Glycan-induced structural activation softens the human papillomavirus capsid for entry through reduction of intercapsomere flexibility

. 2024 Nov 21 ; 15 (1) : 10076. [epub] 20241121

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39572555
Odkazy

PubMed 39572555
PubMed Central PMC11582657
DOI 10.1038/s41467-024-54373-0
PII: 10.1038/s41467-024-54373-0
Knihovny.cz E-zdroje

High-risk human papillomaviruses (HPVs) cause various cancers. While type-specific prophylactic vaccines are available, additional anti-viral strategies are highly desirable. Initial HPV cell entry involves receptor-switching induced by structural capsid modifications. These modifications are initiated by interactions with cellular heparan sulphates (HS), however, their molecular nature and functional consequences remain elusive. Combining virological assays with hydrogen/deuterium exchange mass spectrometry, and atomic force microscopy, we investigate the effect of capsid-HS binding and structural activation. We show how HS-induced structural activation requires a minimal HS-chain length and simultaneous engagement of several binding sites by a single HS molecule. This engagement introduces a pincer-like force that stabilizes the capsid in a conformation with extended capsomer linkers. It results in capsid enlargement and softening, thereby likely facilitating L1 proteolytic cleavage and subsequent L2-externalization, as needed for cell entry. Our data supports the further devising of prophylactic strategies against HPV infections.

Zobrazit více v PubMed

Marklund, L. & Hammarstedt, L. Impact of HPV in oropharyngeal cancer. J. Oncol.2011, 509036 (2011). PubMed PMC

Wang, X., Huang, X. & Zhang, Y. Involvement of human papillomaviruses in cervical cancer. Front. Microbiol.9, 10.3389/fmicb.2018.02896 (2018). PubMed PMC

zur Hausen, H. Papillomaviruses in the causation of human cancers — a brief historical account. Virology384, 260–265 (2009). PubMed

de Martel, C., Plummer, M., Vignat, J. & Franceschi, S. Worldwide burden of cancer attributable to HPV by site, country and HPV type. Int. J. Cancer141, 664–670 (2017). PubMed PMC

Lehtinen, M. & Dillner, J. Clinical trials of human papillomavirus vaccines and beyond. Nat. Rev. Clin. Oncol.10, 400–410 (2013). PubMed

Doorbar, J. et al. The biology and life-cycle of human papillomaviruses. Vaccine30, F55–F70 (2012). PubMed

Doorbar, J., Egawa, N., Griffin, H., Kranjec, C. & Murakami, I. Human papillomavirus molecular biology and disease association. Rev. Med. Virol.25, 2–23 (2015). PubMed PMC

Baker, T. S. et al. Structures of bovine and human papillomaviruses. Analysis by cryoelectron microscopy and three-dimensional image reconstruction. Biophys. J.6, 1445–1456 (1991). PubMed PMC

Finch, J. T. & Klug, A. The structure of viruses of the papilloma-polyoma type: III. Structure of rabbit papilloma virus with an appendix on the topography of contrast in negative-staining for electron-microscopy. J. Mol. Biol.13, 1–IN7 (1965). PubMed

Klug, A. & Finch, J. T. Structure of viruses of the papilloma-polyoma type: I. Human wart virus. J. Mol. Biol.11, 403–IN444 (1965). PubMed

Kirnbauer, R., Booy, F., Cheng, N., Lowy, D. R. & Schiller, J. T. Papillomavirus L1 major capsid protein self-assembles into virus-like particles that are highly immunogenic. Proc. Natl. Acad. Sci. USA89, 12180–12184 (1992). PubMed PMC

Buck, C. B. et al. Arrangement of L2 within the papillomavirus capsid. J. Virol.82, 5190–5197 (2008). PubMed PMC

Guan, J. et al. Cryoelectron microscopy maps of human papillomavirus 16 reveal L2 densities and heparin binding site. Structure25, 253–263 (2017). PubMed

Kondo, K. et al. Neutralization of HPV16, 18, 31, and 58 pseudovirions with antisera induced by immunizing rabbits with synthetic peptides representing segments of the HPV16 minor capsid protein L2 surface region. Virology358, 266–272 (2007). PubMed

Goetschius, D. J. et al. High resolution cryo EM analysis of HPV16 identifies minor structural protein L2 and describes capsid flexibility. Sci. Rep.11, 3498 (2021). PubMed PMC

Buck, C. B. et al. Maturation of papillomavirus capsids. J. Virol.79, 2839–2846 (2005). PubMed PMC

Cardone, G. et al. Maturation of the human papillomavirus 16 capsid. MBio5, 10.1128/mbio.01104-01114 (2014). PubMed PMC

Li, M., Beard, P., Estes, P. A., Lyon, M. K. & Garcea, R. L. Intercapsomeric disulfide bonds in papillomavirus assembly and disassembly. J. Virol.72, 2160–2167 (1998). PubMed PMC

Modis, Y., Trus, B. L. & Harrison, S. C. Atomic model of the papillomavirus capsid. EMBO J.21, 4754–4762 (2002). PubMed PMC

Sapp, M., Volpers, C., Müller, M. & Streeck, R. E. Organization of the major and minor capsid proteins in human papillomavirus type 33 virus-like particles. J. Gen. Virol.76, 2407–2412 (1995). PubMed

Buck, C. B., Pastrana, D. V., Lowy, D. R. & Schiller, J. T. Efficient intracellular assembly of papillomaviral vectors. J. Virol.78, 751–757 (2004). PubMed PMC

Buck, C. B. & Thompson, C. D. Production of papillomavirus-based gene transfer vectors. Curr. Protoc. Cell Biol.37, 10.1002/0471143030.cb2601s37 (2007). PubMed

Giroglou, T., Florin, L., Schäfer, F., Streeck, R. E. & Sapp, M. Human papillomavirus infection requires cell surface heparan sulfate. J. Virol.75, 1565–1570 (2001). PubMed PMC

Johnson, K. M. et al. Role of heparan sulfate in attachment to and infection of the murine female genital tract by human papillomavirus. J. Virol.83, 2067–2074 (2009). PubMed PMC

Dasgupta, J. et al. Structural basis of oligosaccharide receptor recognition by human papillomavirus. J. Biol. Chem.286, 2617–2624 (2011). PubMed PMC

Richards, K. F., Bienkowska-Haba, M., Dasgupta, J., Chen, X. S. & Sapp, M. Multiple heparan sulfate binding site engagements are required for the infectious entry of human papillomavirus type 16. J. Virol.87, 11426–11437 (2013). PubMed PMC

Cerqueira, C. et al. Heparin increases the infectivity of human papillomavirus type 16 independent of cell surface proteoglycans and induces L1 epitope exposure. Cell. Microbiol.15, 1818–1836 (2013). PubMed PMC

Cerqueira, C., Samperio Ventayol, P., Vogeley, C. & Schelhaas, M. Kallikrein-8 proteolytically processes human papillomaviruses in the extracellular space to facilitate entry into host cells. J. Virol.89, 7038–7052 (2015). PubMed PMC

Bienkowska-Haba, M., Patel, H. D. & Sapp, M. Target cell cyclophilins facilitate human papillomavirus type 16 infection. PLOS Pathog.5, e1000524 (2009). PubMed PMC

Bronnimann, M. P. et al. Furin cleavage of L2 during papillomavirus infection: minimal dependence on cyclophilins. J. Virol.90, 6224–6234 (2016). PubMed PMC

Day, P. M., Lowy, D. R. & Schiller, J. T. Heparan sulfate-independent cell binding and infection with furin-precleaved papillomavirus capsids. J. Virol.82, 12565–12568 (2008). PubMed PMC

Richards, R. M., Lowy, D. R., Schiller, J. T. & Day, P. M. Cleavage of the papillomavirus minor capsid protein, L2, at a furin consensus site is necessary for infection. Proc. Natl. Acad. Sci. USA103, 1522–1527 (2006). PubMed PMC

Selinka, H.-C. et al. Inhibition of transfer to secondary receptors by heparan sulfate-binding drug or antibody induces noninfectious uptake of human papillomavirus. J. Virol.81, 10970–10980 (2007). PubMed PMC

Surviladze, Z., Dziduszko, A. & Ozbun, M. A. Essential roles for soluble virion-associated heparan sulfonated proteoglycans and growth factors in human papillomavirus infections. PLOS Pathog.8, e1002519 (2012). PubMed PMC

Raff, A. B. et al. The evolving field of human papillomavirus receptor research: a review of binding and entry. J. Virol.87, 6062–6072 (2013). PubMed PMC

Mikuličić, S. et al. ADAM17-dependent signaling is required for oncogenic human papillomavirus entry platform assembly. ELife8, e44345 (2019). PubMed PMC

Scheffer, KonstanzeD. et al. Tetraspanin CD151 mediates papillomavirus type 16 endocytosis. J. Virol.87, 3435–3446 (2013). PubMed PMC

Schelhaas, M. et al. Entry of human papillomavirus type 16 by actin-dependent, clathrin- and lipid raft-independent endocytosis. PLOS Pathog.8, e1002657 (2012). PubMed PMC

Spoden, G. et al. Human papillomavirus types 16, 18, and 31 share similar endocytic requirements for entry. J. Virol.87, 7765–7773 (2013). PubMed PMC

Day, P. M., Thompson, C. D., Schowalter, R. M., Lowy, D. R. & Schiller, J. T. Identification of a role for the trans-Golgi network in human papillomavirus 16 pseudovirus infection. J. Virol.87, 3862–3870 (2013). PubMed PMC

Lipovsky, A. et al. Genome-wide siRNA screen identifies the retromer as a cellular entry factor for human papillomavirus. Proc. Natl. Acad. Sci. USA110, 7452–7457 (2013). PubMed PMC

Aydin, I. et al. Large scale RNAi reveals the requirement of nuclear envelope breakdown for nuclear import of human papillomaviruses. PLOS Pathog.10, e1004162 (2014). PubMed PMC

Pyeon, D., Pearce, S. M., Lank, S. M., Ahlquist, P. & Lambert, P. F. Establishment of human papillomavirus infection requires cell cycle progression. PLOS Pathog.5, e1000318 (2009). PubMed PMC

Ortega-Esteban, A. et al. Mechanics of viral chromatin reveals the pressurization of human adenovirus. ACS Nano9, 10826–10833 (2015). PubMed

Roos, W. H. et al. Mechanics of bacteriophage maturation. Proc. Natl. Acad. Sci. USA109, 2342–2347 (2012). PubMed PMC

Bruinsma, R. F., Wuite, G. J. L. & Roos, W. H. Physics of viral dynamics. Nat. Rev. Phys.3, 76–91 (2021). PubMed PMC

Dülfer, J., Kadek, A., Kopicki, J-D., Krichel, B. & Uetrecht, C. In Advances in Virus Research (ed Rey FA). Academic Press (2019). PubMed

Dülfer, J. et al. Glycan-induced protein dynamics in human morovirus P dimers depend on virus strain and deamidation status. Molecules26, 2125 (2021). PubMed PMC

Humphries, D. E. & Silbert, J. E. Chlorate: A reversible inhibitor of proteoglycan sulfation. Biochem. Biophys. Res. Commun.154, 365–371 (1988). PubMed

Safaiyan, F. et al. Selective effects of sodium chlorate treatment on the sulfation of heparan sulfate. J. Biol. Chem.274, 36267–36273 (1999). PubMed

Knappe, M. et al. Surface-exposed amino acid residues of HPV16 L1 protein mediating interaction with cell surface heparan sulfate. J. Biol. Chem.282, 27913–27922 (2007). PubMed

Akhtar, J. & Shukla, D. Viral entry mechanisms: cellular and viral mediators of herpes simplex virus entry. FEBS J.276, 7228–7236 (2009). PubMed PMC

Guo, Y. & Roos, W. H. AFM Nanoindentation Experiments on Protein Shells: A Protocol. Methods Mol. Biol.1886, 243–257 (2019). PubMed

Roos, W. H., Bruinsma, R. & Wuite, G. J. L. Physical virology. Nat. Phys.6, 733–743 (2010).

Gambhira, R. et al. A protective and broadly cross-neutralizing epitope of human papillomavirus L2. J. Virol.81, 13927–13931 (2007). PubMed PMC

Samperio Ventayol, P. & Schelhaas, M. Fluorescently labeled human papillomavirus pseudovirions for use in virus entry experiments. Curr. Protoc. Microbiol.37, 14B.14.11–14B.14.22 (2015). PubMed

Becker, M., Greune, L., Schmidt, M. A. & Schelhaas, M. Extracellular conformational changes in the capsid of human papillomaviruses contribute to asynchronous uptake into host cells. J. Virol.92, 10.1128/jvi.02106-02117 (2018). PubMed PMC

Kadek, A. et al. Interdomain electron transfer in cellobiose dehydrogenase is governed by surface electrostatics. Biochim. Biophys. Acta Gen. Subj.1861, 157–167 (2017). PubMed

Sowole, M. A. & Konermann, L. Effects of protein–ligand interactions on hydrogen/deuterium exchange kinetics: Canonical and noncanonical scenarios. Anal. Chem.86, 6715–6722 (2014). PubMed

Breiner, B. et al. Refolding and in vitro characterization of human papillomavirus 16 minor capsid protein L2. Biol. Chem.400, 513–522 (2019). PubMed

Oh, C., Buckley, P. M., Choi, J., Hierro, A. & DiMaio, D. Sequence-independent activity of a predicted long disordered segment of the human papillomavirus type 16 L2 capsid protein during virus entry. Proc. Natl. Acad. Sci. USA120, e2307721120 (2023). PubMed PMC

Matos, P. M., Andreu, D., Santos, N. C. & Gutiérrez-Gallego, R. Structural requirements of glycosaminoglycans for their interaction with HIV-1 envelope glycoprotein gp120. Arch. Virol.159, 555–560 (2014). PubMed

Xie, Q. et al. The 2.8 Å electron microscopy structure of adeno-associated virus-DJ bound by a heparinoid pentasaccharide. Mol. Ther. Methods Clin. Dev.5, 1–12 (2017). PubMed PMC

Zhang, F. et al. Characterization of interactions between heparin/glycosaminoglycan and adeno-associated virus. Biochemistry52, 6275–6285 (2013). PubMed PMC

Bishop, B., Dasgupta, J. & Chen, X. S. Structure-based engineering of papillomavirus major capsid L1: controlling particle assembly. Virol. J.4, 3 (2007). PubMed PMC

Chen, X. S., Casini, G., Harrison, S. C. & Garcea, R. L. Papillomavirus capsid protein expression in Escherichia coli: purification and assembly of HPV11 and HPV16 L111Edited by M. Yaniv. J. Mol. Biol.307, 173–182 (2001). PubMed

Wolf, M., Garcea, R. L., Grigorieff, N. & Harrison, S. C. Subunit interactions in bovine papillomavirus. Proc. Natl. Acad. Sci. USA107, 6298–6303 (2010). PubMed PMC

Helenius, A. Virus entry and uncoating. Fields Virol.1, 99 (2007).

Boukamp, P. et al. Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J. Cell Biol.106, 761–771 (1988). PubMed PMC

Pastrana, D. V. et al. Reactivity of human sera in a sensitive, high-throughput pseudovirus-based papillomavirus neutralization assay for HPV16 and HPV18. Virology321, 205–216 (2004). PubMed

Buck, C. B. et al. Carrageenan is a potent inhibitor of papillomavirus infection. PLOS Pathog.2, e69 (2006). PubMed PMC

Leder, C., Kleinschmidt, J. A., Wiethe, C. & Müller, M. Enhancement of capsid gene expression: preparing the human papillomavirus type 16 major structural gene L1 for DNA vaccination purposes. J. Virol.75, 9201–9209 (2001). PubMed PMC

Hafezi, W. et al. Entry of herpes simplex virus type 1 (HSV-1) into the distal axons of trigeminal neurons favors the onset of nonproductive, silent infection. PLOS Pathog.8, e1002679 (2012). PubMed PMC

Engel, S. et al. Role of endosomes in simian virus 40 entry and infection. J. Virol.85, 4198–4211 (2011). PubMed PMC

Wittrup, A. et al. ScFv Antibody-induced translocation of cell-surface heparan sulfate proteoglycan to endocytic vesicles. J. Biol. Chem.284, 32959–32967 (2009). PubMed PMC

Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods9, 676–682 (2012). PubMed PMC

Poliakov, A., Jardine, P. & Prevelige, P. E. Hydrogen/deuterium exchange on protein solutions containing nucleic acids: utility of protamine sulfate. Rapid Commun. Mass Spectrom.22, 2423–2428 (2008). PubMed

Wang, L., Pan, H. & Smith, D. L. Hydrogen exchange-mass spectrometry: Optimization of digestion conditions *. Mol. Cell. Proteom.1, 132–138 (2002). PubMed

Majumdar, R. et al. Minimizing carry-over in an online pepsin digestion system used for the H/D exchange mass spectrometric analysis of an IgG1 monoclonal antibody. J. Am. Soc. Mass Spectrom.23, 2140–2148 (2012). PubMed

Weis, D. D., Wales, T. E., Engen, J. R., Hotchko, M. & Ten Eyck, L. F. Identification and characterization of EX1 kinetics in H/D exchange mass spectrometry by peak width analysis. J. Am. Soc. Mass Spectrom.17, 1498–1509 (2006). PubMed

Kavan, D. & Man, P. MSTools—Web based application for visualization and presentation of HXMS data. Int. J. Mass Spectrom.302, 53–58 (2011).

Nentwich S, Kádek A. HDX-MS dataset for: “Glycan-induced structural activation softens the human papillomavirus capsid for entry through reduction of intercapsomere flexibility”. ZENODO. V1 10.5281/zenodo.10534050 (2024). PubMed PMC

Christensen, N. D. et al. Surface conformational and linear epitopes on HPV-16 and HPV-18 L1 virus-like particles as defined by monoclonal antibodies. Virology223, 174–184 (1996). PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...