Application of mass cytometry in multiparametric characterization of precancerous cervical lesions
Language English Country United States Media print-electronic
Document type Journal Article
Grant support
HRZZ-IP-2019-04-3403
Hrvatska Zaklada za Znanost
PubMed
39462866
DOI
10.1002/cyto.b.22211
Knihovny.cz E-resources
- Keywords
- HPV, cervical cancer, markers, mass cytometry,
- MeSH
- Cervix Uteri pathology virology MeSH
- Adult MeSH
- Uterine Cervical Dysplasia diagnosis pathology MeSH
- Papillomavirus Infections virology diagnosis pathology MeSH
- Keratins genetics MeSH
- Kruppel-Like Factor 4 MeSH
- Middle Aged MeSH
- Humans MeSH
- Biomarkers, Tumor genetics metabolism MeSH
- Uterine Cervical Neoplasms * diagnosis pathology virology genetics MeSH
- Papillomaviridae genetics MeSH
- Precancerous Conditions * pathology diagnosis virology MeSH
- Flow Cytometry * methods MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Keratins MeSH
- KLF4 protein, human MeSH Browser
- Kruppel-Like Factor 4 MeSH
- Biomarkers, Tumor MeSH
Cervical cancer (CC) is the fourth most common malignant tumor in women worldwide. Detecting different biomarkers together on single cells by novel method mass cytometry could contribute to more precise screening. Liquid-based cytology (LBC) cervical samples were collected (N = 53) from women categorized as normal and precancerous lesions. Human papillomavirus was genotyped by polymerase chain reaction, while simultaneous examination of the expression of 29 proteins was done by mass cytometry (CyTOF). Differences in cluster abundances were assessed with Spearman's rank correlation as well as high dimensional data analysis (t-SNE, FlowSOM). Cytokeratin (ITGA6, Ck5, Ck10/13, Ck14, Ck7) expression patterns allowed determining the presence of different cells in the cervical epithelium. FlowSOM analysis enabled to phenotype cervical cells in five different metaclusters and find new markers that could be important in CC screening. The markers Ck18, Ck18, and CD63 (Metacluster 3) showed significantly increasing associated with severity of the precancerous lesions (Spearman rank correlation rho 0.304, p = 0.0271), while CD71, KLF4, LRIG1, E-cadherin, Nanog and p53 (Metacluster 1) decreased with severity of the precancerous lesions (Spearman rank correlation rho -0.401, p = 0.0029). Other metaclusters did not show significant correlation, but metacluster 2 (Ck17, MCM, MMP7, CD29, E-cadherin, Nanog, p53) showed higher abundance in low- and high-grade intraepithelial lesion cases. CyTOF appears feasible and should be considered when examining novel biomarkers on cervical LBC samples. This study enabled us to characterize different cells in the cervical epithelium and find markers and populations that could distinguish precancerous lesions.
Division of Molecular Medicine Ruđer Bošković Institute Zagreb Croatia
Faculty of Dental Medicine and Health Josip Juraj Strossmayer University Osijek Osijek Croatia
Special Hospital Sveta Katarina Department of Women's Health Zagreb Croatia
See more in PubMed
Bremer, G. L., Tieboschb, A. T. M. G., van der Putten, H. W. H. M., de Haan, J., & Arends, J.‐W. (1995). p53 tumor suppressor gene protein expression in cervical cancer: Relationship to prognosis. European Journal of Obstetrics, Gynecology, and Reproductive Biology, 63(1), 55–59.
Bundela, D. A., Bundela, D. A., Vahikar, D. S. U., Srivastava, D. K., & Goyal, D. A. K. (2019). Comparative study of expression of keratins 8, 10, 13 and 17 in CIN III and invasive carcinoma of cervix. Tropical Journal of Pathology and Microbiology, 5(5), 309–316.
Cohen, P. A., Jhingran, A., Oaknin, A., & Denny, L. (2019). Cervical cancer. The Lancet, 393(10167), 169–182.
Conesa‐Zamora, P. (2013). Role of cell cycle biomarkers in human papillomavirus related uterine lesions. Current Pharmaceutical Design, 19(8), 1412–1424.
Dai, F., Chen, G., Wang, Y., Zhang, L., Long, Y., Yuan, M., Yang, D., Liu, S., Cheng, Y., & Zhang, L. (2019). Identification of candidate biomarkers correlated with the diagnosis and prognosis of cervical cancer via integrated bioinformatics analysis. OncoTargets and Therapy, 12, 4517–4532.
Dey, S., Basu, S., & Ranjan, A. (2023). Revisiting the role of CD63 as pro‐tumorigenic or anti‐tumorigenic tetraspanin in cancers and its theragnostic implications. Advanced Biology, 7(7), e2300078.
Escobar‐Hoyos, L. F., Yang, J., Zhu, J., Cavallo, J.‐A., Zhai, H., Burke, S., Koller, A., Chen, E. I., & Shroyer, K. R. (2014). Keratin 17 in premalignant and malignant squamous lesions of the cervix: Proteomic discovery and immunohistochemical validation as a diagnostic and prognostic biomarker. Modern Pathology, 27(4), 621–630.
Freier, C. P., Stiasny, A., Kuhn, C., Mayr, D., Alexiou, C., Janko, C., Wiest, I., Jeschke, U., & Kost, B. (2016). Immunohistochemical evaluation of the role of p53 mutation in cervical cancer: Ser‐20 p53‐mutant correlates with better prognosis. Anticancer Research, 36(6), 3131–3137.
Giorgi Rossi, P., Benevolo, M., Vocaturo, A., Caraceni, D., Ciccocioppo, L., Frega, A., Terrenato, I., Zappacosta, R., French, D., & Rosini, S. (2013). Prognostic value of HPV E6/E7 mRNA assay in women with negative colposcopy or CIN1 histology result: A follow‐up study. PLoS ONE, 8(2), e57600.
Gu, T.‐T., Liu, S.‐Y., & Zheng, P.‐S. (2012). Cytoplasmic NANOG‐positive stromal cells promote human cervical cancer progression. The American Journal of Pathology, 181(2), 652–661.
Guo, L., & Hua, K. (2020). Cervical cancer: Emerging immune landscape and treatment. OncoTargets and Therapy, 13, 8037–8047.
Hanprasertpong, J., Tungsinmunkong, K., Chichareon, S., Wootipoom, V., Geater, A., Buhachat, R., & Boonyapipat, S. (2010). Correlation of p53 and Ki‐67 (MIB‐1) expressions with clinicopathological features and prognosis of early stage cervical squamous cell carcinomas: p53 and Ki‐67 in cervical squamous cell cancer. The Journal of Obstetrics and Gynaecology Research, 36(3), 572–580.
Herfs, M., Parra‐Herran, C., Howitt, B. E., Laury, A. R., Nucci, M. R., Feldman, S., Jimenez, C. A., McKeon, F. D., Xian, W., & Crum, C. P. (2013). Cervical squamocolumnar junction–specific markers define distinct, clinically relevant subsets of low‐grade squamous intraepithelial lesions. The American Journal of Surgical Pathology, 37(9), 1311–1318.
Hietanen, S., Lain, S., Krausz, E., Blattner, C., & Lane, D. P. (2000). Activation of p53 in cervical carcinoma cells by small molecules. Proceedings of the National Academy of Sciences, 97(15), 8501–8506.
Hull, R., Mbele, M., Makhafola, T., Hicks, C., Wang, S., Reis, R., Mehrotra, R., Mkhize‐Kwitshana, Z., Kibiki, G., Bates, D., & Dlamini, Z. (2020). Cervical cancer in low and middle‐income countries (review). Oncology Letters, 20(3), 2058–2074.
Hunt, C. R., Hale, R. J., Buckley, C. H., & Hunt, J. (1996). p53 expression in carcinoma of the cervix. Journal of Clinical Pathology, 49(12), 971–974.
Ivanyi, D., Groeneveld, E., Van Doornewaard, G., Mooi, W. J., & Hageman, P. C. (1990). Keratin subtypes in carcinomas of the uterine cervix: Implications for histogenesis and differential diagnosis. Cancer Research, 50(16), 5143–5152.
Jiang, J., Li, X., Yin, X., Zhang, J., & Shi, B. (2019). Association of low expression of E‐cadherin and β‐catenin with the progression of early stage human squamous cervical cancer. Oncology Letters, 17(6), 5729–5739.
Kaur, G., Balasubramaniam, S. D., Lee, Y. J., Balakrishnan, V., & Oon, C. E. (2019). Minichromosome maintenance complex (MCM) genes profiling and MCM2 protein expression in cervical cancer development. Asian Pacific Journal of Cancer Prevention, 20(10), 3043–3049.
Kim, B., Conway, C., Kris, Y., Hewitt, S., Cho, H., & Kim, J. (2012). Influence of Nanog expression on prognosis of cervical cancer. Gynecologic Oncology, 125, S62.
Lee, H., Lee, H., & Cho, Y. K. (2017). Cytokeratin7 and cytokeratin19 expression in high grade cervical intraepithelial neoplasm and squamous cell carcinoma and their possible association in cervical carcinogenesis. Diagnostic Pathology, 12(1), 18.
Leung, T. H.‐Y., Tang, H. W.‐M., Siu, M. K.‐Y., Chan, D. W., Chan, K. K.‐L., Cheung, A. N.‐Y., & Ngan, H. Y.‐S. (2019). CD71+ population enriched by HPV‐E6 protein promotes cancer aggressiveness and radioresistance in cervical cancer cells. Molecular Cancer Research, 17(9), 1867–1880.
Lindström, A. K., Ekman, K., Stendahl, U., Tot, T., Henriksson, R., Hedman, H., & Hellberg, D. (2008). LRIG1 and squamous epithelial uterine cervical cancer: Correlation to prognosis, other tumor markers, sex steroid hormones, and smoking. International Journal of Gynecological Cancer, 18(2), 312–317.
Liu, C., & Wang, R. (2019). The roles of hedgehog signaling pathway in Radioresistance of cervical cancer. Dose‐Response, 17(4), 155932581988529.
Liu, R., Qian, M., Zhou, T., & Cui, P. (2019). TP53 mediated miR‐3647‐5p prevents progression of cervical carcinoma by targeting AGR2. Cancer Medicine, 8(13), 6095–6105.
Luhn, P., & Wentzensen, N. (2013). HPV‐based tests for cervical cancer screening and management of cervical disease. Current Obstetrics and Gynecology Reports, 2(2), 76–85.
Macedo, A. C. L., Gonçalves, J. C. N., Bavaresco, D. V., Grande, A. J., Chiaramonte Silva, N., & Rosa, M. I. (2019). Accuracy of mRNA HPV tests for triage of precursor lesions and cervical cancer: A systematic review and meta‐analysis. Journal of Oncology, 2019, 1–14.
Martens, J. E., Arends, J., Van der Linden, P. J. Q., De Boer, B. A. G., & Helmerhorst, T. J. M. (2004). Cytokeratin 17 and p63 are markers of the HPV target cell, the cervical stem cell. Anticancer Research, 24(2B), 771–775.
Mayrand, M.‐H., Duarte‐Franco, E., Rodrigues, I., Walter, S. D., Hanley, J., Ferenczy, A., Ratnam, S., Coutlée, F., & Franco, E. L. (2007). Canadian cervical cancer screening trial study group. Human papillomavirus DNA versus Papanicolaou screening tests for cervical cancer. The New England Journal of Medicine, 357(16), 1579–1588.
Mendoza‐Almanza, G., Ortíz‐Sánchez, E., Rocha‐Zavaleta, L., Rivas‐Santiago, C., Esparza‐Ibarra, E., & Olmos, J. (2019). Cervical cancer stem cells and other leading factors associated with cervical cancer development. Oncology Letters, 18(4), 3423–3432.
Mittal, K. R., Demopoulos, R. I., & Goswami, S. (1992). Patterns of keratin 19 expression in normal, metaplastic, condylomatous, atrophic, dysplastic, and malignant cervical squamous epithelium. American Journal of Clinical Pathology, 98(4), 419–423.
Mockler, D., Escobar‐Hoyos, L. F., Akalin, A., Romeiser, J., Shroyer, A. L., & Shroyer, K. R. (2017). Keratin 17 is a prognostic biomarker in endocervical glandular neoplasia. American Journal of Clinical Pathology, 148(3), 264–273.
Naib, Z. M. (1996). Cytopathology (Subsequent ed., p. 658). Little Brown & Co.
Nair, S. A., Nair, M. B., Jayaprakash, P. G., Rajalekshmy, T. N., Nair, M. K., & Pillai, M. R. (1997). Increased expression of cytokeratins 14, 18 and 19 correlates with tumor progression in the uterine cervix. Pathobiology: Journal of Immunopathology, Molecular and Cellular Biology, 65(2), 100–107.
Nayar, R., & Wilbur, D. C. (Eds.). (2015). The Bethesda system for reporting cervical cytology: Definitions, criteria, and explanatory notes. Springer International Publishing.
Organista‐Nava, J., Gómez‐Gómez, Y., Ocadiz‐Delgado, R., García‐Villa, E., Bonilla‐Delgado, J., Lagunas‐Martínez, A., Tapia, J. S.‐O., Lambert, P. F., García‐Carrancá, A., & Gariglio, P. (2016). The HPV16 E7 oncoprotein increases the expression of Oct3/4 and stemness‐related genes and augments cell self‐renewal. Virology, 499, 230–242.
Pešut, E., Đukić, A., Lulić, L., Skelin, J., Šimić, I., Milutin Gašperov, N., Tomaić, V., Sabol, I., & Grce, M. (2021). Human papillomaviruses‐associated cancers: An update of current knowledge. Viruses, 13(11), 2234.
Pešut, E., Šimić, I., Fureš, R., Milutin Gašperov, N., Lež, C., Feratović, F., Kukina Žvigač, T., Grce, M., Erceg Ivkošić, I., & Sabol, I. (2024). Monitoring HPV prevalence and risk cofactors for abnormal cytology in the post‐vaccination period among Croatian women. Viruses, 16(4), 642.
Prendiville, W., & Sankaranarayanan, R. (2017). Colposcopy and treatment of cervical precancer. International Agency for Research on Cancer.
Sahasrabuddhe, V. V., Luhn, P., & Wentzensen, N. (2011). Human papillomavirus and cervical cancer: Biomarkers for improved prevention efforts. Future Microbiology, 6(9), 1083–1098.
Schettino, M. T., Preti, E. P., Vietri, V., Agrillo, N., Iavazzo, N., Fasulo, D. D., De Franciscis, P., Campitiello, M. R., Vastarella, M. G., Riemma, G., Gardella, B., & Murina, F. (2024). The role of β1 integrin/CD29 as a potential prognostic factor for the risk of progression to cervical carcinoma in HPV‐associated lesions. Medicina (Mex), 60(3), 364.
Schiffman, M., Wentzensen, N., Wacholder, S., Kinney, W., Gage, J. C., & Castle, P. E. (2011). Human papillomavirus testing in the prevention of cervical cancer. JNCI Journal of the National Cancer Institute, 103(5), 368–383.
Sharma, A., Kaur, H., De, R., Srinivasan, R., Pal, A., & Bhattacharyya, S. (2021). Knockdown of E‐cadherin induces cancer stem‐cell‐like phenotype and drug resistance in cervical cancer cells. Biochemistry and Cell Biology, 99(5), 587–595.
Šimić, I., Božinović, K., Milutin Gašperov, N., Kordić, M., Pešut, E., Manojlović, L., Grce, M., Dediol, E., & Sabol, I. (2023). Head and neck cancer Patients' survival according to HPV status, miRNA profiling, and tumour features—A cohort study. International Journal of Molecular Sciences, 24(4), 3344.
Smedts, F., Ramaekers, F., Lane, B., Leigh, I., Schijf, C., & Vooijs, P. (1992). Keratin expression in cervical cancer. The American Journal of Pathology, 141(2), 15.
Spitzer, M. H., & Nolan, G. P. (2016). Mass cytometry: Single cells, many features. Cell, 165(4), 780–791.
Torres‐Poveda, K., Piña‐Sánchez, P., Vallejo‐Ruiz, V., Lizano, M., Cruz‐Valdez, A., Juárez‐Sánchez, P., de la Garza‐Salazar, J., & Manzo‐Merino, J. (2020). Molecular markers for the diagnosis of high‐risk human papillomavirus infection and triage of human papillomavirus‐positive women. Revista de Investigación Clínica, 72(4), 4102.
Tyagi, A., Vishnoi, K., Mahata, S., Verma, G., Srivastava, Y., Masaldan, S., Roy, B. G., Bharti, A. C., & Das, B. C. (2016). Cervical cancer stem cells selectively overexpress HPV oncoprotein E6 that controls stemness and self‐renewal through upregulation of HES1. Clinical Cancer Research, 22(16), 4170–4184.
Uhlén, M., Fagerberg, L., Hallström, B. M., Lindskog, C., Oksvold, P., Mardinoglu, A., Sivertsson, Å., Kampf, C., Sjöstedt, E., Asplund, A., Olsson, I., Edlund, K., Lundberg, E., Navani, S., Szigyarto, C. A.‐K., Odeberg, J., Djureinovic, D., Takanen, J. O., Hober, S., … Pontén, F. (2015). Tissue‐based map of the human proteome. Science, 347(6220), 1260419.
Völkel, C., De Wispelaere, N., Weidemann, S., Gorbokon, N., Lennartz, M., Luebke, A. M., Hube‐Magg, C., Kluth, M., Fraune, C., Möller, K., Bernreuther, C., Lebok, P., Clauditz, T. S., Jacobsen, F., Sauter, G., Uhlig, R., Wilczak, W., Steurer, S., Minner, S., … Menz, A. (2022). Cytokeratin 5 and cytokeratin 6 expressions are unconnected in normal and cancerous tissues and have separate diagnostic implications. Virchows Archiv, 480(2), 433–447.
Wang, B., Li, X., Liu, L., & Wang, M. (2020). β‐Catenin: Oncogenic role and therapeutic target in cervical cancer. Biological Research, 53(1), 33.
Wentzensen, N., & von Knebel, D. M. (2007). Biomarkers in cervical cancer screening. Disease Markers, 23(4), 315–330.
World Health Organization. (2014). Comprehensive cervical cancer control: A guide to essential practice (2nd ed., p. 364). World Health Organization.
Yang, W.‐T., & Zheng, P.‐S. (2012). Krüppel‐like factor 4 functions as a tumor suppressor in cervical carcinoma. Cancer, 118(15), 3691–3702.
Zacapala‐Gómez, A. E., Navarro‐Tito, N., Alarcón‐Romero, L. d. C., Ortuño‐Pineda, C., Illades‐Aguiar, B., Castañeda‐Saucedo, E., Ortiz‐Ortiz, J., Garibay‐Cerdenares, O. L., Jiménez‐López, M. A., & Mendoza‐Catalán, M. A. (2018). Ezrin and E‐cadherin expression profile in cervical cytology: A prognostic marker for tumor progression in cervical cancer. BMC Cancer, 18(1), 349.
Zhan, P., Liu, L., Liu, B., & Mao, X.‐G. (2014). Expression of integrin β1 and its significance in squamous cell carcinoma of the cervix. Molecular Medicine Reports, 9(6), 2473–2478.
Zhou, R., Wei, C., Liu, J., Luo, Y., & Tang, W. (2015). The prognostic value of p53 expression for patients with cervical cancer: A meta analysis. European Journal of Obstetrics, Gynecology, and Reproductive Biology, 195, 210–213.
Zhu, L., Zheng, X., Du, Y., Xing, Y., Xu, K., & Cui, L. (2018). Matrix metalloproteinase‐7 may serve as a novel biomarker for cervical cancer. OncoTargets and Therapy, 11, 4207–4220.