POLG p.A962T Mutation Leads to Neuronal Mitochondrial Dysfunction That is Restored After Mitochondrial Transplantation
Language English Country Czech Republic Media print
Document type Journal Article
PubMed
39545794
PubMed Central
PMC11629961
DOI
10.33549/physiolres.935313
PII: 935313
Knihovny.cz E-resources
- MeSH
- DNA Polymerase gamma * genetics metabolism MeSH
- DNA-Directed DNA Polymerase genetics metabolism MeSH
- Humans MeSH
- Membrane Potential, Mitochondrial MeSH
- DNA, Mitochondrial genetics MeSH
- Mitochondrial Diseases genetics metabolism MeSH
- Mitochondria * metabolism MeSH
- Mutation * MeSH
- Cell Line, Tumor MeSH
- Neurons * metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- DNA Polymerase gamma * MeSH
- DNA-Directed DNA Polymerase MeSH
- DNA, Mitochondrial MeSH
- POLG protein, human MeSH Browser
Mutations in DNA polymerase gamma (POLG) are known as the predominant cause of inherited mitochondrial disorders. But how these POLG mutations disturb mitochondrial function remains to be determined. Furthermore, no effective therapy, to date, has been reported for POLG diseases. Using differentiated SH-SY5Y cells, a human neuronal model cell line, the current study investigated whether the novel POLG variant p.A962T impairs mitochondrial function. This involved quantifying mitochondrial DNA (mtDNA) content using PCR and assessing the expression levels of the subunits of complex IV (COXI-IV), a complex I subunit NDUFV1 and Cytochrome C (Cyto C) release using Western blotting. Activities of mitochondrial complex I, II, and IV were measured using colorimetric assays. Mitochondrial membrane potential (delta Psim) and ATP were evaluated using fluorescence assays and luminescent assays, respectively. In addition, we investigated whether mitochondrial transplantation (MT) using Pep-1-conjugated mitochondria could compensate for mitochondrial defects caused by the variant in cells carrying mutant POLG. The results of this study showed that POLG p.A962T mutation resulted in mitochondrial defects, including mitochondrial DNA (mtDNA) depletion, membrane potential (delta Psim) depolarization and adenosine triphosphate (ATP) reduction. Mechanistically, POLG mutation-caused mtDNA depletion led to the loss of mtDNA-encoded subunits of complex I and IV and thus compromised their activities. POLG p.A962T mutation is a pathogenic mutation leading to mitochondrial malfunction and mtDNA depletion in neurons. Cell-penetrating peptide Pep-1-mediated MT treatment compensated for mitochondrial defects induced by these POLG variants, suggesting the therapeutic application of this method in POLG diseases.
See more in PubMed
Rahman S, Copeland WC. POLG-related disorders and their neurological manifestations. Nat Rev Neurol. 2019;15:40–52. doi: 10.1038/s41582-018-0101-0. PubMed DOI PMC
Tzoulis C, Tran GT, Coxhead J, Bertelsen B, Lilleng PK, Balafkan N, Payne B, et al. Molecular pathogenesis of polymerase gamma-related neurodegeneration. Ann Neurol. 2014;76:66–81. doi: 10.1002/ana.24185. PubMed DOI PMC
Facchinello N, Laquatra C, Locatello L, Beffagna G, Brañas Casas R, Fornetto C, Dinarello A, et al. Efficient clofilium tosylate-mediated rescue of POLG-related disease phenotypes in zebrafish. Cell Death Dis. 2021;12:100. doi: 10.1038/s41419-020-03359-z. PubMed DOI PMC
Roushandeh AM, Kuwahara Y, Roudkenar MH. Mitochondrial transplantation as a potential and novel master key for treatment of various incurable diseases. Cytotechnology. 2019;71:647–663. doi: 10.1007/s10616-019-00302-9. PubMed DOI PMC
Shin B, Cowan DB, Emani SM, Del Nido PJ, McCully JD. Mitochondrial Transplantation in Myocardial Ischemia and Reperfusion Injury. Adv Exp Med Biol. 2017;982:595–619. doi: 10.1007/978-3-319-55330-6_31. PubMed DOI
Gollihue JL, Rabchevsky AG. Prospects for therapeutic mitochondrial transplantation. Mitochondrion. 2017;35:70–79. doi: 10.1016/j.mito.2017.05.007. PubMed DOI PMC
Yamada Y, Ito M, Arai M, Hibino M, Tsujioka T, Harashima H. Challenges in Promoting Mitochondrial Transplantation Therapy. Int J Mol Sci. 2020;21:6365. doi: 10.3390/ijms21176365. PubMed DOI PMC
Tang S, Wang J, Lee NC, Milone M, Halberg MC, Schmitt ES, Craigen WJ, Zhang W, Wong LJ. Mitochondrial DNA polymerase g mutations: an ever expanding molecular and clinical spectrum. J Med Genet. 2011;48:669–681. doi: 10.1136/jmedgenet-2011-100222. PubMed DOI
Kovalevich J, Langford D. Considerations for the use of SH-SY5Y neuroblastoma cells in neurobiology. Methods Mol Biol. 2013;1078:9–21. doi: 10.1007/978-1-62703-640-5_2. PubMed DOI PMC
Shipley MM, Mangold CA, Szpara ML. Differentiation of the SH-SY5Y Human Neuroblastoma Cell Line. J Vis Exp. 2016;108:53193. doi: 10.3791/53193. PubMed DOI PMC
Pu J, Mao Y, Xu L, Zheng T, Zhang B. Stable cell lines of human SH-SY5Y uniformly expressing wild-type or mutant-type FERM domain containing 7 gene. Exp Ther Med. 2017;14:2277–2283. doi: 10.3892/etm.2017.4730. PubMed DOI PMC
Presgraves SP, Ahmed T, Borwege S, Joyce JN. Terminally Differentiated SH-SY5Y Cells Provide a Model System for Studying Neuroprotective Effects of Dopamine Agonists. Neurotox Res. 2004;5:579–598. doi: 10.1007/BF03033178. PubMed DOI
Chang JC, Hoel F, Liu KH, Wei YH, Cheng FC, Kuo SJ, Tronstad KJ, Liu CS. Peptide-mediated delivery of donor mitochondria improves mitochondrial function and cell viability in human cybrid cells with the MELAS A3243G mutation. Sci Rep. 2017;7:10710. doi: 10.1038/s41598-017-10870-5. PubMed DOI PMC
Gegg ME, Cooper JM, Schapira AH, Taanman JW. Silencing of PINK1 Expression Affects Mitochondrial DNA and Oxidative Phosphorylation in DOPAMINERGIC Cells. PLoS One. 2009;4:e4756. doi: 10.1371/journal.pone.0004756. PubMed DOI PMC
Liu X, Chu B, Jin S, Li M, Xu Y, Yang H, Feng Z, Bi J, Wang P. Vascular endothelial growth factor alleviates mitochondrial dysfunction and suppression of mitochondrial biogenesis in models of Alzheimer's disease. Int J Neurosci. 2021;131:154–162. doi: 10.1080/00207454.2020.1733564. PubMed DOI
Shi C, Guo H, Liu X. Platelet Mitochondria Transplantation Rescues Hypoxia/Reoxygenation-Induced Mitochondrial Dysfunction and Neuronal Cell Death Involving the FUNDC2/PIP3/Akt/FOXO3a Axis. Cell Transplant. 2021;30:9636897211024210. doi: 10.1177/09636897211024210. PubMed DOI PMC
Guo H, Xuanyuan S, Zhang B, Shi C. Activation of PI3K/Akt prevents hypoxia/reoxygenation-induced GnRH decline via FOXO3a. Physiol Res. 2022;71:509–516. doi: 10.33549/physiolres.934861. PubMed DOI PMC
Tzoulis C, Tran GT, Coxhead J, Bertelsen B, Lilleng PK, Balafkan N, Payne B, et al. Molecular pathogenesis of polymerase γ-related neurodegeneration. Ann Neurol. 2014;76:66–81. doi: 10.1002/ana.24185. PubMed DOI PMC
Hroudová J, Singh N, Fišar Z. Mitochondrial dysfunction within the synapses of substantia nigra neurons in Parkinson's disease. NPJ Parkinsons Dis. 2018;4:9. doi: 10.1038/s41531-018-0044-6. PubMed DOI PMC
Chen C, McDonald D, Blain A, Sachdeva A, Bone L, Smith ALM, Warren C, Pickett SJ, Hudson G, Filby A, Vincent AE, Turnbull DM, Reeve AK. Imaging mass cytometry reveals generalised deficiency in OXPHOS complexes in Parkinson's disease. NPJ Parkinsons Dis. 2021;7:39. doi: 10.1038/s41531-021-00182-x. PubMed DOI PMC
Chen C, Vincent AE, Blain AP, Smith AL, Turnbull DM, Reeve AK. Investigation of mitochondrial biogenesis defects in single substantia nigra neurons using post-mortem human tissue. Neurobiol Dis. 2020;134:104631. doi: 10.1016/j.nbd.2019.104631. PubMed DOI
Nakamura Y, Park JH, Hayakawa K. Therapeutic use of extracellular mitochondria in CNS injury and disease. Exp Neurol. 2020;324:113–114. doi: 10.1016/j.expneurol.2019.113114. PubMed DOI PMC
Li Y, D'Aurelio M, Deng JH, Park JS, Manfredi G, Hu P, Lu J, Bai Y. An assembled complex IV maintains the stability and activity of complex I in mammalian mitochondria. J Biol Chem. 2007;282:17557–17562. doi: 10.1074/jbc.M701056200. PubMed DOI
Ali Pour P, Kenney MC, Kheradvar A. Bioenergetics Consequences of Mitochondrial Transplantation in Cardiomyocytes. J Am Heart Assoc. 2020;9:e014501. doi: 10.1161/JAHA.119.014501. PubMed DOI PMC
Venkatesh K, Mathew A, Koushika SP. Role of actin in organelle trafficking in neurons. Cytoskeleton (Hoboken) 2020;77:97–109. doi: 10.1002/cm.21580. PubMed DOI
Yamada Y, Ito M, Arai M, Hibino M, Tsujioka T, Harashima H. Challenges in Promoting Mitochondrial Transplantation Therapy. Int J Mol Sci. 2020;21:6365. doi: 10.3390/ijms21176365. PubMed DOI PMC