Spatiotemporal transcriptomic map of glial cell response in a mouse model of acute brain ischemia

. 2024 Nov 12 ; 121 (46) : e2404203121. [epub] 20241105

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39499634

Grantová podpora
23-05327S Grantová Agentura České Republiky (GAČR)
23-06269S Grantová Agentura České Republiky (GAČR)
Strategy AV21-VP29 Akademie Věd České Republiky (CAS)
RVO 86652036 Institute of Biotechnology CAS CZ
143882401 Vysoká Škola Chemicko-technologická v Praze (UCT Prague)

The role of nonneuronal cells in the resolution of cerebral ischemia remains to be fully understood. To decode key molecular and cellular processes that occur after ischemia, we performed spatial and single-cell transcriptomic profiling of the male mouse brain during the first week of injury. Cortical gene expression was severely disrupted, defined by inflammation and cell death in the lesion core, and glial scar formation orchestrated by multiple cell types on the periphery. The glial scar was identified as a zone with intense cell-cell communication, with prominent ApoE-Trem2 signaling pathway modulating microglial activation. For each of the three major glial populations, an inflammatory-responsive state, resembling the reactive states observed in neurodegenerative contexts, was observed. The recovered spectrum of ischemia-induced oligodendrocyte states supports the emerging hypothesis that oligodendrocytes actively respond to and modulate the neuroinflammatory stimulus. The findings are further supported by analysis of other spatial transcriptomic datasets from different mouse models of ischemic brain injury. Collectively, we present a landmark transcriptomic dataset accompanied by interactive visualization that provides a comprehensive view of spatiotemporal organization of processes in the postischemic mouse brain.

Zobrazit více v PubMed

Daniele S. G., et al. , Brain vulnerability and viability after ischaemia. Nat. Rev. Neurosci. 22, 553–572 (2021). PubMed

Kalogeris T., Baines C. P., Krenz M., Korthuis R. J., Ischemia/reperfusion. Compr. Physiol. 7, 113–170 (2017). PubMed PMC

Iadecola C., Buckwalter M. S., Anrather J., Immune responses to stroke: Mechanisms, modulation, and therapeutic potential. J. Clin. Invest. 130, 2777–2788 (2020). PubMed PMC

Xu S., Lu J., Shao A., Zhang J. H., Zhang J., Glial cells: Role of the immune response in ischemic stroke. Front. Immunol. 11, 294 (2020). PubMed PMC

Piwecka M., Rajewsky N., Rybak-Wolf A., Single-cell and spatial transcriptomics: Deciphering brain complexity in health and disease. Nat. Rev. Neurol. 19, 346–362 (2023). PubMed PMC

Garcia-Bonilla L., et al. , Analysis of brain and blood single-cell transcriptomics in acute and subacute phases after experimental stroke. Nat. Immunol. 25, 357–370 (2024). PubMed

Beuker C., et al. , Stroke induces disease-specific myeloid cells in the brain parenchyma and pia. Nat. Commun. 13, 945 (2022). PubMed PMC

Guo K., et al. , Single-Cell RNA sequencing with combined use of bulk RNA sequencing to reveal cell heterogeneity and molecular changes at acute stage of ischemic stroke in mouse cortex penumbra area. Front. Cell Dev. Biol. 9, 131 (2021). PubMed PMC

Kim R. D., et al. , Temporal and spatial analysis of astrocytes following stroke identifies novel drivers of reactivity. bioRxiv [Preprint] (2023). 10.1101/2023.11.12.566710 (Accessed 20 November 2023). DOI

Zeng F., et al. , Single-cell analyses reveal the dynamic functions of Itgb2+ microglia subclusters at different stages of cerebral ischemia-reperfusion injury in transient middle cerebral occlusion mice model. Front. Immunol. 14, 1114663 (2023). PubMed PMC

Zheng K., et al. , Single-cell RNA-seq reveals the transcriptional landscape in ischemic stroke. J. Cereb. Blood Flow Metab. 42, 56 (2022). PubMed PMC

Han B., et al. , Integrating spatial and single-cell transcriptomics to characterize the molecular and cellular architecture of the ischemic mouse brain. Sci. Transl. Med. 16, 1323 (2024). PubMed

Li H., et al. , Acute ischemia induces spatially and transcriptionally distinct microglial subclusters. Genome Med. 15, 109 (2023). PubMed PMC

Shi X., et al. , Stroke subtype-dependent synapse elimination by reactive gliosis in mice. Nat. Commun. 12, 6943 (2021). PubMed PMC

Li X., et al. , Single-cell transcriptomic analysis of the immune cell landscape in the aged mouse brain after ischemic stroke. J. Neuroinflammation 19, 83 (2022). PubMed PMC

Adams K. L., Gallo V., The diversity and disparity of the glial scar. Nat. Neurosci. 21, 9–15 (2018). PubMed PMC

Jin C., et al. , Leveraging single-cell RNA sequencing to unravel the impact of aging on stroke recovery mechanisms in mice. Proc. Natl. Acad. Sci. U.S.A. 120, e2300012120 (2023). PubMed PMC

Bormann D., et al. , Single nucleus RNA sequencing reveals glial cell type-specific responses to ischemic stroke. bioRxiv [Preprint] (2024). 10.1101/2023.12.26.573302 (2 January 2024). PubMed DOI PMC

Janeckova L., et al. , Astrocyte-like subpopulation of NG2 glia in the adult mouse cortex exhibits characteristics of neural progenitor cells. Glia 72, 245–273 (2023), 10.1002/GLIA.24471 (3 November 2023). PubMed DOI

Ardaya M., et al. , Gliogenesis from the subventricular zone modulates the extracellular matrix at the glial scar after brain ischemia. bioRxiv [Preprint] (2024). 10.1101/2023.12.30.573719 (2 January 2024). DOI

Scott E. Y., et al. , Integrating single-cell and spatially resolved transcriptomic strategies to survey the astrocyte response to stroke in male mice. Nat. Commun. 15, 1584 (2024). PubMed PMC

Hossmann K. A., Cerebral ischemia: Models, methods and outcomes. Neuropharmacology 55, 257–270 (2008). PubMed

Hossmann K. A., The two pathophysiologies of focal brain ischemia: Implications for translational stroke research. J. Cereb. Blood Flow Metab. 32, 1310–1316 (2012). PubMed PMC

Sunkin S. M., et al. , Allen Brain Atlas: An integrated spatio-temporal portal for exploring the central nervous system. Nucleic Acids Res. 41, D996 (2013). PubMed PMC

Xiong B., et al. , Precise cerebral vascular atlas in stereotaxic coordinates of whole mouse brain. Front. Neuroanat. 11, 128 (2017). PubMed PMC

Tran A. P., Warren P. M., Silver J., New insights into glial scar formation after spinal cord injury. Cell Tissue Res. 387, 319–336 (2021), 10.1007/s00441-021-03477-w. PubMed DOI PMC

Zhang C., et al. , Invasion of peripheral immune cells into brain parenchyma after cardiac arrest and resuscitation. Aging Dis. 9, 412 (2018). PubMed PMC

Voll R. E., et al. , Immunosuppressive effects of apoptotic cells. Nature 390, 350–351 (1997). PubMed

Cherry J. D., Olschowka J. A., O’Banion M. K., Neuroinflammation and M2 microglia: The good, the bad, and the inflamed. J. Neuroinflammation 11, 1–15 (2014). PubMed PMC

Anderson M. A., et al. , Astrocyte scar formation aids central nervous system axon regeneration. Nature 532, 195–200 (2016). PubMed PMC

Hinman J. D., The back and forth of axonal injury and repair after stroke. Curr. Opin. Neurol. 27, 615 (2014). PubMed PMC

Zhou Y., et al. , Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 10, 1–10 (2019). PubMed PMC

Cable D. M., et al. , Robust decomposition of cell type mixtures in spatial transcriptomics. Nat. Biotechnol. 40, 517–526 (2022), 10.1038/s41587-021-00830-w. PubMed DOI PMC

Li H., et al. , A comprehensive benchmarking with practical guidelines for cellular deconvolution of spatial transcriptomics. Nat. Commun. 14, 1–10 (2023). PubMed PMC

Popiolek-Barczyk K., et al. , The CCL2/CCL7/CCL12/CCR2 pathway is substantially and persistently upregulated in mice after traumatic brain injury, and CCL2 modulates the complement system in microglia. Mol. Cell. Probes 54, 101671 (2020). PubMed

Li T., et al. , Proliferation of parenchymal microglia is the main source of microgliosis after ischaemic stroke. Brain 136, 3578–3588 (2013). PubMed

Mao W., Yi X., Qin J., Tian M., Jin G., CXCL12/CXCR4 axis improves migration of neuroblasts along corpus callosum by stimulating MMP-2 secretion after traumatic brain injury in rats. Neurochem. Res. 41, 1315–1322 (2016). PubMed

Mao W., Yi X., Qin J., Tian M., Jin G., CXCL12 promotes proliferation of radial glia like cells after traumatic brain injury in rats. Cytokine 125, 154771 (2020). PubMed

Greenhalgh A. D., David S., Bennett F. C., Immune cell regulation of glia during CNS injury and disease. Nat. Rev. Neurosci. 21, 139–152 (2020). PubMed

Sofroniew M. V., Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci. 32, 638–647 (2009). PubMed PMC

Pandey S., et al. , Disease-associated oligodendrocyte responses across neurodegenerative diseases. Cell Rep. 40, 111189 (2022). PubMed

Hammond T. R., et al. , Single-cell RNA sequencing of microglia throughout the mouse lifespan and in the injured brain reveals complex cell-state changes. Immunity 50, 253–271.e6 (2019). PubMed PMC

Sala Frigerio C., et al. , The major risk factors for Alzheimer’s disease: Age, sex, and genes modulate the microglia response to Aβ plaques. Cell Rep. 27, 1293–1306.e6 (2019). PubMed PMC

Kenigsbuch M., et al. , A shared disease-associated oligodendrocyte signature among multiple CNS pathologies. Nat. Neurosci. 25, 876–886 (2022), 10.1038/s41593-022-01104-7. PubMed DOI PMC

Habib N., et al. , Disease-associated astrocytes in Alzheimer’s disease and aging. Nat. Neurosci. 23, 701–706 (2020). PubMed PMC

Shao X., et al. , Knowledge-graph-based cell-cell communication inference for spatially resolved transcriptomic data with SpaTalk. Nat. Commun. 13, 4429 (2022). PubMed PMC

Muramatsu T., Miyauchi T., Basigin (CD147): A multifunctional transmembrane protein involved in reproduction, neural function, inflammation and tumor invasion. Histol. Histopathol. 18, 981–987 (2003). PubMed

Bellver-Landete V., et al. , Microglia are an essential component of the neuroprotective scar that forms after spinal cord injury. Nat. Commun. 10, 518 (2019). PubMed PMC

Monsorno K., Buckinx A., Paolicelli R. C., Microglial metabolic flexibility: Emerging roles for lactate. Trends Endocrinol. Metab. 33, 186–195 (2022). PubMed

Shi Y., Holtzman D. M., Interplay between innate immunity and Alzheimer disease: APOE and TREM2 in the spotlight. Nat. Rev. Immunol. 18, 759–772 (2018). PubMed PMC

Weishaupt N., Zhang A., Deziel R. A., Andrew Tasker R., Whitehead S. N., Prefrontal ischemia in the rat leads to secondary damage and inflammation in remote gray and white matter regions. Front. Neurosci. 10, 184466 (2016). PubMed PMC

Zeisel A., et al. , Molecular architecture of the mouse nervous system. Cell 174, 999–1014.e22 (2018). PubMed PMC

Batiuk M. Y., et al. , Identification of region-specific astrocyte subtypes at single cell resolution. Nat. Commun. 11, 1220 (2020). PubMed PMC

Zamboni M., Llorens-Bobadilla E., Magnusson J. P., Frisén J., A widespread neurogenic potential of neocortical astrocytes is induced by injury. Cell Stem Cell 27, 605–617.e5 (2020). PubMed PMC

Haile Y., et al. , Granzyme B-inhibitor serpina3n induces neuroprotection in vitro and in vivo. J. Neuroinflammation 12, 1–10 (2015). PubMed PMC

Zhang Y., et al. , SerpinA3N attenuates ischemic stroke injury by reducing apoptosis and neuroinflammation. CNS Neurosci. Ther. 28, 566–579 (2022). PubMed PMC

Kalogeris T., Baines C. P., Krenz M., Korthuis R. J., Cell biology of ischemia/reperfusion injury. Int. Rev. Cell Mol. Biol. 298, 229–317 (2012). PubMed PMC

Yang T., Dai Y. J., Chen G., Sen Cui S., Dissecting the dual role of the glial scar and scar-forming astrocytes in spinal cord injury. Front. Cell. Neurosci. 14, 78 (2020). PubMed PMC

Shi Z., et al. , Microglia drive transient insult-induced brain injury by chemotactic recruitment of CD8+ T lymphocytes. Neuron 111, 696–710.e9 (2023). PubMed

Tian Y., et al. , CXCL12 induces migration of oligodendrocyte precursor cells through the CXCR4-activated MEK/ERK and PI3K/AKT pathways. Mol. Med. Rep. 18, 4374–4380 (2018). PubMed PMC

Zhou Y., et al. , Human and mouse single-nucleus transcriptomics reveal TREM2-dependent and TREM2-independent cellular responses in Alzheimer’s disease. Nat. Med. 26, 131–142 (2020). PubMed PMC

Kaya T., et al. , CD8+ T cells induce interferon-responsive oligodendrocytes and microglia in white matter aging. Nat. Neurosci. 25, 1446–1457 (2022). PubMed PMC

Lee S.-H., et al. , TREM2-independent oligodendrocyte, astrocyte, and T cell responses to tau and amyloid pathology in mouse models of Alzheimer disease. Cell Rep. 37, 110158 (2021). PubMed

Milich L. M., et al. , Single-cell analysis of the cellular heterogeneity and interactions in the injured mouse spinal cord. J. Exp. Med. 218, 1–25 (2021). PubMed PMC

Chen W.-T., et al. , Spatial transcriptomics and in situ sequencing to study Alzheimer’s disease. Cell 182, 976–991.e19 (2020). PubMed

Yeh F. L., Hansen D. V., Sheng M., TREM2, microglia, and neurodegenerative diseases. Trends Mol. Med. 23, 512–533 (2017). PubMed

Ransohoff R. M., A polarizing question: Do M1 and M2 microglia exist? Nat. Neurosci. 19, 987–991 (2016). PubMed

McNamara N. B., et al. , Microglia regulate central nervous system myelin growth and integrity. Nature 613, 120–129 (2023). PubMed PMC

Liddelow S. A., et al. , Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541, 481–487 (2017). PubMed PMC

Zamanian J. L., et al. , Genomic analysis of reactive astrogliosis. J. Neurosci. 32, 6391–6410 (2012). PubMed PMC

Miron V. E., et al. , M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat. Neurosci. 16, 1211–1218 (2013). PubMed PMC

Falcão A. M., et al. , Disease-specific oligodendrocyte lineage cells arise in multiple sclerosis. Nat. Med. 24, 1837–1844 (2018). PubMed PMC

Wheeler M. A., et al. , MAFG-driven astrocytes promote CNS inflammation. Nature 578, 593 (2020). PubMed PMC

Floriddia E. M., et al. , Distinct oligodendrocyte populations have spatial preference and different responses to spinal cord injury. Nat. Commun. 11, 5860 (2020). PubMed PMC

Matson K. J. E., et al. , Single cell atlas of spinal cord injury in mice reveals a pro-regenerative signature in spinocerebellar neurons. Nat. Commun. 13, 5628 (2022). PubMed PMC

Egorova N., et al. , Pervasive white matter fiber degeneration in ischemic stroke. Stroke 51, 1507–1513 (2020). PubMed

Yoon H., et al. , Blocking Kallikrein 6 promotes developmental myelination. Glia 70, 430–450 (2022). PubMed PMC

Xing J., et al. , Post-injury born oligodendrocytes integrate into the glial scar and inhibit growth of regenerating axons by premature myelination. bioRxiv [Preprint] (2022). 10.1101/2021.10.15.464557 (Accessed 24 March 2023). DOI

Leng K., et al. , CRISPRi screens in human iPSC-derived astrocytes elucidate regulators of distinct inflammatory reactive states. Nat. Neurosci. 25, 1528–1542 (2022). PubMed PMC

Hasel P., Rose I. V. L., Sadick J. S., Kim R. D., Liddelow S. A., Neuroinflammatory astrocyte subtypes in the mouse brain. Nat. Neurosci. 24, 1475–1487 (2021), 10.1038/s41593-021-00905-6. PubMed DOI

Tsao C. W., et al. , Heart disease and stroke statistics—2022 update: A report from the American Heart Association. Circulation 145, E153–E639 (2022). PubMed

Zucha D., et al. , Spatiotemporal transcriptomic map of glial cell response in a mouse model of acute brain ischemia. Gene Expression Omnibus. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE233815. Deposited 31 May 2023. PubMed PMC

Zucha D., et al. , Spatiotemporal transcriptomic map of glial cell response in a mouse model of acute brain ischemia. Mendeley Data. https://data.mendeley.com/datasets/gnb2dsjms2. Deposited 4 October 2024. PubMed PMC

Zucha D., et al. , Spatiotemporal transcriptomic map of glial cell response in a mouse model of acute brain ischemia. Nygen ScarfWeb. https://scarfweb.nygen.io/eu-central-1/public/xv2x2szz. Deposited 29 Jul 2024. PubMed PMC

Zucha D., et al. , Spatiotemporal transcriptomic map of glial cell response in mouse model of acute brain ischemia. GitHub. https://github.com/LabGenExp/Spatial_MCAO.git. Deposited 5 June 2024. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...