stagg J. The adenosine pathway in immuno-oncology. Nat. Rev. Clin. Oncol. 2020;17:611–629. doi: 10.1038/s41571-020-0382-2. PubMed DOI
Pasquini S., Contri C., Borea P.A., Vincenzi F., Varani K. Adenosine and Inflammation: Here, There and Everywhere. Int. J. Mol. Sci. 2021;22:7685. doi: 10.3390/ijms22147685. PubMed DOI PMC
Azambuja J.H., Ludwig N., Braganhol E., Whiteside T.L. Inhibition of the Adenosinergic Pathway in Cancer Rejuvenates Innate and Adaptive Immunity. Int. J. Mol. Sci. 2019;20:5698. doi: 10.3390/ijms20225698. PubMed DOI PMC
Xu R., Boudreau A., Bissell M.J. Tissue architecture and function: Dynamic reciprocity via extra- and intra-cellular matrices. Cancer Metastasis Rev. 2009;28:167–176. doi: 10.1007/s10555-008-9178-z. PubMed DOI PMC
Lyssiotis C.A., Kimmelman A.C. Metabolic Interactions in the Tumor Microenvironment. Trends Cell Biol. 2017;27:873–885. doi: 10.1016/j.tcb.2017.06.003. PubMed DOI PMC
Stagg J., Smyth M.J. Extracellular adenosine triphosphate and adenosine in cancer. Oncogene. 2010;29:5346–5358. doi: 10.1038/onc.2010.292. PubMed DOI
Hernandez C., Huebener P., Schwabe R.F. Damage-associated molecular patterns in cancer: A double-edged sword. Oncogene. 2016;35:5931–5941. doi: 10.1038/onc.2016.104. PubMed DOI PMC
Antonioli L., Pacher P., Vizi E.S., Hasko G. CD39 and CD73 in immunity and inflammation. Trends Mol. Med. 2013;19:355–367. doi: 10.1016/j.molmed.2013.03.005. PubMed DOI PMC
Vijayan D., Young A., Teng M.W.L., Smyth M.J. Targeting immunosuppressive adenosine in cancer. Nat. Rev. Cancer. 2017;17:709–724. doi: 10.1038/nrc.2017.86. PubMed DOI
Borea P.A., Gessi S., Merighi S., Varani K. Adenosine as a Multi-Signalling Guardian Angel in Human Diseases: When, Where and How Does it Exert its Protective Effects? Trends Pharmacol. Sci. 2016;37:419–434. doi: 10.1016/j.tips.2016.02.006. PubMed DOI
Michaud M., Martins I., Sukkurwala A.Q., Adjemian S., Ma Y., Pellegatti P., Shen S., Kepp O., Scoazec M., Mignot G., et al. Autophagy-Dependent Anticancer Immune Responses Induced by Chemotherapeutic Agents in Mice. Science. 2011;334:1573–1577. doi: 10.1126/science.1208347. PubMed DOI
Allard D., Chrobak P., Allard B., Messaoudi N., Stagg J. Targeting the CD73-adenosine axis in immuno-oncology. Immunol. Lett. 2019;205:31–39. doi: 10.1016/j.imlet.2018.05.001. PubMed DOI
Long J.S., Crighton D., O’Prey J., MacKay G., Zheng L., Palmer T.M., Gottlieb E., Ryanl K.M. Extracellular Adenosine Sensing-A Metabolic Cell Death Priming Mechanism Downstream of p53. Mol. Cell. 2013;50:394–406. doi: 10.1016/j.molcel.2013.03.016. PubMed DOI
Di Virgilio F., Sarti A.C., Falzoni S., De Marchi E., Adinolfi E. Extracellular ATP and P2 purinergic signalling in the tumour microenvironment. Nat. Rev. Cancer. 2018;18:601–618. doi: 10.1038/s41568-018-0037-0. PubMed DOI
Maj T., Wang W., Crespo J., Zhang H., Wang W., Wei S., Zhao L., Vatan L., Shao I., Szeliga W., et al. Oxidative stress controls regulatory T cell apoptosis and suppressor activity and PD-L1-blockade resistance in tumor. Nat. Immunol. 2017;18:1332–1341. doi: 10.1038/ni.3868. PubMed DOI PMC
Eltzschig H.K., Abdulla P., Hoffman E., Hamilton K.E., Daniels D., Schonfeld C., Loffler M., Reyes G., Duszenko M., Karhausen J., et al. HIF-1-dependent repression of equilibrative nucleoside transporter (ENT) in hypoxia. J. Exp. Med. 2005;202:1493–1505. doi: 10.1084/jem.20050177. PubMed DOI PMC
Chambers E.D., White A., Vang A., Wang Z.K., Ayala A., Weng T.T., Blackburn M., Choudhary G., Rounds S., Lu Q. Blockade of equilibrative nucleoside transporter 1/2 protects against Pseudomonas aeruginosa-induced acute lung injury and NLRP3 inflammasome activation. FASEB J. 2020;34:1516–1531. doi: 10.1096/fj.201902286R. PubMed DOI PMC
Barletta K.E., Ley K., Mehrad B. Regulation of Neutrophil Function by Adenosine. Arterioscler. Thromb. Vasc. Biol. 2012;32:856–864. doi: 10.1161/ATVBAHA.111.226845. PubMed DOI PMC
Bhowmick N.A., Neilson E.G., Moses H.L. Stromal fibroblasts in cancer initiation and progression. Nature. 2004;432:332–337. doi: 10.1038/nature03096. PubMed DOI PMC
Yu M., Guo G., Huang L., Deng L.B., Chang C.S., Achyut B.R., Canning M., Xu N.C., Arbab A.S., Bollag R.J., et al. CD73 on cancer-associated fibroblasts enhanced by the A(2B)-mediated feedforward circuit enforces an immune checkpoint. Nat. Commun. 2020;11:515. doi: 10.1038/s41467-019-14060-x. PubMed DOI PMC
Hatfield S.M., Kjaergaard J., Lukashev D., Schreiber T.H., Belikoff B., Abbott R., Sethumadhavan S., Philbrook P., Ko K., Cannici R., et al. Immunological mechanisms of the antitumor effects of supplemental oxygenation. Sci. Transl. Med. 2015;7:277ra30. doi: 10.1126/scitranslmed.aaa1260. PubMed DOI PMC
Sitkovsky M.V., Hatfield S., Abbott R., Belikoff B., Lukashev D., Ohta A. Hostile, Hypoxia-A2-Adenosinergic Tumor Biology as the Next Barrier to Overcome for Tumor Immunologists. Cancer Immunol. Res. 2014;2:598–605. doi: 10.1158/2326-6066.CIR-14-0075. PubMed DOI PMC
Losenkova K., Zuccarini M., Karikoski M., Laurila J., Boison D., Jalkanen S., Yegutkin G.G. Compartmentalization of adenosine metabolism in cancer cells and its modulation during acute hypoxia. J. Cell Sci. 2020;133:jcs241463. doi: 10.1242/jcs.241463. PubMed DOI PMC
Young A., Mittal D., Stagg J., Smyth M.J. Targeting Cancer-Derived Adenosine: New Therapeutic Approaches. Cancer Discov. 2014;4:879–888. doi: 10.1158/2159-8290.CD-14-0341. PubMed DOI
Yan J.M., Li X.Y., Aguilera A.R., Xiao C., Jacoberger-Foisac C., Nowlan B., Robson S.C., Beers C., Moesta A.K., Geetha N., et al. Control of Metastases via Myeloid CD39 and NK Cell Effector Function. Cancer Immunol. Res. 2020;8:356–367. doi: 10.1158/2326-6066.CIR-19-0749. PubMed DOI
Yang R., Elsaadi S., Misund K., Abdollahi P., Vandsemb E.N., Moen S.H., Kusnierczyk A., Slupphaug G., Standal T., Waage A., et al. Conversion of ATP to adenosine by CD39 and CD73 in multiple myeloma can be successfully targeted together with adenosine receptor A2A blockade. J. Immunother. Cancer. 2020;8:e000610. doi: 10.1136/jitc-2020-000610. PubMed DOI PMC
Harvey J.B., Phan L.H., Villarreal O.E., Bowser J.L. CD73’s Potential as an Immunotherapy Target in Gastrointestinal Cancers. Front. Immunol. 2020;11:508. doi: 10.3389/fimmu.2020.00508. PubMed DOI PMC
Chen L.M., Diao L.X., Yang Y.B., Yi X.H., Rodriguez L., Li Y.L., Villalobos P.A., Cascone T., Liu X., Tan L., et al. CD38-Mediated Immunosuppression as a Mechanism of Tumor Cell Escape from PD-1/PD-L1 Blockade. Cancer Discov. 2018;8:1156–1175. doi: 10.1158/2159-8290.CD-17-1033. PubMed DOI PMC
Masjedi A., Ahmadi A., Ghani S., Malakotikhah F., Afjadi M.N., Irandoust M., Kiani F.K., Asl S.H., Atyabi F., Hassannia H., et al. Silencing adenosine A2a receptor enhances dendritic cell-based cancer immunotherapy. Nanomed. Nanotechnol. Biol. Med. 2020;29:102240. doi: 10.1016/j.nano.2020.102240. PubMed DOI
Borodovsky A., Barbon C.M., Wang Y.J., Ye M.W., Prickett L., Chandra D., Shaw J., Deng N.H., Sachsenmeier K., Clarke J.D., et al. Small molecule AZD4635 inhibitor of A(2A)R signaling rescues immune cell function including CD103(+) dendritic cells enhancing anti-tumor immunity. J. Immunother. Cancer. 2020;8:e000417. doi: 10.1136/jitc-2019-000417. PubMed DOI PMC
Zhang J.Y., Zhang Y., Qu B.X., Yang H.Y., Hu S.Q., Dong X.W. If small molecules immunotherapy comes, can the prime be far behind? Eur. J. Med. Chem. 2021;218:113356. doi: 10.1016/j.ejmech.2021.113356. PubMed DOI
Masoumi E., Jafarzadeh L., Mirzaei H.R., Alishah K., Fallah-Mehrjardi K., Rostamian H., Khakpoor-Koosheh M., Meshkani R., Noorbakhsh F., Hadjati J. Genetic and pharmacological targeting of A2a receptor improves function of anti-mesothelin CAR T cells. J. Exp. Clin. Cancer Res. 2020;39:49. doi: 10.1186/s13046-020-01546-6. PubMed DOI PMC
Beavis P.A., Henderson M.A., Giuffrida L., Mills J.K., Sek K., Cross R.S., Davenport A.J., John L.B., Mardiana S., Slaney C.Y., et al. Targeting the adenosine 2A receptor enhances chimeric antigen receptor T cell efficacy. J. Clin. Investig. 2017;127:929–941. doi: 10.1172/JCI89455. PubMed DOI PMC
Fong L., Hotson A., Powderly J.D., Sznol M., Heist R.S., Choueiri T.K., George S., Hughes B.G.M., Hellmann M.D., Shepard D.R., et al. Adenosine 2A Receptor Blockade as an Immunotherapy for Treatment-Refractory Renal Cell Cancer. Cancer Discov. 2020;10:40–53. doi: 10.1158/2159-8290.CD-19-0980. PubMed DOI PMC
Willingham S.B., Ho P.Y., Hotson A., Hill C., Piccione E.C., Hsieh J., Liu L., Buggy J.J., McCaffery I., Miller R.A. A2AR Antagonism with CPI-444 Induces Antitumor Responses and Augments Efficacy to Anti-PD-(L)1 and Anti-CTLA-4 in Preclinical Models. Cancer Immunol. Res. 2018;6:1136–1149. doi: 10.1158/2326-6066.CIR-18-0056. PubMed DOI
Sidders B., Zhang P., Goodwin K., O’Connor G., Russell D.L., Borodovsky A., Armenia J., McEwen R., Linghu B., Bendell J.C., et al. Adenosine Signaling Is Prognostic for Cancer Outcome and Has Predictive Utility for Immunotherapeutic Response. Clin. Cancer Res. 2020;26:2176–2187. doi: 10.1158/1078-0432.CCR-19-2183. PubMed DOI
Fredholm B.B., Ijzerman A.P., Jacobson K.A., Klotz K.N., Linden J. International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol. Rev. 2001;53:527–552. PubMed PMC
Fredholm B.B., Arslan G., Halldner L., Kull B., Schulte G., Wasserman W. Structure and function of adenosine receptors and their genes. Naunyn-Schmiedebergs Arch. Pharmacol. 2000;362:364–374. doi: 10.1007/s002100000313. PubMed DOI
Borea P.A., Gessi S., Merighi S., Vincenzi F., Varani K. Pharmacology of adenosine receptors: The state of the art. Physiol. Rev. 2018;98:1591–1625. doi: 10.1152/physrev.00049.2017. PubMed DOI
Navarro G., Cordomi A., Zelman-Femiak M., Brugarolas M., Moreno E., Aguinaga D., Perez-Benito L., Cortes A., Casado V., Mallol J., et al. Quaternary structure of a G-protein-coupled receptor heterotetramer in complex with G(i) and G(s) BMC Biol. 2016;14:26. doi: 10.1186/s12915-016-0247-4. PubMed DOI PMC
Fredholm B.B., Ijzerman A.P., Jacobson K.A., Linden J., Muller C.E. International Union of Basic and Clinical Pharmacology. LXXXI. Nomenclature and Classification of Adenosine Receptors—An Update. Pharmacol. Rev. 2011;63:1–34. doi: 10.1124/pr.110.003285. PubMed DOI PMC
Townsendnicholson A., Baker E., Schofield P.R., Sutherland G.R. Localization of the adenosine-A1-receptor subtype gene (ADORA1) to chromosome 1Q32.1. Genomics. 1995;26:423–425. doi: 10.1016/0888-7543(95)80236-F. PubMed DOI
Le F., TownsendNicholson A., Baker E., Sutherland G.R., Schofield P.R. Characterization and chromosomal localization of the human A2a adenosine receptor gene: ADORA2A. Biochem. Biophys. Res. Commun. 1996;223:461–467. doi: 10.1006/bbrc.1996.0916. PubMed DOI
Steingold J.M., Hatfield S.M. Targeting Hypoxia-A2A Adenosinergic Immunosuppression of Antitumor T Cells During Cancer Immunotherapy. Front. Immunol. 2020;11:7. doi: 10.3389/fimmu.2020.570041. PubMed DOI PMC
Yan L., Burbiel J.C., Maass A., Muller C.E. Adenosine receptor agonists: From basic medicinal chemistry to clinical development. Expert Opin. Emerg. Drugs. 2003;8:537–576. doi: 10.1517/14728214.8.2.537. PubMed DOI
Monitto C.L., Levitt R.C., Disilvestre D., Holroyd K.J. LOCALIZATION OF THE A(3) ADENOSINE RECEPTOR GENE (ADORA3) TO HUMAN-CHROMOSOME 1P. Genomics. 1995;26:637–638. doi: 10.1016/0888-7543(95)80194-Q. PubMed DOI
Salvatore C.A., Jacobson M.A., Taylor H.E., Linden J., Johnson R.G. Molecular-cloning and characterization of the human-A(3) adenosine receptor. Proc. Natl. Acad. Sci. USA. 1993;90:10365–10369. doi: 10.1073/pnas.90.21.10365. PubMed DOI PMC
Chen J.F., Eltzschig H.K., Fredholm B.B. Adenosine receptors as drug targets—What are the challenges? Nat. Rev. Drug Discov. 2013;12:265–286. doi: 10.1038/nrd3955. PubMed DOI PMC
Madi L., Ochaion A., Rath-Wolfson L., Bar-Yehuda S., Erlanger A., Ohana G., Harish A., Merimski O., Barer F., Fishman P. The A(3) adenosine receptor is highly expressed in tumor versus normal cells: Potential target for tumor growth inhibition. Clin. Cancer Res. 2004;10:4472–4479. doi: 10.1158/1078-0432.CCR-03-0651. PubMed DOI
Lin X., Wang Z.Y., Xue G., Qin X.J., Wu J.F., Zhang G. ADORA1 is a diagnostic-related biomarker and correlated with immune infiltrates in papillary thyroid carcinoma. J. Cancer. 2021;12:3997–4010. doi: 10.7150/jca.50743. PubMed DOI PMC
Kamai T., Kijima T., Tsuzuki T., Nukui A., Abe H., Arai K., Yoshida K.I. Increased expression of adenosine 2A receptors in metastatic renal cell carcinoma is associated with poorer response to anti-vascular endothelial growth factor agents and anti-PD-1/Anti-CTLA4 antibodies and shorter survival. Cancer Immunol. Immunother. 2021;70:2009–2021. doi: 10.1007/s00262-020-02843-x. PubMed DOI PMC
Ni S., Wei Q., Yang L. ADORA1 Promotes Hepatocellular Carcinoma Progression via PI3K/AKT Pathway. OncoTargets Ther. 2020;13:12409–12419. doi: 10.2147/OTT.S272621. PubMed DOI PMC
Pan S.M., Liang S.X., Wang X.Y. ADORA1 promotes nasopharyngeal carcinoma cell progression through regulation of PI3K/AKT/GSK-3 beta/beta-catenin signaling. Life Sci. 2021;278:119581. doi: 10.1016/j.lfs.2021.119581. PubMed DOI
Ma H.Y., Li Q.Z., Wang J., Pan J., Su Z.D., Liu S. Dual Inhibition of Ornithine Decarboxylase and A(1) Adenosine Receptor Efficiently Suppresses Breast Tumor Cells. Front. Oncol. 2021;11:636373. doi: 10.3389/fonc.2021.636373. PubMed DOI PMC
Shi L.S., Wu Z.Y., Miao J., Du S.C., Ai S.C., Xu E., Feng M., Song J., Guan W.X. Adenosine interaction with adenosine receptor A2a promotes gastric cancer metastasis by enhancing PI3K-AKT-mTOR signaling. Mol. Biol. Cell. 2019;30:2527–2534. doi: 10.1091/mbc.E19-03-0136. PubMed DOI PMC
Ma X.-L., Shen M.-N., Hu B., Wang B.-L., Yang W.-J., Lv L.-H., Wang H., Zhou Y., Jin A.-L., Sun Y.-F., et al. CD73 promotes hepatocellular carcinoma progression and metastasis via activating PI3K/AKT signaling by inducing Rap1-mediated membrane localization of P110 and predicts poor prognosis. J. Hematol. Oncol. 2019;12:37. doi: 10.1186/s13045-019-0724-7. PubMed DOI PMC
Sitkovsky M.V. Lessons from the A2A Adenosine Receptor Antagonist-Enabled Tumor Regression and Survival in Patients with Treatment-Refractory Renal Cell Cancer. Cancer Discov. 2020;10:16–19. doi: 10.1158/2159-8290.CD-19-1280. PubMed DOI
Seitz L., Jin L.X., Leleti M., Ashok D., Jeffrey J., Rieger A., Tiessen R.G., Arold G., Tan J.B.L., Powers J.P., et al. Safety, tolerability, and pharmacology of AB928, a novel dual adenosine receptor antagonist, in a randomized, phase 1 study in healthy volunteers. Investig. New Drugs. 2019;37:711–721. doi: 10.1007/s10637-018-0706-6. PubMed DOI
Harshman L.C., Chu M., George S., Gordon B., Hughes M., Carthon B.C., Fong L., Merchan J.R., Kwei L., Hotson A.N., et al. Adenosine receptor blockade with ciforadenant plus/- atezolizumab in advanced metastatic castration-resistant prostate cancer (mCRPC) J. Clin. Oncol. 2020;38:129. doi: 10.1200/JCO.2020.38.6_suppl.129. DOI
Wilkat M., Bast H., Drees R., Dunser J., Mahr A., Azoitei N., Marienfeld R., Frank F., Brhel M., Ushmorov A., et al. Adenosine receptor 2B activity promotes autonomous growth, migration as well as vascularization of head and neck squamous cell carcinoma cells. Int. J. Cancer. 2020;147:202–217. doi: 10.1002/ijc.32835. PubMed DOI
Yi Y., Zhou Y.H., Chug X., Zheng X.P., Fei D., Lei J., Qi H.Y., Dai Y.B. Blockade of Adenosine A2b Receptor Reduces Tumor Growth and Migration in Renal Cell Carcinoma. J. Cancer. 2020;11:421–431. doi: 10.7150/jca.31245. PubMed DOI PMC
Koussemou M., Klotz K.N. Agonists activate different A(2B) adenosine receptor signaling pathways in MBA-MD-231 breast cancer cells with distinct potencies. Naunyn-Schmiedebergs Arch. Pharmacol. 2019;392:1515–1521. doi: 10.1007/s00210-019-01695-2. PubMed DOI
Koussemou M., Lorenz K., Klotz K.-N. The A(2B) adenosine receptor in MDA-MB-231 breast cancer cells diminishes ERK1/2 phosphorylation by activation of MAPK-phosphatase-1. PLoS ONE. 2018;13:e0202914. doi: 10.1371/journal.pone.0202914. PubMed DOI PMC
Pottie E., Tosh D.K., Gao Z.G., Jacobson K.A., Stove C.P. Assessment of biased agonism at the A(3) adenosine receptor using beta-arrestin and miniG alpha(i) recruitment assays. Biochem. Pharmacol. 2020;177:113934. doi: 10.1016/j.bcp.2020.113934. PubMed DOI PMC
Smith J.S., Lefkowitz R.J., Rajagopal S. Biased signalling: From simple switches to allosteric microprocessors. Nat. Rev. Drug Discov. 2018;17:243–260. doi: 10.1038/nrd.2017.229. PubMed DOI PMC
Long J.S., Schoonen P.M., Graczyk D., O’Prey J., Ryan K.M. p73 engages A2B receptor signalling to prime cancer cells to chemotherapy-induced death. Oncogene. 2015;34:5152–5162. doi: 10.1038/onc.2014.436. PubMed DOI PMC
Young A., Ngiow S.F., Madore J., Reinhardt J., Landsberg J., Chitsazan A., Rautela J., Bald T., Barkauskas D.S., Ahern E., et al. Targeting Adenosine in BRAF-Mutant Melanoma Reduces Tumor Growth and Metastasis. Cancer Res. 2017;77:4684–4696. doi: 10.1158/0008-5472.CAN-17-0393. PubMed DOI
Fishman P., Bar-Yehuda S., Barer F., Madi L., Multani A.S., Pathak S. The A3 adenosine receptor as a new target for cancer therapy and chemoprotection. Exp. Cell Res. 2001;269:230–236. doi: 10.1006/excr.2001.5327. PubMed DOI
Merighi S., Benini A., Mirandola P., Gessi S., Varani K., Leung E., Maclennan S., Borea P.A. A(3) adenosine receptor activation inhibits cell proliferation via phosphatidylinositol 3-kinase/Akt-dependent inhibition of the extracellular signal-regulated kinase 1/2 phosphorylation in A375 human melanoma cells. J. Biol. Chem. 2005;280:19516–19526. doi: 10.1074/jbc.M413772200. PubMed DOI
Cohen S., Stemmer S.M., Zozulya G., Ochaion A., Patoka R., Barer F., Bar-Yehuda S., Rath-Wolfson L., Jacobson K.A., Fishman P. CF102 an A(3) Adenosine Receptor Agonist Mediates Anti-Tumor and Anti-Inflammatory Effects in the Liver. J. Cell. Physiol. 2011;226:2438–2447. doi: 10.1002/jcp.22593. PubMed DOI PMC
Stemmer S.M., Manojlovic N.S., Marinca M.V., Petrov P., Cherciu N., Ganea D., Ciuleanu T.E., Pusca I.A., Beg M.S., Purcell W.T., et al. Namodenoson in Advanced Hepatocellular Carcinoma and Child-Pugh B Cirrhosis: Randomized Placebo-Controlled Clinical Trial. Cancers. 2021;13:187. doi: 10.3390/cancers13020187. PubMed DOI PMC
Hanahan D., Weinberg R.A. Hallmarks of Cancer: The Next Generation. Cell. 2011;144:646–674. doi: 10.1016/j.cell.2011.02.013. PubMed DOI
Schito L., Semenza G.L. Hypoxia-Inducible Factors: Master Regulators of Cancer Progression. Trends Cancer. 2016;2:758–770. doi: 10.1016/j.trecan.2016.10.016. PubMed DOI
Wong C.C.-L., Zhang H., Gilkes D.M., Chen J., Wei H., Chaturvedi P., Hubbi M.E., Semenza G.L. Inhibitors of hypoxia-inducible factor 1 block breast cancer metastatic niche formation and lung metastasis. J. Mol. Med. 2012;90:803–815. doi: 10.1007/s00109-011-0855-y. PubMed DOI PMC
Hatfield S.M., Kjaergaard J., Lukashev D., Belikoff B., Schreiber T.H., Sethumadhavan S., Abbott R., Philbrook P., Thayer M., Shujia D., et al. Systemic oxygenation weakens the hypoxia and hypoxia inducible factor 1 alpha-dependent and extracellular adenosine-mediated tumor protection. J. Mol. Med. 2014;92:1283–1292. doi: 10.1007/s00109-014-1189-3. PubMed DOI PMC
Hatfield S.M., Sitkovsky M.V. Antihypoxic oxygenation agents with respiratory hyperoxia to improve cancer immunotherapy. J. Clin. Investig. 2020;130:5629–5637. doi: 10.1172/JCI137554. PubMed DOI PMC
Sitkovsky M.V. T regulatory cells: Hypoxia-adenosinergic suppression and re-direction of the immune response. Trends Immunol. 2009;30:102–108. doi: 10.1016/j.it.2008.12.002. PubMed DOI
Bullen J.W., Tchernyshyov I., Holewinski R.J., DeVine L., Wu F., Venkatraman V., Kass D.L., Cole R.N., Van Eyk J., Semenza G.L. Protein kinase A-dependent phosphorylation stimulates the transcriptional activity of hypoxia-inducible factor 1. Sci. Signal. 2016;9:ra56. doi: 10.1126/scisignal.aaf0583. PubMed DOI PMC
Kim S.E., Ko I.G., Jin J.J., Hwang L., Kim C.J., Kim S.H., Han J.H., Jeon J.W. Polydeoxyribonucleotide Exerts Therapeutic Effect by Increasing VEGF and Inhibiting Inflammatory Cytokines in Ischemic Colitis Rats. BioMed Res. Int. 2020;2020:2169083. doi: 10.1155/2020/2169083. PubMed DOI PMC
Ernens I., Leonard F., Vausort M., Rolland-Turner M., Devaux Y., Wagner D.R. Adenosine up-regulates vascular endothelial growth factor in human macrophages. Biochem. Biophys. Res. Commun. 2010;392:351–356. doi: 10.1016/j.bbrc.2010.01.023. PubMed DOI
Kong T., Westerman K.A., Faigle M., Eltzschig H.K., Colgan S.P. HIF-dependent induction of adenosine A2B receptor in hypoxia. FASEB J. 2006;20:2242–2250. doi: 10.1096/fj.06-6419com. PubMed DOI
Ngamsri K.C., Fabian F., Fuhr A., Gamper-Tsigaras J., Straub A., Fecher D., Steinke M., Walles H., Reutershan J., Konrad F.M. Sevoflurane Exerts Protective Effects in Murine Peritonitis-induced Sepsis via Hypoxia-inducible Factor 1 alpha/Adenosine A2B Receptor Signaling. Anesthesiology. 2021;135:136–150. doi: 10.1097/aln.0000000000003788. PubMed DOI
Novitskiy S.V., Ryzhov S., Zaynagetdinov R., Goldstein A.E., Huang Y.H., Tikhomirov O.Y., Blackburn M.R., Biaggioni I., Carbone D.P., Feoktistov I., et al. Adenosine receptors in regulation of dendritic cell differentiation and function. Blood. 2008;112:1822–1831. doi: 10.1182/blood-2008-02-136325. PubMed DOI PMC
Lan J., Lu H., Samanta D., Salman S., Lu Y., Semenza G.L. Hypoxia-inducible factor 1-dependent expression of adenosine receptor 2B promotes breast cancer stem cell enrichment. Proc. Natl. Acad. Sci. USA. 2018;115:E9640–E9648. doi: 10.1073/pnas.1809695115. PubMed DOI PMC
Torres-Pineda D.B., Mora-Garcia M.D., Garcia-Rocha R., Hernandez-Montes J., Weiss-Steider B., Montesinos-Montesinos J.J., Don-Lopez C.A., Marin-Aquino L.A., Munoz-Godinez R., Ibarra L.R.A., et al. Corrigendum to “Adenosine augments the production of IL-10 in cervical cancer cells through interaction with the A2B adenosine receptor, resulting in protection against the activity of cytotoxic T cells” [Cytokine 130 (2020) 155082] Cytokine. 2020;133:155110. doi: 10.1016/j.cyto.2020.155110. PubMed DOI
Kotanska M., Szafarz M.L., Mika K., Dziubina A., Bednarski M., Muller C.E., Sapa J., Kiec-Kononowicz K. PSB 603-a known selective adenosine A2B receptor antagonist—Has anti-inflammatory activity in mice. Biomed. Pharmacother. 2021;135 doi: 10.1016/j.biopha.2020.111164. PubMed DOI
Song X., Zhang Y., Zhang L., Song W., Shi L. Hypoxia enhances indoleamine 2,3-dioxygenase production in dendritic cells. Oncotarget. 2018;9:11572–11580. doi: 10.18632/oncotarget.24098. PubMed DOI PMC
Liu M., Wang X., Wang L., Ma X., Gong Z., Zhang S., Li Y. Targeting the IDO1 pathway in cancer: From bench to bedside. J. Hematol. Oncol. 2018;11:100. doi: 10.1186/s13045-018-0644-y. PubMed DOI PMC
Antonioli L., Fornai M., Pellegrini C., D’Antongiovanni V., Turiello R., Morello S., Hasko G., Blandizzi C. Adenosine Signaling in the Tumor Microenvironment. In: Birbrair A., editor. Tumor Microenvironment: Signaling Pathways—Part B (Advances in Experimental Medicine and Biology) Vol. 1270. Springer; Cham, Switzerland: 2021. pp. 145–167. PubMed
Rolland-Turner M., Goretti E., Bousquenaud M., Leonard F., Nicolas C., Zhang L., Maskali F., Marie P.-Y., Devaux Y., Wagner D. Adenosine Stimulates the Migration of Human Endothelial Progenitor Cells. Role ofCXCR4 and MicroRNA-150. PLoS ONE. 2013;8:e54135. doi: 10.1371/journal.pone.0054135. PubMed DOI PMC
Du X., Ou X., Song T., Zhang W., Cong F., Zhang S., Xiong Y. Adenosine A(2B) receptor stimulates angiogenesis by inducing VEGF and eNOS in human microvascular endothelial cells. Exp. Biol. Med. 2015;240:1472–1479. doi: 10.1177/1535370215584939. PubMed DOI PMC
Ushio-Fukai M., Nakamura Y. Reactive oxygen species and angiogenesis: NADPH oxidase as target for cancer therapy. Cancer Lett. 2008;266:37–52. doi: 10.1016/j.canlet.2008.02.044. PubMed DOI PMC
Ryzhov S.V., Pickup M.W., Chytil A., Gorska A.E., Zhang Q., Owens P., Feoktistov I., Moses H.L., Novitskiy S.V. Role of TGF-beta Signaling in Generation of CD39(+)CD73(+) Myeloid Cells in Tumors. J. Immunol. 2014;193:3155–3164. doi: 10.4049/jimmunol.1400578. PubMed DOI PMC
Vasiukov G., Novitskaya T., Zijlstra A., Owens P., Ye F., Zhao Z.G., Moses H.L., Blackwell T., Feoktistov I., Novitskiy S.V. Myeloid Cell-Derived TGF beta Signaling Regulates ECM Deposition in Mammary Carcinoma via Adenosine-Dependent Mechanisms. Cancer Res. 2020;80:2628–2638. doi: 10.1158/0008-5472.CAN-19-3954. PubMed DOI PMC
Howe A.K. Regulation of actin-based cell migration by cAMP/PKA. Biochim. Et Biophys. Acta-Mol. Cell Res. 2004;1692:159–174. doi: 10.1016/j.bbamcr.2004.03.005. PubMed DOI
Angioni R., Liboni C., Herkenne S., Sanchez-Rodriguez R., Borile G., Marcuzzi E., Cali B., Muraca M., Viola A. CD73(+) extracellular vesicles inhibit angiogenesis through adenosine A(2B) receptor signalling. J. Extracell. Vesicles. 2020;9:1757900. doi: 10.1080/20013078.2020.1757900. PubMed DOI PMC
Thakur S., Du J., Hourani S., Ledent C., Li J.-M. Inactivation of Adenosine A(2A) Receptor Attenuates Basal and Angiotensin II-induced ROS Production by Nox2 in Endothelial Cells. J. Biol. Chem. 2010;285:40104–40113. doi: 10.1074/jbc.M110.184606. PubMed DOI PMC
Chen L., Li L.D., Zhou C.S., Chen X., Cao Y.Q. Adenosine A2A receptor activation reduces brain metastasis via SDF-1/CXCR4 axis and protecting blood-brain barrier. Mol. Carcinog. 2020;59:390–398. doi: 10.1002/mc.23161. PubMed DOI
Bours M.J.L., Swennen E.L.R., Di Virgilio F., Cronstein B.N., Dagnelie P.C. Adenosine 5′-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation. Pharmacol. Ther. 2006;112:358–404. doi: 10.1016/j.pharmthera.2005.04.013. PubMed DOI
Popielarski M., Ponamarczuk H., Stasiak M., Gdula A., Bednarek R., Wolska N., Swiatkowska M. P2Y(12) receptor antagonists and AR receptor agonists regulates Protein Disulfide Isomerase secretion from platelets and endothelial cells. Biochem. Biophys. Res. Commun. 2020;526:756–763. doi: 10.1016/j.bbrc.2020.03.143. PubMed DOI
Bowser J.L., Broaddus R.R. CD73s protection of epithelial integrity: Thinking beyond the barrier. Tissue Barriers. 2016;4:11. doi: 10.1080/21688370.2016.1224963. PubMed DOI PMC
Ntantie E., Gonyo P., Lorimer E.L., Hauser A.D., Schuld N., McAllister D., Kalyanaraman B., Dwinell M.B., Auchampach J.A., Williams C.L. An Adenosine-Mediated Signaling Pathway Suppresses Prenylation of the GTPase Rap1B and Promotes Cell Scattering. Sci. Signal. 2013;6:ra39. doi: 10.1126/scisignal.2003374. PubMed DOI PMC
Hinz S., Jung D., Hauert D., Bachmann H.S. Molecular and Pharmacological Characterization of the Interaction between Human Geranylgeranyltransferase Type I and Ras-Related Protein Rap1B. Int. J. Mol. Sci. 2021;22:2501. doi: 10.3390/ijms22052501. PubMed DOI PMC
Lupia M., Angiolini F., Bertalot G., Freddi S., Sachsenmeier K.F., Chisci E., Kutryb-Zajac B., Confalonieri S., Smolenski R.T., Giovannoni R., et al. CD73 Regulates Stemness and Epithelial-Mesenchymal Transition in Ovarian Cancer-Initiating Cells. Stem Cell Rep. 2018;10:1412–1425. doi: 10.1016/j.stemcr.2018.02.009. PubMed DOI PMC
Ma X.-L., Hu B., Tang W.-G., Xie S.-H., Ren N., Guo L., Lu R.-Q. CD73 sustained cancer-stem-cell traits by promoting SOX9 expression and stability in hepatocellular carcinoma. J. Hematol. Oncol. 2020;13:11. doi: 10.1186/s13045-020-0845-z. PubMed DOI PMC
Tsiampali J., Neumann S., Giesen B., Koch K., Maciaczyk D., Janiak C., Hanggi D., Maciaczyk J. Enzymatic Activity of CD73 Modulates Invasion of Gliomas via Epithelial-Mesenchymal Transition-Like Reprogramming. Pharmaceuticals. 2020;13:378. doi: 10.3390/ph13110378. PubMed DOI PMC
Schwabe U., Ukena D., Lohse M.J. Xanthine derivatives as antagonists at A1 and A2 adenosine receptors. Naunyn-Schmiedebergs Arch. Pharmacol. 1985;330:212–221. doi: 10.1007/BF00572436. PubMed DOI
Torres A., Vargas Y., Uribe D., Jaramillo C., Gleisner A., Salazar-Onfray F., Lopez M.N., Melo R., Oyarzun C., San Martin R., et al. Adenosine A(3) receptor elicits chemoresistance mediated by multiple resistance-associated protein-1 in human glioblastoma stem-like cells. Oncotarget. 2016;7:67373–67386. doi: 10.18632/oncotarget.12033. PubMed DOI PMC
Gessi S., Sacchetto V., Fogli E., Merighi S., Varani K., Baraldi P.G., Tabrizi M.A., Leung E., Maclennan S., Borea P.A. Modulation of metalloproteinase-9 in U87MG glioblastoma cells by A(3) adenosine receptors. Biochem. Pharmacol. 2010;79:1483–1495. doi: 10.1016/j.bcp.2010.01.009. PubMed DOI
Torres A., Erices J.I., Sanchez F., Ehrenfeld P., Turchi L., Virolle T., Uribe D., Niechi I., Spichiger C., Rocha J.D., et al. Extracellular adenosine promotes cell migration/invasion of Glioblastoma Stem-like Cells through A(3) Adenosine Receptor activation under hypoxia. Cancer Lett. 2019;446:112–122. doi: 10.1016/j.canlet.2019.01.004. PubMed DOI
Liu T.Z., Wang X., Bai Y.F., Liao H.Z., Qiu S.C., Yang Y.Q., Yan X.H., Chen J., Guo H.B., Zhang S.Z. The HIF-2alpha dependent induction of PAP and adenosine synthesis regulates glioblastoma stem cell function through the A2B adenosine receptor. Int. J. Biochem. Cell Biol. 2014;49:8–16. doi: 10.1016/j.biocel.2014.01.007. PubMed DOI
Giacomelli C., Daniele S., Romei C., Tavanti L., Neri T., Piano I., Celi A., Martini C., Trincavelli M.L. The A(2B) Adenosine Receptor Modulates the Epithelial-Mesenchymal Transition through the Balance of cAMP/PKA and MAPK/ERK Pathway Activation in Human Epithelial Lung Cells. Front. Pharmacol. 2018;9:54. doi: 10.3389/fphar.2018.00054. PubMed DOI PMC
Daniele S., Zappelli E., Natali L., Martini C., Trincavelli M.L. Modulation of A(1) and A(2B) adenosine receptor activity: A new strategy to sensitise glioblastoma stem cells to chemotherapy. Cell Death Dis. 2014;5:e1539. doi: 10.1038/cddis.2014.487. PubMed DOI PMC
Jafari S.M., Joshaghani H.R., Panjehpour M., Aghaei M., Balajam N.Z. Apoptosis and cell cycle regulatory effects of adenosine by modulation of GLI-1 and ERK1/2 pathways in CD44(+) and CD24(−) breast cancer stem cells. Cell Prolif. 2017;50:e12345. doi: 10.1111/cpr.12345. PubMed DOI PMC
Jafari S.M., Joshaghani H.R., Panjehpour M., Aghaei M. A2B adenosine receptor agonist induces cell cycle arrest and apoptosis in breast cancer stem cells via ERK1/2 phosphorylation. Cell. Oncol. 2018;41:61–72. doi: 10.1007/s13402-017-0359-z. PubMed DOI
Jafari S.M., Panjehpour M., Aghaei M., Joshaghani H.R., Enderami S.E. A3 Adenosine Receptor Agonist Inhibited Survival of Breast Cancer Stem Cells via GLI-1 and ERK1/2 Pathway. J. Cell. Biochem. 2017;118:2909–2920. doi: 10.1002/jcb.25945. PubMed DOI
Pan D., Roy S., Gascard P., Zhao J., Chen-Tanyolac C., Tlsty T.D. SOX2, OCT3/4 and NANOG expression and cellular plasticity in rare human somatic cells requires CD73. Cell. Signal. 2016;28:1923–1932. doi: 10.1016/j.cellsig.2016.09.008. PubMed DOI PMC
Roy S., Gascard P., Dumont N., Zhao J., Pan D., Petrie S., Margeta M., Tlsty T.D. Rare somatic cells from human breast tissue exhibit extensive lineage plasticity. Proc. Natl. Acad. Sci. USA. 2013;110:4598–4603. doi: 10.1073/pnas.1218682110. PubMed DOI PMC
Kitabatake K., Kaji T., Tsukimoto M. Involvement of CD73 and A2B Receptor in Radiation-Induced DNA Damage Response and Cell Migration in Human Glioblastoma A172 Cells. Biol. Pharm. Bull. 2021;44:197–210. doi: 10.1248/bpb.b20-00654. PubMed DOI
Tanaka Y., Kitabatake K., Abe R., Tsukimoto M. Involvement of A2B Receptor in DNA Damage Response and Radiosensitizing Effect of A2B Receptor Antagonists on Mouse B16 Melanoma. Biol. Pharm. Bull. 2020;43:516–525. doi: 10.1248/bpb.b19-00976. PubMed DOI
Kitabatake K., Yoshida E., Kaji T., Tsukimoto M. Involvement of adenosine A2B receptor in radiation-induced translocation of epidermal growth factor receptor and DNA damage response leading to for radioresistance in human lung cancer cells. Biochim. Biophys. Acta—Gen. Subj. 2020;1864:14. doi: 10.1016/j.bbagen.2019.129457. PubMed DOI
Moeller B.J., Cao Y.T., Li C.Y., Dewhirst M.W. Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: Role of reoxygenation, free radicals, and stress granules. Cancer Cell. 2004;5:429–441. doi: 10.1016/S1535-6108(04)00115-1. PubMed DOI
Jin H., Lee J.S., Kim D.C., Ko Y.S., Lee G.W., Kim H.J. Increased Extracellular Adenosine in Radiotherapy-Resistant Breast Cancer Cells Enhances Tumor Progression through A2AR-Akt-beta-Catenin Signaling. Cancers. 2021;13:2105. doi: 10.3390/cancers13092105. PubMed DOI PMC
Oren Y., Tsabar M., Cuoco M.S., Amir-Zilberstein L., Cabanos H.F., Hutter J.-C., Hu B., Thakore P.I., Tabaka M., Fulco C.P., et al. Cycling cancer persister cells arise from lineages with distinct programs. Nature. 2021;596:576–582. doi: 10.1038/s41586-021-03796-6. PubMed DOI PMC
Raposo G., Stoorvogel W. Extracellular vesicles: Exosomes, microvesicles, and friends. J. Cell Biol. 2013;200:373–383. doi: 10.1083/jcb.201211138. PubMed DOI PMC
Di Iorio P., Ciccarelli R. Adenine-Based Purines and Related Metabolizing Enzymes: Evidence for Their Impact on Tumor Extracellular Vesicle Activities. Cells. 2021;10:188. doi: 10.3390/cells10010188. PubMed DOI PMC
Srinivasan S., Vannberg F.O., Dixon J.B. Lymphatic transport of exosomes as a rapid route of information dissemination to the lymph node. Sci. Rep. 2016;6:24436. doi: 10.1038/srep24436. PubMed DOI PMC
Clayton A., Al-Taei S., Webber J., Mason M.D., Tabi Z. Cancer Exosomes Express CD39 and CD73, Which Suppress T Cells through Adenosine Production. J. Immunol. 2011;187:676–683. doi: 10.4049/jimmunol.1003884. PubMed DOI
Tadokoro H., Hirayama A., Kudo R., Hasebe M., Yoshioka Y., Matsuzaki J., Yamamoto Y., Sugimoto M., Soga T., Ochiya T. Adenosine leakage from perforin-burst extracellular vesicles inhibits perforin secretion by cytotoxic T-lymphocytes. PLoS ONE. 2020;15:e0231430. doi: 10.1371/journal.pone.0231430. PubMed DOI PMC
Ludwig N., Yerneni S.S., Azambuja J.H., Gillespie D.G., Menshikova E.V., Jackson E.K., Whiteside T.L. Tumor-derived exosomes promote angiogenesis via adenosine A(2B) receptor signaling. Angiogenesis. 2020;23:599–610. doi: 10.1007/s10456-020-09728-8. PubMed DOI PMC
Smyth L.A., Ratnasothy K., Tsang J.Y.S., Boardman D., Warley A., Lechler R., Lombardi G. CD73 expression on extracellular vesicles derived from CD4(+)CD25(+)Foxp3(+) T cells contributes to their regulatory function. Eur. J. Immunol. 2013;43:2430–2440. doi: 10.1002/eji.201242909. PubMed DOI
Zhang F., Li R., Yang Y., Shi C., Shen Y., Lu C., Chen Y., Zhou W., Lin A., Yu L., et al. Specific Decrease in B-Cell-Derived Extracellular Vesicles Enhances Post-Chemotherapeutic CD8(+) T Cell Responses. Immunity. 2019;50:738–750. doi: 10.1016/j.immuni.2019.01.010. PubMed DOI
Ostrowski M., Carmo N.B., Krumeich S., Fanget I., Raposo G., Savina A., Moita C.F., Schauer K., Hume A.N., Freitas R.P., et al. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat. Cell Biol. 2010;12:19–30. doi: 10.1038/ncb2000. PubMed DOI
Leiva A., Guzman-Gutierrez E., Contreras-Duarte S., Fuenzalida B., Cantin C., Carvajal L., Salsoso R., Gutierrez J., Pardo F., Sobrevia L. Adenosine receptors: Modulators of lipid availability that are controlled by lipid levels. Mol. Asp. Med. 2017;55:26–44. doi: 10.1016/j.mam.2017.01.007. PubMed DOI
Ludwig N., Azambuja J.H., Rao A., Gillespie D.G., Jackson E.K., Whiteside T.L. Adenosine receptors regulate exosome production. Purinergic Signal. 2020;16:231–240. doi: 10.1007/s11302-020-09700-7. PubMed DOI PMC
Man S., Lu Y., Yin L., Cheng X., Ma L. Potential and promising anticancer drugs from adenosine and its analogs. Drug Discov. Today. 2021;26:1490–1500. doi: 10.1016/j.drudis.2021.02.020. PubMed DOI
Hendriks R.W., Yuvaraj S., Kil L.P. Targeting Bruton’s tyrosine kinase in B cell malignancies. Nat. Rev. Cancer. 2014;14:219–232. doi: 10.1038/nrc3702. PubMed DOI
Jeske S.S., Brand M., Ziebart A., Laban S., Doescher J., Greve J., Jackson E.K., Hoffmann T.K., Brunner C., Schuler P.J. Adenosine-producing regulatory B cells in head and neck cancer. Cancer Immunol. Immunother. 2020;69:1205–1216. doi: 10.1007/s00262-020-02535-6. PubMed DOI PMC
Wang X.H., Kokabee L., Kokabee M., Conklin D.S. Bruton’s Tyrosine Kinase and Its Isoforms in Cancer. Front. Cell Dev. Biol. 2021;9:668996. doi: 10.3389/fcell.2021.668996. PubMed DOI PMC
de Gorter D.J.J., Beuling E.A., Kersseboom R., Middendorp S., van Gils J.M., Hendriks R.W., Pals S.T., Spaargaren M. Bruton’s tyrosine kinase and phospholipase C gamma 2 mediate chemokine-controlled B cell migration and homing. Immunity. 2007;26:93–104. doi: 10.1016/j.immuni.2006.11.012. PubMed DOI
Lou T.-F., Sethuraman D., Dospoy P., Srivastva P., Kim H.S., Kim J., Ma X., Chen P.-H., Huffman K.E., Frink R.E., et al. Cancer-Specific Production of N-Acetylaspartate via NAT8L Overexpression in Non-Small Cell Lung Cancer and Its Potential as a Circulating Biomarker. Cancer Prev. Res. 2016;9:43–52. doi: 10.1158/1940-6207.CAPR-14-0287. PubMed DOI PMC
Zand B., Previs R.A., Zacharias N.M., Rupaimoole R., Mitamura T., Nagaraja A.S., Guindani M., Dalton H.J., Yang L., Baddour J., et al. Role of Increased n-acetylaspartate Levels in Cancer. J. Natl. Cancer Inst. 2016;108 doi: 10.1093/jnci/djv426. PubMed DOI PMC
Dong M., Yang Z.L., Li X.F., Zhang Z.X., Yin A.K. Screening of Methylation Gene Sites as Prognostic Signature in Lung Adenocarcinoma. Yonsei Med. J. 2020;61:1013–1023. doi: 10.3349/ymj.2020.61.12.1013. PubMed DOI PMC
Menga A., Favia M., Spera I., Vegliante M.C., Gissi R., De Grassi A., Laera L., Campanella A., Gerbino A., Carra G., et al. N-acetylaspartate release by glutaminolytic ovarian cancer cells sustains protumoral macrophages. EMBO Rep. 2021;22:e51981. doi: 10.15252/embr.202051981. PubMed DOI PMC
Liu X.H., Wu X.R., Lan N., Zheng X.B., Zhou C., Hu T., Chen Y.F., Cai Z.R., Chen Z.X., Lan P., et al. CD73 promotes colitis-associated tumorigenesis in mice. Oncol. Lett. 2020;20:1221–1230. doi: 10.3892/ol.2020.11670. PubMed DOI PMC
Abel B., Tosh D.K., Durell S.R., Murakami M., Vahedi S., Jacobson K.A., Ambudkar S.V. Evidence for the Interaction of A(3) Adenosine Receptor Agonists at the Drug-Binding Site(s) of Human P-glycoprotein (ABCB1) Mol. Pharmacol. 2019;96:180–192. doi: 10.1124/mol.118.115295. PubMed DOI PMC
Mlejnek P., Dolezel P., Kosztyu P. P-glycoprotein mediates resistance to A3 adenosine receptor agonist 2-chloro-N-6-(3-iodobenzyl)-adenosine-5′-n-methyluronamide in human leukemia cells. J. Cell. Physiol. 2012;227:676–685. doi: 10.1002/jcp.22775. PubMed DOI
Ostuni A., Carmosino M., Miglionico R., Abruzzese V., Martinelli F., Russo D., Laurenzana I., Petillo A., Bisaccia F. Inhibition of ABCC6 Transporter Modifies Cytoskeleton and Reduces Motility of HepG2 Cells via Purinergic Pathway. Cells. 2020;9:1410. doi: 10.3390/cells9061410. PubMed DOI PMC
Miglionico R., Armentano M.F., Carmosino M., Salvia A.M., Cuviello F., Bisaccia F., Ostuni A. Dysregulation of gene expression in ABCC6 knockdown HepG2 cells. Cell. Mol. Biol. Lett. 2014;19:517–526. doi: 10.2478/s11658-014-0208-2. PubMed DOI PMC
Shali S., Yu J., Zhang X., Wang X., Jin Y., Su M., Liao X., Yu J., Zhi X., Zhou P. Ecto-5-nucleotidase (CD73) is a potential target of hepatocellular carcinoma. J. Cell. Physiol. 2019;234:10248–10259. doi: 10.1002/jcp.27694. PubMed DOI
Gao Z.-w., Wang H.-p., Lin F., Wang X., Long M., Zhang H.-z., Dong K. CD73 promotes proliferation and migration of human cervical cancer cells independent of its enzyme activity. BMC Cancer. 2017;17:135. doi: 10.1186/s12885-017-3128-5. PubMed DOI PMC
Lappas C.M., Rieger J.M., Linden J. A(2A) adenosine receptor induction inhibits IFN-gamma production in murine CD4(+) T cells. J. Immunol. 2005;174:1073–1080. doi: 10.4049/jimmunol.174.2.1073. PubMed DOI
Himer L., Csoka B., Selmeczy Z., Koscso B., Pocza T., Pacher P., Nemeth Z.H., Deitch E.A., Vizi E.S., Cronstein B.N., et al. Adenosine A(2A) receptor activation protects CD4(+) T lymphocytes against activation-induced cell death. FASEB J. 2010;24:2631–2640. doi: 10.1096/fj.10-155192. PubMed DOI PMC
Shou J., Jing J., Xie J., You L., Jing Z., Yao J., Han W., Pan H. Nuclear factor of activated T cells in cancer development and treatment. Cancer Lett. 2015;361:174–184. doi: 10.1016/j.canlet.2015.03.005. PubMed DOI
Mokrani M.B., Klibi J., Bluteau D., Bismuth G., Mami-Chouaib F. Smad and NFAT Pathways Cooperate To Induce CD103 Expression in Human CD8 T Lymphocytes. J. Immunol. 2014;192:2471–2479. doi: 10.4049/jimmunol.1302192. PubMed DOI
Kjaergaard J., Hatfield S., Jones G., Ohta A., Sitkovsky M. A(2A) Adenosine Receptor Gene Deletion or Synthetic A2A Antagonist Liberate Tumor-Reactive CD8(+) T Cells from Tumor-Induced Immunosuppression. J. Immunol. 2018;201:782–791. doi: 10.4049/jimmunol.1700850. PubMed DOI PMC
Nie J., Liu A., Tan Q., Zhao K., Hu K., Li Y., Yan B., Zhou L. AICAR activates ER stress-dependent apoptosis in gallbladder cancer cells. Biochem. Biophys. Res. Commun. 2017;482:246–252. doi: 10.1016/j.bbrc.2016.11.050. PubMed DOI
Wu L.-F., Wei B.-L., Guo Y.-T., Ye Y.-Q., Li G.-P., Pu Z.-J., Feng J.-L. Apoptosis induced by adenosine involves endoplasmic reticulum stress in EC109 cells. Int. J. Mol. Med. 2012;30:797–804. doi: 10.3892/ijmm.2012.1085. PubMed DOI
Wu L.-F., Guo Y.-T., Zhang Q.-H., Xiang M.-Q., Deng W., Ye Y.-Q., Pu Z.-J., Feng J.-L., Huang G.-Y. Enhanced Antitumor Effects of Adenoviral-Mediated siRNA against GRP78 Gene on Adenosine-Induced Apoptosis in Human Hepatoma HepG2 Cells. Int. J. Mol. Sci. 2014;15:525–544. doi: 10.3390/ijms15010525. PubMed DOI PMC
Tosh D.K., Brackett C.M., Jung Y.H., Gao Z.G., Banerjee M., Blagg B.S.J., Jacobson K.A. Biological Evaluation of 5′-(N-Ethylcarboxamido)adenosine Analogues as Grp94-Selective Inhibitors. ACS Med. Chem. Lett. 2021;12:373–379. doi: 10.1021/acsmedchemlett.0c00509. PubMed DOI PMC
Kumari N., Reabroi S., North B.J. Unraveling the Molecular Nexus between GPCRs, ERS, and EMT. Mediat. Inflamm. 2021;2021:6655417. doi: 10.1155/2021/6655417. PubMed DOI PMC
Hassanian S.M., Dinarvand P., Rezaie A.R. Adenosine Regulates the Proinflammatory Signaling Function of Thrombin in Endothelial Cells. J. Cell. Physiol. 2014;229:1292–1300. doi: 10.1002/jcp.24568. PubMed DOI PMC
Takahashi H.K., Iwagaki H., Hamano R., Wake H., Kanke T., Liu K., Yoshino T., Tanaka N., Nishibori M. Effects of adenosine on adhesion molecule expression and cytokine production in human PBMC depend on the receptor subtype activated. Br. J. Pharmacol. 2007;150:816–822. doi: 10.1038/sj.bjp.0707126. PubMed DOI PMC
Xu Y., Wang Y., Yan S., Yang Q., Zhou Y., Zeng X., Liu Z., An X., Toque H.A., Dong Z., et al. Regulation of endothelial intracellular adenosine via adenosine kinase epigenetically modulates vascular inflammation. Nat. Commun. 2017;8:943. doi: 10.1038/s41467-017-00986-7. PubMed DOI PMC
Schuster E., Taftaf R., Reduzzi C., Albert M.K., Romero-Calvo I., Liu H. Better together: Circulating tumor cell clustering in metastatic cancer. Trends Cancer. 2021;7:1020–1032. doi: 10.1016/j.trecan.2021.07.001. PubMed DOI PMC
Gkountela S., Castro-Giner F., Szczerba B.M., Vetter M., Landin J., Scherrer R., Krol I., Scheidmann M.C., Beisel C., Stirnimann C.U., et al. Circulating Tumor Cell Clustering Shapes DNA Methylation to Enable Metastasis Seeding. Cell. 2019;176:98–112. doi: 10.1016/j.cell.2018.11.046. PubMed DOI PMC
Vecchio E.A., Baltos J.A., Nguyen A.T.N., Christopoulos A., White P.J., May L.T. New paradigms in adenosine receptor pharmacology: Allostery, oligomerization and biased agonism. Br. J. Pharmacol. 2018;175:4036–4046. doi: 10.1111/bph.14337. PubMed DOI PMC
Guidolin D., Marcoli M., Tortorella C., Maura G., Agnati L.F. Receptor-Receptor Interactions as a Widespread Phenomenon: Novel Targets for Drug Development? Front. Endocrinol. 2019;10:53. doi: 10.3389/fendo.2019.00053. PubMed DOI PMC
Park S., Jiang H., Zhang H., Smith R.G. Modification of ghrelin receptor signaling by somatostatin receptor-5 regulates insulin release. Proc. Natl. Acad. Sci. USA. 2012;109:19003–19008. doi: 10.1073/pnas.1209590109. PubMed DOI PMC
Jonas K.C., Hanyaloglu A.C. Impact of G protein-coupled receptor heteromers in endocrine systems. Mol. Cell. Endocrinol. 2017;449:21–27. doi: 10.1016/j.mce.2017.01.030. PubMed DOI
Cervetto C., Venturini A., Passalacqua M., Guidolin D., Genedani S., Fuxe K., Borroto-Esquela D.O., Cortelli P., Woods A., Maura G., et al. A2A-D2 receptor-receptor interaction modulates gliotransmitter release from striatal astrocyte processes. J. Neurochem. 2017;140:268–279. doi: 10.1111/jnc.13885. PubMed DOI
Tonazzini I., Trincavelli M.L., Montali M., Martini C. Regulation of A(1) adenosine receptor functioning induced by P2Y(1) purinergic receptor activation in human astroglial cells. J. Neurosci. Res. 2008;86:2857–2866. doi: 10.1002/jnr.21727. PubMed DOI
Tonazzini I., Trincavelli M.L., Storm-Mathisen J., Martini C., Bergersen L.H. Co-localization and functional cross-talk between A(1) and P2Y(1) purine receptors in rat hippocampus. Eur. J. Neurosci. 2007;26:890–902. doi: 10.1111/j.1460-9568.2007.05697.x. PubMed DOI PMC
Conde S.V., Obeso A., Monteiro E.C., Gonzalez C. The A(2B)-D-2 Receptor Interaction that Controls Carotid Body Catecholamines Release Locates Between the Last Two Steps of Hypoxic Transduction Cascade. Arter. Chemorecept. 2009;648:161–168. doi: 10.1007/978-90-481-2259-2_18. PubMed DOI
Conde S.V., Gonzalez C., Batuca J.R., Monteiro E.C., Obeso A. An antagonistic interaction between A(2B) adenosine and D-2 dopamine receptors modulates the function of rat carotid body chemoreceptor cells. J. Neurochem. 2008;107:1369–1381. doi: 10.1111/j.1471-4159.2008.05704.x. PubMed DOI
Moreno E., Andradas C., Medrano M., Caffarel M.M., Perez-Gomez E., Blasco-Benito S., Gomez-Canas M., Ruth Pazos M., Irving A.J., Lluis C., et al. Targeting CB2-GPR55 Receptor Heteromers Modulates Cancer Cell Signaling. J. Biol. Chem. 2014;289:21960–21972. doi: 10.1074/jbc.M114.561761. PubMed DOI PMC
Thomsen A.R.B., Plouffe B., Cahill T.J., Shukla A.K., Tarrasch J.T., Dosey A.M., Kahsai A.W., Strachan R.T., Pani B., Mahoney J.P., et al. GPCR-G Protein-beta-Arrestin Super-Complex Mediates Sustained G Protein Signaling. Cell. 2016;166:907–919. doi: 10.1016/j.cell.2016.07.004. PubMed DOI PMC
Wang X., van Westen G.J.P., Heitman L.H., Ijzerman A.P. G protein-coupled receptors expressed and studied in yeast. The adenosine receptor as a prime example. Biochem. Pharmacol. 2021;187:114370. doi: 10.1016/j.bcp.2020.114370. PubMed DOI
Wang X.S., Jespers W., Bongers B.J., Jansen M., Stangenberger C.M., Dilweg M.A., Gutierrez-de-Teran H., Ijzerman A.P., Heitman L.H., van Westen G.J.P. Characterization of cancer-related somatic mutations in the adenosine A2B receptor. Eur. J. Pharmacol. 2020;880:173126. doi: 10.1016/j.ejphar.2020.173126. PubMed DOI
Vecchio E.A., Tan C.Y.R., Gregory K.J., Christopoulos A., White P.J., May L.T. Ligand-Independent Adenosine A(2B) Receptor Constitutive Activity as a Promoter of Prostate Cancer Cell Proliferation. J. Pharmacol. Exp. Ther. 2016;357:36–44. doi: 10.1124/jpet.115.230003. PubMed DOI
McNeill S.M., Baltos J.A., White P.J., May L.T. Biased agonism at adenosine receptors. Cell. Signal. 2021;82:109954. doi: 10.1016/j.cellsig.2021.109954. PubMed DOI
Storme J., Cannaert A., Van Craenenbroeck K., Stove C.P. Molecular dissection of the human A(3) adenosine receptor coupling with beta-arrestin2. Biochem. Pharmacol. 2018;148:298–307. doi: 10.1016/j.bcp.2018.01.008. PubMed DOI
Yu J.H., Ahn S., Kim H.J., Lee M., Kim J., Jin S.H., Lee E., Kim G., Cheong J.H., Jacobson K.A., et al. Polypharmacology of N-6-(3-lodobenzyl)adenosine-5′-N-methyluronamide (IB-MECA) and Related A(3) Adenosine Receptor Ligands: Peroxisome Proliferator Activated Receptor (PPAR) gamma Partial Agonist and PPAR delta Antagonist Activity Suggests Their Antidiabetic Potential. J. Med. Chem. 2017;60:7459–7475. doi: 10.1021/acs.jmedchem.7b00805. PubMed DOI PMC
Jensen K., Johnson L.A.A., Jacobson P.A., Kachler S., Kirstein M.N., Lamba J., Klotz K.-N. Cytotoxic purine nucleoside analogues bind to A(1), A(2A), and A(3) adenosine receptors. Naunyn-Schmiedebergs Arch. Pharmacol. 2012;385:519–525. doi: 10.1007/s00210-011-0719-6. PubMed DOI PMC
Tang J.X., Zou Y., Li L., Lu F.P., Xu H.T., Ren P.X., Bai F., Niedermann G., Zhu X.K. BAY 60-6583 Enhances the Antitumor Function of Chimeric Antigen Receptor-Modified T Cells Independent of the Adenosine A2b Receptor. Front. Pharmacol. 2021;12:274. doi: 10.3389/fphar.2021.619800. PubMed DOI PMC
Carpenter B., Lebon G. Human Adenosine A(2A) Receptor: Molecular Mechanism of Ligand Binding and Activation. Front. Pharmacol. 2017;8:898. doi: 10.3389/fphar.2017.00898. PubMed DOI PMC
Seibt B.F., Schiedel A.C., Thimm D., Hinz S., Sherbiny F.F., Mueller C.E. The second extracellular loop of GPCRs determines subtype-selectivity and controls efficacy as evidenced by loop exchange study at A(2) adenosine receptors. Biochem. Pharmacol. 2013;85:1317–1329. doi: 10.1016/j.bcp.2013.03.005. PubMed DOI
De Filippo E., Hinz S., Pellizzari V., Deganutti G., El-Tayeb A., Navarro G., Franco R., Moro S., Schiedel A.C., Mueller C.E. A(2A) and A(2B) adenosine receptors: The extracellular loop 2 determines high (A(2A)) or low affinity (A(2B)) for adenosine. Biochem. Pharmacol. 2020;172:113718. doi: 10.1016/j.bcp.2019.113718. PubMed DOI
Bowser J.L., Blackburn M.R., Shipley G.L., Molina J.G., Dunner K., Jr., Broaddus R.R. Loss of CD73-mediated actin polymerization promotes endometrial tumor progression. J. Clin. Investig. 2016;126:220–238. doi: 10.1172/JCI79380. PubMed DOI PMC
Kurnit K.C., Draisey A., Kazen R.C., Chung C., Phan L.H., Harvey J.B., Feng J.P., Xie S.S., Broaddus R.R., Bowser J.L. Loss of CD73 shifts transforming growth factor-beta 1 (TGF-beta 1) from tumor suppressor to promoter in endometrial cancer. Cancer Lett. 2021;505:75–86. doi: 10.1016/j.canlet.2021.01.030. PubMed DOI PMC
Dziedzic K., Wegrzyn P., Galezowski M., Bonkowska M., Grycuk K., Satala G., Wiatrowska K., Wiklik K., Brzozka K., Nowak M. Release of adenosine-induced immunosuppression: Comprehensive characterization of dual A(2A)/A(2B) receptor antagonist. Int. Immunopharmacol. 2021;96:107645. doi: 10.1016/j.intimp.2021.107645. PubMed DOI
Moriyama K., Sitkovsky M.V. Adenosine A2A Receptor Is Involved in Cell Surface Expression of A2B Receptor. J. Biol. Chem. 2010;285:39271–39288. doi: 10.1074/jbc.M109.098293. PubMed DOI PMC
Arruga F., Serra S., Vitale N., Guerra G., Papait A., Gyau B.B., Tito F., Efremov D., Vaisitti T., Deaglio S. Targeting the A2A adenosine receptor counteracts immunosuppression in vivo in a mouse model of chronic lymphocytic leukemia. Haematologica. 2021;106:1343–1353. doi: 10.3324/haematol.2019.242016. PubMed DOI PMC
Ott M., Tomaszowski K.H., Marisetty A., Kong L.Y., Wei J., Duna M., Blumberg K., Ji X.R., Jacobs C., Fuller G.N., et al. Profiling of patients with glioma reveals the dominant immunosuppressive axis is refractory to immune function restoration. JCI Insight. 2020;5:e134386. doi: 10.1172/jci.insight.134386. PubMed DOI PMC
Vasiukov G., Menshikh A., Owens P., Novitskaya T., Hurley P., Blackwell T., Feoktistov I., Novitskiy S.V. Adenosine/TGF beta axis in regulation of mammary fibroblast functions. PLoS ONE. 2021;16:e0252424. doi: 10.1371/journal.pone.0252424. PubMed DOI PMC
Merighi S., Mirandola P., Milani D., Varani K., Gessi S., Klotz K.N., Leung E., Baraldi P.G., Borea P.A. Adenosine receptors as mediators of both cell proliferation and cell death of cultured human melanoma cells. J. Investig. Dermatol. 2002;119:923–933. doi: 10.1046/j.1523-1747.2002.00111.x. PubMed DOI
Gomez G., Sitkovsky M.V. Differential requirement for A2a and A3 adenosine receptors for the protective effect of inosine in vivo. Blood. 2003;102:4472–4478. doi: 10.1182/blood-2002-11-3624. PubMed DOI
Welihinda A.A., Kaur M., Greene K., Zhai Y., Amento E.P. The adenosine metabolite inosine is a functional agonist of the adenosine A(2A) receptor with a unique signaling bias. Cell. Signal. 2016;28:552–560. doi: 10.1016/j.cellsig.2016.02.010. PubMed DOI PMC
Serrano-del Valle A., Naval J., Anel A., Marzo I. Novel Forms of Immunomodulation for Cancer Therapy. Trends Cancer. 2020;6:518–532. doi: 10.1016/j.trecan.2020.02.015. PubMed DOI
Mager L.F., Burkhard R., Pett N., Cooke N.C.A., Brown K., Ramay H., Paik S., Stagg J., Groves R.A., Gallo M., et al. Microbiome-derived inosine modulates response to checkpoint inhibitor immunotherapy. Science. 2020;369:1481–1489. doi: 10.1126/science.abc3421. PubMed DOI
Luo B.H., Zhang Y.B., Zhang C.Q., Liu X.Q., Shi C.H. Intestinal microbiota: A potential target for enhancing the antitumor efficacy and reducing the toxicity of immune checkpoint inhibitors. Cancer Lett. 2021;509:53–62. doi: 10.1016/j.canlet.2021.04.001. PubMed DOI
Jacobson K.A., Reitman M.L. Adenosine-Related Mechanisms in Non-Adenosine Receptor Drugs. Cells. 2020;9:956. doi: 10.3390/cells9040956. PubMed DOI PMC
Giuffrida L., Sek K., Henderson M.A., Lai J.Y., Chen A.X.Y., Meyran D., Todd K.L., Petley E.V., Mardiana S., Molck C., et al. CRISPR/Cas9 mediated deletion of the adenosine A2A receptor enhances CAR T cell efficacy. Nat. Commun. 2021;12:3236. doi: 10.1038/s41467-021-23331-5. PubMed DOI PMC
Kipniss N.H., Dingal P.C.D.P., Abbott T.R., Gao Y., Wang H., Dominguez A.A., Labanieh L., Qi L.S. Engineering cell sensing and responses using a GPCR-coupled CRISPR-Cas system. Nat. Commun. 2017;8:2212. doi: 10.1038/s41467-017-02075-1. PubMed DOI PMC
Vargason A.M., Anselmo A.C., Mitragotri S. The evolution of commercial drug delivery technologies. Nat. Biomed. Eng. 2021;5:951–967. doi: 10.1038/s41551-021-00698-w. PubMed DOI
Esfahani K., Elkrief A., Calabrese C., Lapointe R., Hudson M., Routy B., Miller W.H., Calabrese L. Moving towards personalized treatments of immune-related adverse events. Nat. Rev. Clin. Oncol. 2020;17:504–515. doi: 10.1038/s41571-020-0352-8. PubMed DOI
Newton H.S., Chimote A.A., Arnold M.J., Wise-Draper T.M., Conforti L. Targeted knockdown of the adenosine A(2A) receptor by lipid NPs rescues the chemotaxis of head and neck cancer memory T cells. Mol. Ther.-Methods Clin. Dev. 2021;21:133–143. doi: 10.1016/j.omtm.2021.03.001. PubMed DOI PMC
Ghasemi-Chaleshtari M., Kiaie S.H., Irandoust M., Karami H., Afjadi M.N., Ghani S., Vanda N.A., Sede M.J.G., Ahmadi A., Masjedi A., et al. Concomitant blockade of A2AR and CTLA-4 by siRNA-loaded polyethylene glycol-chitosan-alginate nanoparticles synergistically enhances antitumor T-cell responses. J. Cell. Physiol. 2020;235:10068–10080. doi: 10.1002/jcp.29822. PubMed DOI
Pineux F., Federico S., Klotz K.N., Kachler S., Michiels C., Sturlese M., Prato M., Spalluto G., Moro S., Bonifazi D. Targeting G Protein-Coupled Receptors with Magnetic Carbon Nanotubes: The Case of the A(3)Adenosine Receptor. Chemmedchem. 2020;15:1909–1920. doi: 10.1002/cmdc.202000466. PubMed DOI
Reis R.I., Moraes I. Probing Membrane Protein Assembly into Nanodiscs by In Situ Dynamic Light Scattering: A(2A) Receptor as a Case Study. Biology. 2020;9:400. doi: 10.3390/biology9110400. PubMed DOI PMC
Psaraki A., Ntari L., Karakostas C., Korrou-Karava D., Roubelakis M.G. Extracellular vesicles derived from Mesenchymal Stem/Stromal Cells: The regenerative impact in liver diseases. Hepatology. 2021:Accepted. doi: 10.1002/hep.32129. PubMed DOI
Zhang L., Yu D. Exosomes in cancer development, metastasis, and immunity. Biochim. Biophys. Acta-Rev. Cancer. 2019;1871:455–468. doi: 10.1016/j.bbcan.2019.04.004. PubMed DOI PMC
Cheng J., Chen M.Z., Wang S.Y., Liang T.J., Chen H., Chen C.J., Feng Z.W., Xie X.Q. Binding Characterization of Agonists and Antagonists by MCCS: A Case Study from Adenosine A(2A) Receptor. ACS Chem. Neurosci. 2021;12:1606–1620. doi: 10.1021/acschemneuro.1c00082. PubMed DOI
Lee Y., Hou X., Lee J.H., Nayak A., Alexander V., Sharma P.K., Chang H., Phan K., Gao Z.-G., Jacobson K.A., et al. Subtle Chemical Changes Cross the Boundary between Agonist and Antagonist: New A3 Adenosine Receptor Homology Models and Structural Network Analysis Can Predict This Boundary. J. Med. Chem. 2021;64:12525–12536. doi: 10.1021/acs.jmedchem.1c00239. PubMed DOI PMC
Martynowycz M.W., Shiriaeva A., Ge X., Hattne J., Nannenga B.L., Cherezov V., Gonen T. MicroED structure of the human adenosine receptor determined from a single nanocrystal in LCP. Proc. Natl. Acad. Sci. USA. 2021;118:e2106041118. doi: 10.1073/pnas.2106041118. PubMed DOI PMC
Congreve M., de Graaf C., Swain N.A., Tate C.G. Impact of GPCR Structures on Drug Discovery. Cell. 2020;181:81–91. doi: 10.1016/j.cell.2020.03.003. PubMed DOI
Voronova V., Peskov K., Kosinsky Y., Helmlinger G., Chu L.L., Borodovsky A., Woessner R., Sachsenmeier K., Shao W.L., Kumar R., et al. Evaluation of Combination Strategies for the A(2A)R Inhibitor AZD4635 Across Tumor Microenvironment Conditions via a Systems Pharmacology Model. Front. Immunol. 2021;12:16. doi: 10.3389/fimmu.2021.617316. PubMed DOI PMC