Spatiotemporal transcriptomic map of glial cell response in a mouse model of acute brain ischemia
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
23-05327S
Grantová Agentura České Republiky (GAČR)
23-06269S
Grantová Agentura České Republiky (GAČR)
Strategy AV21-VP29
Akademie Věd České Republiky (CAS)
RVO 86652036
Institute of Biotechnology CAS CZ
143882401
Vysoká Škola Chemicko-technologická v Praze (UCT Prague)
PubMed
39499634
PubMed Central
PMC11573666
DOI
10.1073/pnas.2404203121
Knihovny.cz E-zdroje
- Klíčová slova
- glia, ischemic stroke, neuroinflammation, single-cell transcriptomics, spatial transcriptomics,
- MeSH
- ischemie mozku * genetika metabolismus patologie MeSH
- membránové glykoproteiny metabolismus genetika MeSH
- mikroglie metabolismus MeSH
- modely nemocí na zvířatech * MeSH
- mozek metabolismus patologie MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- neuroglie * metabolismus MeSH
- oligodendroglie metabolismus MeSH
- receptory imunologické MeSH
- signální transdukce MeSH
- stanovení celkové genové exprese MeSH
- transkriptom * MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- membránové glykoproteiny MeSH
- receptory imunologické MeSH
- Trem2 protein, mouse MeSH Prohlížeč
The role of nonneuronal cells in the resolution of cerebral ischemia remains to be fully understood. To decode key molecular and cellular processes that occur after ischemia, we performed spatial and single-cell transcriptomic profiling of the male mouse brain during the first week of injury. Cortical gene expression was severely disrupted, defined by inflammation and cell death in the lesion core, and glial scar formation orchestrated by multiple cell types on the periphery. The glial scar was identified as a zone with intense cell-cell communication, with prominent ApoE-Trem2 signaling pathway modulating microglial activation. For each of the three major glial populations, an inflammatory-responsive state, resembling the reactive states observed in neurodegenerative contexts, was observed. The recovered spectrum of ischemia-induced oligodendrocyte states supports the emerging hypothesis that oligodendrocytes actively respond to and modulate the neuroinflammatory stimulus. The findings are further supported by analysis of other spatial transcriptomic datasets from different mouse models of ischemic brain injury. Collectively, we present a landmark transcriptomic dataset accompanied by interactive visualization that provides a comprehensive view of spatiotemporal organization of processes in the postischemic mouse brain.
Zobrazit více v PubMed
Daniele S. G., et al. , Brain vulnerability and viability after ischaemia. Nat. Rev. Neurosci. 22, 553–572 (2021). PubMed
Kalogeris T., Baines C. P., Krenz M., Korthuis R. J., Ischemia/reperfusion. Compr. Physiol. 7, 113–170 (2017). PubMed PMC
Iadecola C., Buckwalter M. S., Anrather J., Immune responses to stroke: Mechanisms, modulation, and therapeutic potential. J. Clin. Invest. 130, 2777–2788 (2020). PubMed PMC
Xu S., Lu J., Shao A., Zhang J. H., Zhang J., Glial cells: Role of the immune response in ischemic stroke. Front. Immunol. 11, 294 (2020). PubMed PMC
Piwecka M., Rajewsky N., Rybak-Wolf A., Single-cell and spatial transcriptomics: Deciphering brain complexity in health and disease. Nat. Rev. Neurol. 19, 346–362 (2023). PubMed PMC
Garcia-Bonilla L., et al. , Analysis of brain and blood single-cell transcriptomics in acute and subacute phases after experimental stroke. Nat. Immunol. 25, 357–370 (2024). PubMed
Beuker C., et al. , Stroke induces disease-specific myeloid cells in the brain parenchyma and pia. Nat. Commun. 13, 945 (2022). PubMed PMC
Guo K., et al. , Single-Cell RNA sequencing with combined use of bulk RNA sequencing to reveal cell heterogeneity and molecular changes at acute stage of ischemic stroke in mouse cortex penumbra area. Front. Cell Dev. Biol. 9, 131 (2021). PubMed PMC
Kim R. D., et al. , Temporal and spatial analysis of astrocytes following stroke identifies novel drivers of reactivity. bioRxiv [Preprint] (2023). 10.1101/2023.11.12.566710 (Accessed 20 November 2023). DOI
Zeng F., et al. , Single-cell analyses reveal the dynamic functions of Itgb2+ microglia subclusters at different stages of cerebral ischemia-reperfusion injury in transient middle cerebral occlusion mice model. Front. Immunol. 14, 1114663 (2023). PubMed PMC
Zheng K., et al. , Single-cell RNA-seq reveals the transcriptional landscape in ischemic stroke. J. Cereb. Blood Flow Metab. 42, 56 (2022). PubMed PMC
Han B., et al. , Integrating spatial and single-cell transcriptomics to characterize the molecular and cellular architecture of the ischemic mouse brain. Sci. Transl. Med. 16, 1323 (2024). PubMed
Li H., et al. , Acute ischemia induces spatially and transcriptionally distinct microglial subclusters. Genome Med. 15, 109 (2023). PubMed PMC
Shi X., et al. , Stroke subtype-dependent synapse elimination by reactive gliosis in mice. Nat. Commun. 12, 6943 (2021). PubMed PMC
Li X., et al. , Single-cell transcriptomic analysis of the immune cell landscape in the aged mouse brain after ischemic stroke. J. Neuroinflammation 19, 83 (2022). PubMed PMC
Adams K. L., Gallo V., The diversity and disparity of the glial scar. Nat. Neurosci. 21, 9–15 (2018). PubMed PMC
Jin C., et al. , Leveraging single-cell RNA sequencing to unravel the impact of aging on stroke recovery mechanisms in mice. Proc. Natl. Acad. Sci. U.S.A. 120, e2300012120 (2023). PubMed PMC
Bormann D., et al. , Single nucleus RNA sequencing reveals glial cell type-specific responses to ischemic stroke. bioRxiv [Preprint] (2024). 10.1101/2023.12.26.573302 (2 January 2024). PubMed DOI PMC
Janeckova L., et al. , Astrocyte-like subpopulation of NG2 glia in the adult mouse cortex exhibits characteristics of neural progenitor cells. Glia 72, 245–273 (2023), 10.1002/GLIA.24471 (3 November 2023). PubMed DOI
Ardaya M., et al. , Gliogenesis from the subventricular zone modulates the extracellular matrix at the glial scar after brain ischemia. bioRxiv [Preprint] (2024). 10.1101/2023.12.30.573719 (2 January 2024). DOI
Scott E. Y., et al. , Integrating single-cell and spatially resolved transcriptomic strategies to survey the astrocyte response to stroke in male mice. Nat. Commun. 15, 1584 (2024). PubMed PMC
Hossmann K. A., Cerebral ischemia: Models, methods and outcomes. Neuropharmacology 55, 257–270 (2008). PubMed
Hossmann K. A., The two pathophysiologies of focal brain ischemia: Implications for translational stroke research. J. Cereb. Blood Flow Metab. 32, 1310–1316 (2012). PubMed PMC
Sunkin S. M., et al. , Allen Brain Atlas: An integrated spatio-temporal portal for exploring the central nervous system. Nucleic Acids Res. 41, D996 (2013). PubMed PMC
Xiong B., et al. , Precise cerebral vascular atlas in stereotaxic coordinates of whole mouse brain. Front. Neuroanat. 11, 128 (2017). PubMed PMC
Tran A. P., Warren P. M., Silver J., New insights into glial scar formation after spinal cord injury. Cell Tissue Res. 387, 319–336 (2021), 10.1007/s00441-021-03477-w. PubMed DOI PMC
Zhang C., et al. , Invasion of peripheral immune cells into brain parenchyma after cardiac arrest and resuscitation. Aging Dis. 9, 412 (2018). PubMed PMC
Voll R. E., et al. , Immunosuppressive effects of apoptotic cells. Nature 390, 350–351 (1997). PubMed
Cherry J. D., Olschowka J. A., O’Banion M. K., Neuroinflammation and M2 microglia: The good, the bad, and the inflamed. J. Neuroinflammation 11, 1–15 (2014). PubMed PMC
Anderson M. A., et al. , Astrocyte scar formation aids central nervous system axon regeneration. Nature 532, 195–200 (2016). PubMed PMC
Hinman J. D., The back and forth of axonal injury and repair after stroke. Curr. Opin. Neurol. 27, 615 (2014). PubMed PMC
Zhou Y., et al. , Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 10, 1–10 (2019). PubMed PMC
Cable D. M., et al. , Robust decomposition of cell type mixtures in spatial transcriptomics. Nat. Biotechnol. 40, 517–526 (2022), 10.1038/s41587-021-00830-w. PubMed DOI PMC
Li H., et al. , A comprehensive benchmarking with practical guidelines for cellular deconvolution of spatial transcriptomics. Nat. Commun. 14, 1–10 (2023). PubMed PMC
Popiolek-Barczyk K., et al. , The CCL2/CCL7/CCL12/CCR2 pathway is substantially and persistently upregulated in mice after traumatic brain injury, and CCL2 modulates the complement system in microglia. Mol. Cell. Probes 54, 101671 (2020). PubMed
Li T., et al. , Proliferation of parenchymal microglia is the main source of microgliosis after ischaemic stroke. Brain 136, 3578–3588 (2013). PubMed
Mao W., Yi X., Qin J., Tian M., Jin G., CXCL12/CXCR4 axis improves migration of neuroblasts along corpus callosum by stimulating MMP-2 secretion after traumatic brain injury in rats. Neurochem. Res. 41, 1315–1322 (2016). PubMed
Mao W., Yi X., Qin J., Tian M., Jin G., CXCL12 promotes proliferation of radial glia like cells after traumatic brain injury in rats. Cytokine 125, 154771 (2020). PubMed
Greenhalgh A. D., David S., Bennett F. C., Immune cell regulation of glia during CNS injury and disease. Nat. Rev. Neurosci. 21, 139–152 (2020). PubMed
Sofroniew M. V., Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci. 32, 638–647 (2009). PubMed PMC
Pandey S., et al. , Disease-associated oligodendrocyte responses across neurodegenerative diseases. Cell Rep. 40, 111189 (2022). PubMed
Hammond T. R., et al. , Single-cell RNA sequencing of microglia throughout the mouse lifespan and in the injured brain reveals complex cell-state changes. Immunity 50, 253–271.e6 (2019). PubMed PMC
Sala Frigerio C., et al. , The major risk factors for Alzheimer’s disease: Age, sex, and genes modulate the microglia response to Aβ plaques. Cell Rep. 27, 1293–1306.e6 (2019). PubMed PMC
Kenigsbuch M., et al. , A shared disease-associated oligodendrocyte signature among multiple CNS pathologies. Nat. Neurosci. 25, 876–886 (2022), 10.1038/s41593-022-01104-7. PubMed DOI PMC
Habib N., et al. , Disease-associated astrocytes in Alzheimer’s disease and aging. Nat. Neurosci. 23, 701–706 (2020). PubMed PMC
Shao X., et al. , Knowledge-graph-based cell-cell communication inference for spatially resolved transcriptomic data with SpaTalk. Nat. Commun. 13, 4429 (2022). PubMed PMC
Muramatsu T., Miyauchi T., Basigin (CD147): A multifunctional transmembrane protein involved in reproduction, neural function, inflammation and tumor invasion. Histol. Histopathol. 18, 981–987 (2003). PubMed
Bellver-Landete V., et al. , Microglia are an essential component of the neuroprotective scar that forms after spinal cord injury. Nat. Commun. 10, 518 (2019). PubMed PMC
Monsorno K., Buckinx A., Paolicelli R. C., Microglial metabolic flexibility: Emerging roles for lactate. Trends Endocrinol. Metab. 33, 186–195 (2022). PubMed
Shi Y., Holtzman D. M., Interplay between innate immunity and Alzheimer disease: APOE and TREM2 in the spotlight. Nat. Rev. Immunol. 18, 759–772 (2018). PubMed PMC
Weishaupt N., Zhang A., Deziel R. A., Andrew Tasker R., Whitehead S. N., Prefrontal ischemia in the rat leads to secondary damage and inflammation in remote gray and white matter regions. Front. Neurosci. 10, 184466 (2016). PubMed PMC
Zeisel A., et al. , Molecular architecture of the mouse nervous system. Cell 174, 999–1014.e22 (2018). PubMed PMC
Batiuk M. Y., et al. , Identification of region-specific astrocyte subtypes at single cell resolution. Nat. Commun. 11, 1220 (2020). PubMed PMC
Zamboni M., Llorens-Bobadilla E., Magnusson J. P., Frisén J., A widespread neurogenic potential of neocortical astrocytes is induced by injury. Cell Stem Cell 27, 605–617.e5 (2020). PubMed PMC
Haile Y., et al. , Granzyme B-inhibitor serpina3n induces neuroprotection in vitro and in vivo. J. Neuroinflammation 12, 1–10 (2015). PubMed PMC
Zhang Y., et al. , SerpinA3N attenuates ischemic stroke injury by reducing apoptosis and neuroinflammation. CNS Neurosci. Ther. 28, 566–579 (2022). PubMed PMC
Kalogeris T., Baines C. P., Krenz M., Korthuis R. J., Cell biology of ischemia/reperfusion injury. Int. Rev. Cell Mol. Biol. 298, 229–317 (2012). PubMed PMC
Yang T., Dai Y. J., Chen G., Sen Cui S., Dissecting the dual role of the glial scar and scar-forming astrocytes in spinal cord injury. Front. Cell. Neurosci. 14, 78 (2020). PubMed PMC
Shi Z., et al. , Microglia drive transient insult-induced brain injury by chemotactic recruitment of CD8+ T lymphocytes. Neuron 111, 696–710.e9 (2023). PubMed
Tian Y., et al. , CXCL12 induces migration of oligodendrocyte precursor cells through the CXCR4-activated MEK/ERK and PI3K/AKT pathways. Mol. Med. Rep. 18, 4374–4380 (2018). PubMed PMC
Zhou Y., et al. , Human and mouse single-nucleus transcriptomics reveal TREM2-dependent and TREM2-independent cellular responses in Alzheimer’s disease. Nat. Med. 26, 131–142 (2020). PubMed PMC
Kaya T., et al. , CD8+ T cells induce interferon-responsive oligodendrocytes and microglia in white matter aging. Nat. Neurosci. 25, 1446–1457 (2022). PubMed PMC
Lee S.-H., et al. , TREM2-independent oligodendrocyte, astrocyte, and T cell responses to tau and amyloid pathology in mouse models of Alzheimer disease. Cell Rep. 37, 110158 (2021). PubMed
Milich L. M., et al. , Single-cell analysis of the cellular heterogeneity and interactions in the injured mouse spinal cord. J. Exp. Med. 218, 1–25 (2021). PubMed PMC
Chen W.-T., et al. , Spatial transcriptomics and in situ sequencing to study Alzheimer’s disease. Cell 182, 976–991.e19 (2020). PubMed
Yeh F. L., Hansen D. V., Sheng M., TREM2, microglia, and neurodegenerative diseases. Trends Mol. Med. 23, 512–533 (2017). PubMed
Ransohoff R. M., A polarizing question: Do M1 and M2 microglia exist? Nat. Neurosci. 19, 987–991 (2016). PubMed
McNamara N. B., et al. , Microglia regulate central nervous system myelin growth and integrity. Nature 613, 120–129 (2023). PubMed PMC
Liddelow S. A., et al. , Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541, 481–487 (2017). PubMed PMC
Zamanian J. L., et al. , Genomic analysis of reactive astrogliosis. J. Neurosci. 32, 6391–6410 (2012). PubMed PMC
Miron V. E., et al. , M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat. Neurosci. 16, 1211–1218 (2013). PubMed PMC
Falcão A. M., et al. , Disease-specific oligodendrocyte lineage cells arise in multiple sclerosis. Nat. Med. 24, 1837–1844 (2018). PubMed PMC
Wheeler M. A., et al. , MAFG-driven astrocytes promote CNS inflammation. Nature 578, 593 (2020). PubMed PMC
Floriddia E. M., et al. , Distinct oligodendrocyte populations have spatial preference and different responses to spinal cord injury. Nat. Commun. 11, 5860 (2020). PubMed PMC
Matson K. J. E., et al. , Single cell atlas of spinal cord injury in mice reveals a pro-regenerative signature in spinocerebellar neurons. Nat. Commun. 13, 5628 (2022). PubMed PMC
Egorova N., et al. , Pervasive white matter fiber degeneration in ischemic stroke. Stroke 51, 1507–1513 (2020). PubMed
Yoon H., et al. , Blocking Kallikrein 6 promotes developmental myelination. Glia 70, 430–450 (2022). PubMed PMC
Xing J., et al. , Post-injury born oligodendrocytes integrate into the glial scar and inhibit growth of regenerating axons by premature myelination. bioRxiv [Preprint] (2022). 10.1101/2021.10.15.464557 (Accessed 24 March 2023). DOI
Leng K., et al. , CRISPRi screens in human iPSC-derived astrocytes elucidate regulators of distinct inflammatory reactive states. Nat. Neurosci. 25, 1528–1542 (2022). PubMed PMC
Hasel P., Rose I. V. L., Sadick J. S., Kim R. D., Liddelow S. A., Neuroinflammatory astrocyte subtypes in the mouse brain. Nat. Neurosci. 24, 1475–1487 (2021), 10.1038/s41593-021-00905-6. PubMed DOI
Tsao C. W., et al. , Heart disease and stroke statistics—2022 update: A report from the American Heart Association. Circulation 145, E153–E639 (2022). PubMed
Zucha D., et al. , Spatiotemporal transcriptomic map of glial cell response in a mouse model of acute brain ischemia. Gene Expression Omnibus. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE233815. Deposited 31 May 2023. PubMed PMC
Zucha D., et al. , Spatiotemporal transcriptomic map of glial cell response in a mouse model of acute brain ischemia. Mendeley Data. https://data.mendeley.com/datasets/gnb2dsjms2. Deposited 4 October 2024. PubMed PMC
Zucha D., et al. , Spatiotemporal transcriptomic map of glial cell response in a mouse model of acute brain ischemia. Nygen ScarfWeb. https://scarfweb.nygen.io/eu-central-1/public/xv2x2szz. Deposited 29 Jul 2024. PubMed PMC
Zucha D., et al. , Spatiotemporal transcriptomic map of glial cell response in mouse model of acute brain ischemia. GitHub. https://github.com/LabGenExp/Spatial_MCAO.git. Deposited 5 June 2024. PubMed PMC
Spatiotemporal transcriptomic map of glial cell response in a mouse model of acute brain ischemia