• This record comes from PubMed

POLG p.A962T Mutation Leads to Neuronal Mitochondrial Dysfunction That is Restored After Mitochondrial Transplantation

. 2024 Nov 15 ; 73 (5) : 801-808.

Language English Country Czech Republic Media print

Document type Journal Article

Mutations in DNA polymerase gamma (POLG) are known as the predominant cause of inherited mitochondrial disorders. But how these POLG mutations disturb mitochondrial function remains to be determined. Furthermore, no effective therapy, to date, has been reported for POLG diseases. Using differentiated SH-SY5Y cells, a human neuronal model cell line, the current study investigated whether the novel POLG variant p.A962T impairs mitochondrial function. This involved quantifying mitochondrial DNA (mtDNA) content using PCR and assessing the expression levels of the subunits of complex IV (COXI-IV), a complex I subunit NDUFV1 and Cytochrome C (Cyto C) release using Western blotting. Activities of mitochondrial complex I, II, and IV were measured using colorimetric assays. Mitochondrial membrane potential (delta Psim) and ATP were evaluated using fluorescence assays and luminescent assays, respectively. In addition, we investigated whether mitochondrial transplantation (MT) using Pep-1-conjugated mitochondria could compensate for mitochondrial defects caused by the variant in cells carrying mutant POLG. The results of this study showed that POLG p.A962T mutation resulted in mitochondrial defects, including mitochondrial DNA (mtDNA) depletion, membrane potential (delta Psim) depolarization and adenosine triphosphate (ATP) reduction. Mechanistically, POLG mutation-caused mtDNA depletion led to the loss of mtDNA-encoded subunits of complex I and IV and thus compromised their activities. POLG p.A962T mutation is a pathogenic mutation leading to mitochondrial malfunction and mtDNA depletion in neurons. Cell-penetrating peptide Pep-1-mediated MT treatment compensated for mitochondrial defects induced by these POLG variants, suggesting the therapeutic application of this method in POLG diseases.

See more in PubMed

Rahman S, Copeland WC. POLG-related disorders and their neurological manifestations. Nat Rev Neurol. 2019;15:40–52. doi: 10.1038/s41582-018-0101-0. PubMed DOI PMC

Tzoulis C, Tran GT, Coxhead J, Bertelsen B, Lilleng PK, Balafkan N, Payne B, et al. Molecular pathogenesis of polymerase gamma-related neurodegeneration. Ann Neurol. 2014;76:66–81. doi: 10.1002/ana.24185. PubMed DOI PMC

Facchinello N, Laquatra C, Locatello L, Beffagna G, Brañas Casas R, Fornetto C, Dinarello A, et al. Efficient clofilium tosylate-mediated rescue of POLG-related disease phenotypes in zebrafish. Cell Death Dis. 2021;12:100. doi: 10.1038/s41419-020-03359-z. PubMed DOI PMC

Roushandeh AM, Kuwahara Y, Roudkenar MH. Mitochondrial transplantation as a potential and novel master key for treatment of various incurable diseases. Cytotechnology. 2019;71:647–663. doi: 10.1007/s10616-019-00302-9. PubMed DOI PMC

Shin B, Cowan DB, Emani SM, Del Nido PJ, McCully JD. Mitochondrial Transplantation in Myocardial Ischemia and Reperfusion Injury. Adv Exp Med Biol. 2017;982:595–619. doi: 10.1007/978-3-319-55330-6_31. PubMed DOI

Gollihue JL, Rabchevsky AG. Prospects for therapeutic mitochondrial transplantation. Mitochondrion. 2017;35:70–79. doi: 10.1016/j.mito.2017.05.007. PubMed DOI PMC

Yamada Y, Ito M, Arai M, Hibino M, Tsujioka T, Harashima H. Challenges in Promoting Mitochondrial Transplantation Therapy. Int J Mol Sci. 2020;21:6365. doi: 10.3390/ijms21176365. PubMed DOI PMC

Tang S, Wang J, Lee NC, Milone M, Halberg MC, Schmitt ES, Craigen WJ, Zhang W, Wong LJ. Mitochondrial DNA polymerase g mutations: an ever expanding molecular and clinical spectrum. J Med Genet. 2011;48:669–681. doi: 10.1136/jmedgenet-2011-100222. PubMed DOI

Kovalevich J, Langford D. Considerations for the use of SH-SY5Y neuroblastoma cells in neurobiology. Methods Mol Biol. 2013;1078:9–21. doi: 10.1007/978-1-62703-640-5_2. PubMed DOI PMC

Shipley MM, Mangold CA, Szpara ML. Differentiation of the SH-SY5Y Human Neuroblastoma Cell Line. J Vis Exp. 2016;108:53193. doi: 10.3791/53193. PubMed DOI PMC

Pu J, Mao Y, Xu L, Zheng T, Zhang B. Stable cell lines of human SH-SY5Y uniformly expressing wild-type or mutant-type FERM domain containing 7 gene. Exp Ther Med. 2017;14:2277–2283. doi: 10.3892/etm.2017.4730. PubMed DOI PMC

Presgraves SP, Ahmed T, Borwege S, Joyce JN. Terminally Differentiated SH-SY5Y Cells Provide a Model System for Studying Neuroprotective Effects of Dopamine Agonists. Neurotox Res. 2004;5:579–598. doi: 10.1007/BF03033178. PubMed DOI

Chang JC, Hoel F, Liu KH, Wei YH, Cheng FC, Kuo SJ, Tronstad KJ, Liu CS. Peptide-mediated delivery of donor mitochondria improves mitochondrial function and cell viability in human cybrid cells with the MELAS A3243G mutation. Sci Rep. 2017;7:10710. doi: 10.1038/s41598-017-10870-5. PubMed DOI PMC

Gegg ME, Cooper JM, Schapira AH, Taanman JW. Silencing of PINK1 Expression Affects Mitochondrial DNA and Oxidative Phosphorylation in DOPAMINERGIC Cells. PLoS One. 2009;4:e4756. doi: 10.1371/journal.pone.0004756. PubMed DOI PMC

Liu X, Chu B, Jin S, Li M, Xu Y, Yang H, Feng Z, Bi J, Wang P. Vascular endothelial growth factor alleviates mitochondrial dysfunction and suppression of mitochondrial biogenesis in models of Alzheimer's disease. Int J Neurosci. 2021;131:154–162. doi: 10.1080/00207454.2020.1733564. PubMed DOI

Shi C, Guo H, Liu X. Platelet Mitochondria Transplantation Rescues Hypoxia/Reoxygenation-Induced Mitochondrial Dysfunction and Neuronal Cell Death Involving the FUNDC2/PIP3/Akt/FOXO3a Axis. Cell Transplant. 2021;30:9636897211024210. doi: 10.1177/09636897211024210. PubMed DOI PMC

Guo H, Xuanyuan S, Zhang B, Shi C. Activation of PI3K/Akt prevents hypoxia/reoxygenation-induced GnRH decline via FOXO3a. Physiol Res. 2022;71:509–516. doi: 10.33549/physiolres.934861. PubMed DOI PMC

Tzoulis C, Tran GT, Coxhead J, Bertelsen B, Lilleng PK, Balafkan N, Payne B, et al. Molecular pathogenesis of polymerase γ-related neurodegeneration. Ann Neurol. 2014;76:66–81. doi: 10.1002/ana.24185. PubMed DOI PMC

Hroudová J, Singh N, Fišar Z. Mitochondrial dysfunction within the synapses of substantia nigra neurons in Parkinson's disease. NPJ Parkinsons Dis. 2018;4:9. doi: 10.1038/s41531-018-0044-6. PubMed DOI PMC

Chen C, McDonald D, Blain A, Sachdeva A, Bone L, Smith ALM, Warren C, Pickett SJ, Hudson G, Filby A, Vincent AE, Turnbull DM, Reeve AK. Imaging mass cytometry reveals generalised deficiency in OXPHOS complexes in Parkinson's disease. NPJ Parkinsons Dis. 2021;7:39. doi: 10.1038/s41531-021-00182-x. PubMed DOI PMC

Chen C, Vincent AE, Blain AP, Smith AL, Turnbull DM, Reeve AK. Investigation of mitochondrial biogenesis defects in single substantia nigra neurons using post-mortem human tissue. Neurobiol Dis. 2020;134:104631. doi: 10.1016/j.nbd.2019.104631. PubMed DOI

Nakamura Y, Park JH, Hayakawa K. Therapeutic use of extracellular mitochondria in CNS injury and disease. Exp Neurol. 2020;324:113–114. doi: 10.1016/j.expneurol.2019.113114. PubMed DOI PMC

Li Y, D'Aurelio M, Deng JH, Park JS, Manfredi G, Hu P, Lu J, Bai Y. An assembled complex IV maintains the stability and activity of complex I in mammalian mitochondria. J Biol Chem. 2007;282:17557–17562. doi: 10.1074/jbc.M701056200. PubMed DOI

Ali Pour P, Kenney MC, Kheradvar A. Bioenergetics Consequences of Mitochondrial Transplantation in Cardiomyocytes. J Am Heart Assoc. 2020;9:e014501. doi: 10.1161/JAHA.119.014501. PubMed DOI PMC

Venkatesh K, Mathew A, Koushika SP. Role of actin in organelle trafficking in neurons. Cytoskeleton (Hoboken) 2020;77:97–109. doi: 10.1002/cm.21580. PubMed DOI

Yamada Y, Ito M, Arai M, Hibino M, Tsujioka T, Harashima H. Challenges in Promoting Mitochondrial Transplantation Therapy. Int J Mol Sci. 2020;21:6365. doi: 10.3390/ijms21176365. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...