Glycan-induced structural activation softens the human papillomavirus capsid for entry through reduction of intercapsomere flexibility
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
39572555
PubMed Central
PMC11582657
DOI
10.1038/s41467-024-54373-0
PII: 10.1038/s41467-024-54373-0
Knihovny.cz E-zdroje
- MeSH
- heparitinsulfát * metabolismus chemie MeSH
- infekce papilomavirem virologie MeSH
- internalizace viru * MeSH
- kapsida * metabolismus chemie MeSH
- lidé MeSH
- lidské papilomaviry MeSH
- lidský papilomavirus 16 metabolismus fyziologie MeSH
- mikroskopie atomárních sil * MeSH
- Papillomaviridae fyziologie MeSH
- polysacharidy metabolismus chemie MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- virové plášťové proteiny * metabolismus chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- heparitinsulfát * MeSH
- polysacharidy MeSH
- virové plášťové proteiny * MeSH
High-risk human papillomaviruses (HPVs) cause various cancers. While type-specific prophylactic vaccines are available, additional anti-viral strategies are highly desirable. Initial HPV cell entry involves receptor-switching induced by structural capsid modifications. These modifications are initiated by interactions with cellular heparan sulphates (HS), however, their molecular nature and functional consequences remain elusive. Combining virological assays with hydrogen/deuterium exchange mass spectrometry, and atomic force microscopy, we investigate the effect of capsid-HS binding and structural activation. We show how HS-induced structural activation requires a minimal HS-chain length and simultaneous engagement of several binding sites by a single HS molecule. This engagement introduces a pincer-like force that stabilizes the capsid in a conformation with extended capsomer linkers. It results in capsid enlargement and softening, thereby likely facilitating L1 proteolytic cleavage and subsequent L2-externalization, as needed for cell entry. Our data supports the further devising of prophylactic strategies against HPV infections.
Institute of Cellular Virology ZMBE University of Münster Münster Germany
Institute of Chemistry and Metabolomics University of Lübeck Ratzeburger Allee 160 Lübeck Germany
Institute of Microbiology of the Czech Academy of Sciences Videnska 1083 Prague Czech Republic
Moleculaire Biofysica Zernike Instituut Rijksuniversiteit Groningen Groningen Netherlands
Zobrazit více v PubMed
Marklund, L. & Hammarstedt, L. Impact of HPV in oropharyngeal cancer. J. Oncol.2011, 509036 (2011). PubMed PMC
Wang, X., Huang, X. & Zhang, Y. Involvement of human papillomaviruses in cervical cancer. Front. Microbiol.9, 10.3389/fmicb.2018.02896 (2018). PubMed PMC
zur Hausen, H. Papillomaviruses in the causation of human cancers — a brief historical account. Virology384, 260–265 (2009). PubMed
de Martel, C., Plummer, M., Vignat, J. & Franceschi, S. Worldwide burden of cancer attributable to HPV by site, country and HPV type. Int. J. Cancer141, 664–670 (2017). PubMed PMC
Lehtinen, M. & Dillner, J. Clinical trials of human papillomavirus vaccines and beyond. Nat. Rev. Clin. Oncol.10, 400–410 (2013). PubMed
Doorbar, J. et al. The biology and life-cycle of human papillomaviruses. Vaccine30, F55–F70 (2012). PubMed
Doorbar, J., Egawa, N., Griffin, H., Kranjec, C. & Murakami, I. Human papillomavirus molecular biology and disease association. Rev. Med. Virol.25, 2–23 (2015). PubMed PMC
Baker, T. S. et al. Structures of bovine and human papillomaviruses. Analysis by cryoelectron microscopy and three-dimensional image reconstruction. Biophys. J.6, 1445–1456 (1991). PubMed PMC
Finch, J. T. & Klug, A. The structure of viruses of the papilloma-polyoma type: III. Structure of rabbit papilloma virus with an appendix on the topography of contrast in negative-staining for electron-microscopy. J. Mol. Biol.13, 1–IN7 (1965). PubMed
Klug, A. & Finch, J. T. Structure of viruses of the papilloma-polyoma type: I. Human wart virus. J. Mol. Biol.11, 403–IN444 (1965). PubMed
Kirnbauer, R., Booy, F., Cheng, N., Lowy, D. R. & Schiller, J. T. Papillomavirus L1 major capsid protein self-assembles into virus-like particles that are highly immunogenic. Proc. Natl. Acad. Sci. USA89, 12180–12184 (1992). PubMed PMC
Buck, C. B. et al. Arrangement of L2 within the papillomavirus capsid. J. Virol.82, 5190–5197 (2008). PubMed PMC
Guan, J. et al. Cryoelectron microscopy maps of human papillomavirus 16 reveal L2 densities and heparin binding site. Structure25, 253–263 (2017). PubMed
Kondo, K. et al. Neutralization of HPV16, 18, 31, and 58 pseudovirions with antisera induced by immunizing rabbits with synthetic peptides representing segments of the HPV16 minor capsid protein L2 surface region. Virology358, 266–272 (2007). PubMed
Goetschius, D. J. et al. High resolution cryo EM analysis of HPV16 identifies minor structural protein L2 and describes capsid flexibility. Sci. Rep.11, 3498 (2021). PubMed PMC
Buck, C. B. et al. Maturation of papillomavirus capsids. J. Virol.79, 2839–2846 (2005). PubMed PMC
Cardone, G. et al. Maturation of the human papillomavirus 16 capsid. MBio5, 10.1128/mbio.01104-01114 (2014). PubMed PMC
Li, M., Beard, P., Estes, P. A., Lyon, M. K. & Garcea, R. L. Intercapsomeric disulfide bonds in papillomavirus assembly and disassembly. J. Virol.72, 2160–2167 (1998). PubMed PMC
Modis, Y., Trus, B. L. & Harrison, S. C. Atomic model of the papillomavirus capsid. EMBO J.21, 4754–4762 (2002). PubMed PMC
Sapp, M., Volpers, C., Müller, M. & Streeck, R. E. Organization of the major and minor capsid proteins in human papillomavirus type 33 virus-like particles. J. Gen. Virol.76, 2407–2412 (1995). PubMed
Buck, C. B., Pastrana, D. V., Lowy, D. R. & Schiller, J. T. Efficient intracellular assembly of papillomaviral vectors. J. Virol.78, 751–757 (2004). PubMed PMC
Buck, C. B. & Thompson, C. D. Production of papillomavirus-based gene transfer vectors. Curr. Protoc. Cell Biol.37, 10.1002/0471143030.cb2601s37 (2007). PubMed
Giroglou, T., Florin, L., Schäfer, F., Streeck, R. E. & Sapp, M. Human papillomavirus infection requires cell surface heparan sulfate. J. Virol.75, 1565–1570 (2001). PubMed PMC
Johnson, K. M. et al. Role of heparan sulfate in attachment to and infection of the murine female genital tract by human papillomavirus. J. Virol.83, 2067–2074 (2009). PubMed PMC
Dasgupta, J. et al. Structural basis of oligosaccharide receptor recognition by human papillomavirus. J. Biol. Chem.286, 2617–2624 (2011). PubMed PMC
Richards, K. F., Bienkowska-Haba, M., Dasgupta, J., Chen, X. S. & Sapp, M. Multiple heparan sulfate binding site engagements are required for the infectious entry of human papillomavirus type 16. J. Virol.87, 11426–11437 (2013). PubMed PMC
Cerqueira, C. et al. Heparin increases the infectivity of human papillomavirus type 16 independent of cell surface proteoglycans and induces L1 epitope exposure. Cell. Microbiol.15, 1818–1836 (2013). PubMed PMC
Cerqueira, C., Samperio Ventayol, P., Vogeley, C. & Schelhaas, M. Kallikrein-8 proteolytically processes human papillomaviruses in the extracellular space to facilitate entry into host cells. J. Virol.89, 7038–7052 (2015). PubMed PMC
Bienkowska-Haba, M., Patel, H. D. & Sapp, M. Target cell cyclophilins facilitate human papillomavirus type 16 infection. PLOS Pathog.5, e1000524 (2009). PubMed PMC
Bronnimann, M. P. et al. Furin cleavage of L2 during papillomavirus infection: minimal dependence on cyclophilins. J. Virol.90, 6224–6234 (2016). PubMed PMC
Day, P. M., Lowy, D. R. & Schiller, J. T. Heparan sulfate-independent cell binding and infection with furin-precleaved papillomavirus capsids. J. Virol.82, 12565–12568 (2008). PubMed PMC
Richards, R. M., Lowy, D. R., Schiller, J. T. & Day, P. M. Cleavage of the papillomavirus minor capsid protein, L2, at a furin consensus site is necessary for infection. Proc. Natl. Acad. Sci. USA103, 1522–1527 (2006). PubMed PMC
Selinka, H.-C. et al. Inhibition of transfer to secondary receptors by heparan sulfate-binding drug or antibody induces noninfectious uptake of human papillomavirus. J. Virol.81, 10970–10980 (2007). PubMed PMC
Surviladze, Z., Dziduszko, A. & Ozbun, M. A. Essential roles for soluble virion-associated heparan sulfonated proteoglycans and growth factors in human papillomavirus infections. PLOS Pathog.8, e1002519 (2012). PubMed PMC
Raff, A. B. et al. The evolving field of human papillomavirus receptor research: a review of binding and entry. J. Virol.87, 6062–6072 (2013). PubMed PMC
Mikuličić, S. et al. ADAM17-dependent signaling is required for oncogenic human papillomavirus entry platform assembly. ELife8, e44345 (2019). PubMed PMC
Scheffer, KonstanzeD. et al. Tetraspanin CD151 mediates papillomavirus type 16 endocytosis. J. Virol.87, 3435–3446 (2013). PubMed PMC
Schelhaas, M. et al. Entry of human papillomavirus type 16 by actin-dependent, clathrin- and lipid raft-independent endocytosis. PLOS Pathog.8, e1002657 (2012). PubMed PMC
Spoden, G. et al. Human papillomavirus types 16, 18, and 31 share similar endocytic requirements for entry. J. Virol.87, 7765–7773 (2013). PubMed PMC
Day, P. M., Thompson, C. D., Schowalter, R. M., Lowy, D. R. & Schiller, J. T. Identification of a role for the trans-Golgi network in human papillomavirus 16 pseudovirus infection. J. Virol.87, 3862–3870 (2013). PubMed PMC
Lipovsky, A. et al. Genome-wide siRNA screen identifies the retromer as a cellular entry factor for human papillomavirus. Proc. Natl. Acad. Sci. USA110, 7452–7457 (2013). PubMed PMC
Aydin, I. et al. Large scale RNAi reveals the requirement of nuclear envelope breakdown for nuclear import of human papillomaviruses. PLOS Pathog.10, e1004162 (2014). PubMed PMC
Pyeon, D., Pearce, S. M., Lank, S. M., Ahlquist, P. & Lambert, P. F. Establishment of human papillomavirus infection requires cell cycle progression. PLOS Pathog.5, e1000318 (2009). PubMed PMC
Ortega-Esteban, A. et al. Mechanics of viral chromatin reveals the pressurization of human adenovirus. ACS Nano9, 10826–10833 (2015). PubMed
Roos, W. H. et al. Mechanics of bacteriophage maturation. Proc. Natl. Acad. Sci. USA109, 2342–2347 (2012). PubMed PMC
Bruinsma, R. F., Wuite, G. J. L. & Roos, W. H. Physics of viral dynamics. Nat. Rev. Phys.3, 76–91 (2021). PubMed PMC
Dülfer, J., Kadek, A., Kopicki, J-D., Krichel, B. & Uetrecht, C. In Advances in Virus Research (ed Rey FA). Academic Press (2019). PubMed
Dülfer, J. et al. Glycan-induced protein dynamics in human morovirus P dimers depend on virus strain and deamidation status. Molecules26, 2125 (2021). PubMed PMC
Humphries, D. E. & Silbert, J. E. Chlorate: A reversible inhibitor of proteoglycan sulfation. Biochem. Biophys. Res. Commun.154, 365–371 (1988). PubMed
Safaiyan, F. et al. Selective effects of sodium chlorate treatment on the sulfation of heparan sulfate. J. Biol. Chem.274, 36267–36273 (1999). PubMed
Knappe, M. et al. Surface-exposed amino acid residues of HPV16 L1 protein mediating interaction with cell surface heparan sulfate. J. Biol. Chem.282, 27913–27922 (2007). PubMed
Akhtar, J. & Shukla, D. Viral entry mechanisms: cellular and viral mediators of herpes simplex virus entry. FEBS J.276, 7228–7236 (2009). PubMed PMC
Guo, Y. & Roos, W. H. AFM Nanoindentation Experiments on Protein Shells: A Protocol. Methods Mol. Biol.1886, 243–257 (2019). PubMed
Roos, W. H., Bruinsma, R. & Wuite, G. J. L. Physical virology. Nat. Phys.6, 733–743 (2010).
Gambhira, R. et al. A protective and broadly cross-neutralizing epitope of human papillomavirus L2. J. Virol.81, 13927–13931 (2007). PubMed PMC
Samperio Ventayol, P. & Schelhaas, M. Fluorescently labeled human papillomavirus pseudovirions for use in virus entry experiments. Curr. Protoc. Microbiol.37, 14B.14.11–14B.14.22 (2015). PubMed
Becker, M., Greune, L., Schmidt, M. A. & Schelhaas, M. Extracellular conformational changes in the capsid of human papillomaviruses contribute to asynchronous uptake into host cells. J. Virol.92, 10.1128/jvi.02106-02117 (2018). PubMed PMC
Kadek, A. et al. Interdomain electron transfer in cellobiose dehydrogenase is governed by surface electrostatics. Biochim. Biophys. Acta Gen. Subj.1861, 157–167 (2017). PubMed
Sowole, M. A. & Konermann, L. Effects of protein–ligand interactions on hydrogen/deuterium exchange kinetics: Canonical and noncanonical scenarios. Anal. Chem.86, 6715–6722 (2014). PubMed
Breiner, B. et al. Refolding and in vitro characterization of human papillomavirus 16 minor capsid protein L2. Biol. Chem.400, 513–522 (2019). PubMed
Oh, C., Buckley, P. M., Choi, J., Hierro, A. & DiMaio, D. Sequence-independent activity of a predicted long disordered segment of the human papillomavirus type 16 L2 capsid protein during virus entry. Proc. Natl. Acad. Sci. USA120, e2307721120 (2023). PubMed PMC
Matos, P. M., Andreu, D., Santos, N. C. & Gutiérrez-Gallego, R. Structural requirements of glycosaminoglycans for their interaction with HIV-1 envelope glycoprotein gp120. Arch. Virol.159, 555–560 (2014). PubMed
Xie, Q. et al. The 2.8 Å electron microscopy structure of adeno-associated virus-DJ bound by a heparinoid pentasaccharide. Mol. Ther. Methods Clin. Dev.5, 1–12 (2017). PubMed PMC
Zhang, F. et al. Characterization of interactions between heparin/glycosaminoglycan and adeno-associated virus. Biochemistry52, 6275–6285 (2013). PubMed PMC
Bishop, B., Dasgupta, J. & Chen, X. S. Structure-based engineering of papillomavirus major capsid L1: controlling particle assembly. Virol. J.4, 3 (2007). PubMed PMC
Chen, X. S., Casini, G., Harrison, S. C. & Garcea, R. L. Papillomavirus capsid protein expression in Escherichia coli: purification and assembly of HPV11 and HPV16 L111Edited by M. Yaniv. J. Mol. Biol.307, 173–182 (2001). PubMed
Wolf, M., Garcea, R. L., Grigorieff, N. & Harrison, S. C. Subunit interactions in bovine papillomavirus. Proc. Natl. Acad. Sci. USA107, 6298–6303 (2010). PubMed PMC
Helenius, A. Virus entry and uncoating. Fields Virol.1, 99 (2007).
Boukamp, P. et al. Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J. Cell Biol.106, 761–771 (1988). PubMed PMC
Pastrana, D. V. et al. Reactivity of human sera in a sensitive, high-throughput pseudovirus-based papillomavirus neutralization assay for HPV16 and HPV18. Virology321, 205–216 (2004). PubMed
Buck, C. B. et al. Carrageenan is a potent inhibitor of papillomavirus infection. PLOS Pathog.2, e69 (2006). PubMed PMC
Leder, C., Kleinschmidt, J. A., Wiethe, C. & Müller, M. Enhancement of capsid gene expression: preparing the human papillomavirus type 16 major structural gene L1 for DNA vaccination purposes. J. Virol.75, 9201–9209 (2001). PubMed PMC
Hafezi, W. et al. Entry of herpes simplex virus type 1 (HSV-1) into the distal axons of trigeminal neurons favors the onset of nonproductive, silent infection. PLOS Pathog.8, e1002679 (2012). PubMed PMC
Engel, S. et al. Role of endosomes in simian virus 40 entry and infection. J. Virol.85, 4198–4211 (2011). PubMed PMC
Wittrup, A. et al. ScFv Antibody-induced translocation of cell-surface heparan sulfate proteoglycan to endocytic vesicles. J. Biol. Chem.284, 32959–32967 (2009). PubMed PMC
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods9, 676–682 (2012). PubMed PMC
Poliakov, A., Jardine, P. & Prevelige, P. E. Hydrogen/deuterium exchange on protein solutions containing nucleic acids: utility of protamine sulfate. Rapid Commun. Mass Spectrom.22, 2423–2428 (2008). PubMed
Wang, L., Pan, H. & Smith, D. L. Hydrogen exchange-mass spectrometry: Optimization of digestion conditions *. Mol. Cell. Proteom.1, 132–138 (2002). PubMed
Majumdar, R. et al. Minimizing carry-over in an online pepsin digestion system used for the H/D exchange mass spectrometric analysis of an IgG1 monoclonal antibody. J. Am. Soc. Mass Spectrom.23, 2140–2148 (2012). PubMed
Weis, D. D., Wales, T. E., Engen, J. R., Hotchko, M. & Ten Eyck, L. F. Identification and characterization of EX1 kinetics in H/D exchange mass spectrometry by peak width analysis. J. Am. Soc. Mass Spectrom.17, 1498–1509 (2006). PubMed
Kavan, D. & Man, P. MSTools—Web based application for visualization and presentation of HXMS data. Int. J. Mass Spectrom.302, 53–58 (2011).
Nentwich S, Kádek A. HDX-MS dataset for: “Glycan-induced structural activation softens the human papillomavirus capsid for entry through reduction of intercapsomere flexibility”. ZENODO. V1 10.5281/zenodo.10534050 (2024). PubMed PMC
Christensen, N. D. et al. Surface conformational and linear epitopes on HPV-16 and HPV-18 L1 virus-like particles as defined by monoclonal antibodies. Virology223, 174–184 (1996). PubMed