Post hoc analysis of ADAMANT, a phase 2 clinical trial of active tau immunotherapy with AADvac1 in patients with Alzheimer's disease, positive for plasma p-tau217
Language English Country England, Great Britain Media electronic
Document type Journal Article, Clinical Trial, Phase II, Randomized Controlled Trial, Multicenter Study
PubMed
39580468
PubMed Central
PMC11585249
DOI
10.1186/s13195-024-01620-7
PII: 10.1186/s13195-024-01620-7
Knihovny.cz E-resources
- Keywords
- AADvac1, Alzheimer’s disease, Glial fibrillary acidic protein (GFAP), Immunotherapy, Neurofilament light (NfL), Plasma biomarkers, Plasma phosphorylated tau 217, Tau,
- MeSH
- Immunotherapy, Active methods MeSH
- Alzheimer Disease * blood therapy immunology MeSH
- Biomarkers blood MeSH
- Double-Blind Method MeSH
- Middle Aged MeSH
- Humans MeSH
- tau Proteins * blood MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Mental Status and Dementia Tests MeSH
- Treatment Outcome MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Clinical Trial, Phase II MeSH
- Multicenter Study MeSH
- Randomized Controlled Trial MeSH
- Names of Substances
- Biomarkers MeSH
- MAPT protein, human MeSH Browser
- tau Proteins * MeSH
BACKGROUND: The spread of tau pathology closely correlates with the disease course and cognitive decline in Alzheimer's disease (AD). Tau-targeting immunotherapies are being developed to stop the spread of tau pathology and thus halt disease progression. In this post hoc analysis of the ADAMANT clinical trial, we examined the performance of AADvac1, an active immunotherapy targeting the microtubule-binding region (MTBR) of tau, in a subgroup of participants with elevated plasma p-tau217, indicating AD-related neuropathological changes. METHODS: ADAMANT was a 24-month, randomized, placebo-controlled, parallel-group, double-blinded, multicenter, phase 2 clinical trial in subjects with mild AD. The trial participants were randomized 3:2 to receive six doses of AADvac1 or placebo at 4-week intervals, followed by five booster doses at 14-week intervals. The primary outcome was safety. The secondary outcomes were the Clinical Dementia Rating-Sum of Boxes (CDR-SB), the Alzheimer's Disease Cooperative Study - Activities of Daily Living score for Mild Cognitive Impairment 18-item version (ADCS-ADL-MCI-18), and immunogenicity. Volumetric MRI, plasma neurofilament light (NfL), and glial fibrillary acidic protein (GFAP) were exploratory outcomes. The inclusion criterion for this post-hoc analysis was a baseline plasma p-tau217 level above the cutoff for AD. RESULTS: Among 196 ADAMANT participants, 137 were positive for plasma p-tau217 (mean age 71.4 years, 59% women). AADvac1 was safe and well tolerated in this subgroup. AADvac1 reduced the rate of accumulation of log-plasma NfL by 56% and that of GFAP by 73%. The treatment differences in the CDR-SB and ADCS-ADL-MCI-18 scores favored AADvac1 but were not statistically significant. AADvac1 had no effect on whole-brain volume but nonsignificantly reduced the loss of brain cortical tissue in several regions. Importantly, the impact on the study outcomes was more pronounced in participants with higher anti-tau antibody levels. CONCLUSIONS: These results suggest that AADvac1 tau immunotherapy can reduce plasma biomarkers of neurodegeneration and neuroinflammation. These findings and possible observations on brain atrophy and cognition are hypothesis-generating and warrant further evaluation in a larger clinical trial. TRIAL REGISTRATION: EudraCT 2015-000630-30 (primary) and NCT02579252.
ADx NeuroSciences NV Technologiepark 6 9052 Ghent Belgium
Axon Neuroscience R and D Services SE Dvorakovo Nabr 10 81102 Bratislava Slovakia
Axon Neuroscience SE 4 Arch Makariou and Kalogreon 6016 Larnaca Cyprus
Theme Inflammation and Aging Karolinska University Hospital 141 86 Stockholm Sweden
See more in PubMed
Whitwell JL, Dickson DW, Murray ME, et al. Neuroimaging correlates of pathologically defined subtypes of Alzheimer’s disease: a case-control study. Lancet Neurol. 2012;11(10):868–77. 10.1016/S1474-4422(12)70200-4. PubMed PMC
Nelson PT, Alafuzoff I, Bigio EH, et al. Correlation of Alzheimer disease neuropathologic changes with cognitive status: a review of the literature. J Neuropathol Exp Neurol. 2012;71(5):362–81. 10.1097/NEN.0b013e31825018f7. PubMed PMC
Murray ME, Lowe VJ, Graff-Radford NR, et al. Clinicopathologic and 11C-Pittsburgh compound B implications of Thal amyloid phase across the Alzheimer's disease spectrum. Brain: a journal of neurology. 2015;138(Pt 5):1370–1381. 10.1093/brain/awv050 PubMed PMC
La Joie R, Visani AV, Baker SL, et al. Prospective longitudinal atrophy in Alzheimer's disease correlates with the intensity and topography of baseline tau-PET. Sci Transl Med. 2020;12(524). 10.1126/scitranslmed.aau5732 PubMed PMC
Mattsson-Carlgren N, Leuzy A, Janelidze S, et al. The implications of different approaches to define AT(N) in Alzheimer disease. Neurology. 2020;94(21):e2233–44. 10.1212/WNL.0000000000009485. PubMed PMC
Novak P, Schmidt R, Kontsekova E, et al. FUNDAMANT: an interventional 72-week phase 1 follow-up study of AADvac1, an active immunotherapy against tau protein pathology in Alzheimer’s disease. Alzheimers Res Ther. 2018;10(1):108. 10.1186/s13195-018-0436-1. PubMed PMC
Kontsekova E, Zilka N, Kovacech B, Novak P, Novak M. First-in-man tau vaccine targeting structural determinants essential for pathological tau-tau interaction reduces tau oligomerisation and neurofibrillary degeneration in an Alzheimer’s disease model. Alzheimers Res Ther. 2014;6(4):44. 10.1186/alzrt278. PubMed PMC
Novak P, Kovacech B, Katina S, et al. ADAMANT: a placebo-controlled randomized phase 2 study of AADvac1, an active immunotherapy against pathological tau in Alzheimer’s disease. Nat Aging. 2021;1(6):521–34. 10.1038/s43587-021-00070-2. PubMed
Quiroz YT, Zetterberg H, Reiman EM, et al. Plasma neurofilament light chain in the presenilin 1 E280A autosomal dominant Alzheimer’s disease kindred: a cross-sectional and longitudinal cohort study. Lancet Neurol. 2020;19(6):513–21. 10.1016/S1474-4422(20)30137-X. PubMed PMC
Aschenbrenner AJ, Gordon BA, Fagan AM, et al. Neurofilament Light Predicts Decline in Attention but Not Episodic Memory in Preclinical Alzheimer’s Disease. J Alzheimers Dis. 2020;74(4):1119–29. 10.3233/JAD-200018. PubMed PMC
Mattsson N, Cullen NC, Andreasson U, Zetterberg H, Blennow K. Association Between Longitudinal Plasma Neurofilament Light and Neurodegeneration in Patients With Alzheimer Disease. JAMA Neurol. 2019;76(7):791–9. 10.1001/jamaneurol.2019.0765. PubMed PMC
Ashton NJ, Leuzy A, Lim YM, et al. Increased plasma neurofilament light chain concentration correlates with severity of post-mortem neurofibrillary tangle pathology and neurodegeneration. Acta Neuropathol Commun. 2019;7(1):5. 10.1186/s40478-018-0649-3. PubMed PMC
Strydom A, Heslegrave A, Startin CM, et al. Neurofilament light as a blood biomarker for neurodegeneration in Down syndrome. Alzheimers Res Ther. 2018;10(1):39. 10.1186/s13195-018-0367-x. PubMed PMC
Weston PSJ, Poole T, Ryan NS, et al. Serum neurofilament light in familial Alzheimer disease: A marker of early neurodegeneration. Neurology. 2017;89(21):2167–75. 10.1212/WNL.0000000000004667. PubMed PMC
Mattsson N, Andreasson U, Zetterberg H, Blennow K, Alzheimer's Disease Neuroimaging I. Association of Plasma Neurofilament Light With Neurodegeneration in Patients With Alzheimer Disease. JAMA Neurol. 2017;74(5):557–566. 10.1001/jamaneurol.2016.6117 PubMed PMC
Jack CR Jr, Bennett DA, Blennow K, et al. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimer’s Dementia. 2018;14(4):535–62. 10.1016/j.jalz.2018.02.018. PubMed PMC
Blennow K, Galasko D, Perneczky R, et al. The potential clinical value of plasma biomarkers in Alzheimer’s disease. Alzheimer’s Dementia. 2023. 10.1002/alz.13455. PubMed
Mila-Aloma M, Ashton NJ, Shekari M, et al. Plasma p-tau231 and p-tau217 as state markers of amyloid-beta pathology in preclinical Alzheimer’s disease. Nat Med. 2022;28(9):1797–801. 10.1038/s41591-022-01925-w. PubMed PMC
Karikari TK, Emersic A, Vrillon A, et al. Head-to-head comparison of clinical performance of CSF phospho-tau T181 and T217 biomarkers for Alzheimer’s disease diagnosis. Alzheimer’s Dementia. 2021;17(5):755–67. 10.1002/alz.12236. PubMed PMC
Bayoumy S, Verberk IMW, den Dulk B, et al. Clinical and analytical comparison of six Simoa assays for plasma P-tau isoforms P-tau181, P-tau217, and P-tau231. Alzheimers Res Ther. 2021;13(1):198. 10.1186/s13195-021-00939-9. PubMed PMC
Ashton NJ, Puig-Pijoan A, Mila-Aloma M, et al. Plasma and CSF biomarkers in a memory clinic: Head-to-head comparison of phosphorylated tau immunoassays. Alzheimer’s Dementia. 2023;19(5):1913–24. 10.1002/alz.12841. PubMed PMC
Janelidze S, Bali D, Ashton NJ, et al. Head-to-head comparison of 10 plasma phospho-tau assays in prodromal Alzheimer’s disease. Brain : a journal of neurology. 2023;146(4):1592–601. 10.1093/brain/awac333. PubMed PMC
Mattsson-Carlgren N, Andersson E, Janelidze S, et al. Abeta deposition is associated with increases in soluble and phosphorylated tau that precede a positive Tau PET in Alzheimer's disease. Sci Adv. 2020;6(16):eaaz2387. 10.1126/sciadv.aaz2387 PubMed PMC
Barthelemy NR, Li Y, Joseph-Mathurin N, et al. A soluble phosphorylated tau signature links tau, amyloid and the evolution of stages of dominantly inherited Alzheimer’s disease. Nat Med. 2020;26(3):398–407. 10.1038/s41591-020-0781-z. PubMed PMC
Janelidze S, Berron D, Smith R, et al. Associations of Plasma Phospho-Tau217 Levels With Tau Positron Emission Tomography in Early Alzheimer Disease. JAMA Neurol. 2021;78(2):149–56. 10.1001/jamaneurol.2020.4201. PubMed PMC
Palmqvist S, Janelidze S, Quiroz YT, et al. Discriminative Accuracy of Plasma Phospho-tau217 for Alzheimer Disease vs Other Neurodegenerative Disorders. JAMA. 2020;324(8):772–81. 10.1001/jama.2020.12134. PubMed PMC
Therriault J, Pascoal TA, Lussier FZ, et al. Biomarker modeling of Alzheimer’s disease using PET-based Braak staging. Nat Aging. 2022;2(6):526–35. 10.1038/s43587-022-00204-0. PubMed PMC
VandeVrede L, La Joie R, Thijssen EH, et al. Evaluation of Plasma Phosphorylated Tau217 for Differentiation Between Alzheimer Disease and Frontotemporal Lobar Degeneration Subtypes Among Patients With Corticobasal Syndrome. JAMA Neurol. 2023;80(5):495–505. 10.1001/jamaneurol.2023.0488. PubMed PMC
Mattsson-Carlgren N, Salvado G, Ashton NJ, et al. Prediction of Longitudinal Cognitive Decline in Preclinical Alzheimer Disease Using Plasma Biomarkers. JAMA Neurol. 2023;80(4):360–9. 10.1001/jamaneurol.2022.5272. PubMed PMC
McKhann GM, Knopman DS, Chertkow H, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dementia. 2011;7(3):263–9. 10.1016/j.jalz.2011.03.005. PubMed PMC
Vanbrabant J, De Meyer S, Van Loo M, et al. Performance of plasma pTau181 and pTau217 measured with fully automated LUMIPULSE G prototype immunoassays. Alzheimers Dement. 2023;19(S15):e079533. 10.1002/alz.079533.
Lambrechts C, Van Loo M, Vanbrabant J, et al. Performance of optimized prototype LUMIPULSE G immunoassays for plasma pTau181 and pTau217. Alzheimers Dement. 2023;19(S24):e082944. 10.1002/alz.082944.
Ashton NJ, Keshavan A, Grötschel L, et al. 16th Clinical Trials on Alzheimer’s Disease (CTAD) Boston, MA (USA) October 24–27, 2023: Posters - LP048 "The Alzheimer’s Association Global Biomarker Standardisation Consortium (Gbsc) Plasma Phospho-Tau Round Robin Study.". The Journal of Prevention of Alzheimer's Disease. 2023;10(1):56–240. 10.14283/jpad.2022.130
Mattsson-Carlgren N, Collij LE, Stomrud E, et al. Plasma Biomarker Strategy for Selecting Patients With Alzheimer Disease for Antiamyloid Immunotherapies. JAMA Neurol. 2024;81(1):69–78. 10.1001/jamaneurol.2023.4596. PubMed PMC
Chiotis K, Johansson C, Rodriguez-Vieitez E, et al. Tracking reactive astrogliosis in autosomal dominant and sporadic Alzheimer’s disease with multi-modal PET and plasma GFAP. Mol Neurodegener. 2023;18(1):60. 10.1186/s13024-023-00647-y. PubMed PMC
Benedet AL, Mila-Aloma M, Vrillon A, et al. Differences Between Plasma and Cerebrospinal Fluid Glial Fibrillary Acidic Protein Levels Across the Alzheimer Disease Continuum. JAMA Neurol. 2021;78(12):1471–83. 10.1001/jamaneurol.2021.3671. PubMed PMC
Salvado G, Ossenkoppele R, Ashton NJ, et al. Specific associations between plasma biomarkers and postmortem amyloid plaque and tau tangle loads. EMBO Mol Med. 2023;15(5):e17123. 10.15252/emmm.202217123. PubMed PMC
Aguillon D, Langella S, Chen Y, et al. Plasma p-tau217 predicts in vivo brain pathology and cognition in autosomal dominant Alzheimer’s disease. Alzheimer’s Dementia. 2023;19(6):2585–94. 10.1002/alz.12906. PubMed PMC
Mundada NS, Rojas JC, Vandevrede L, et al. Head-to-head comparison between plasma p-tau217 and flortaucipir-PET in amyloid-positive patients with cognitive impairment. Alzheimers Res Ther. 2023;15(1):157. 10.1186/s13195-023-01302-w. PubMed PMC
Therriault J, Servaes S, Tissot C, et al. Equivalence of plasma p-tau217 with cerebrospinal fluid in the diagnosis of Alzheimer’s disease. Alzheimer’s Dementia. 2023;19(11):4967–77. 10.1002/alz.13026. PubMed PMC
Brum WS, Cullen NC, Janelidze S, et al. A two-step workflow based on plasma p-tau217 to screen for amyloid beta positivity with further confirmatory testing only in uncertain cases. Nat Aging. 2023;3(9):1079–90. 10.1038/s43587-023-00471-5. PubMed PMC
Sims JR, Zimmer JA, Evans CD, et al. Donanemab in Early Symptomatic Alzheimer Disease: The TRAILBLAZER-ALZ 2 Randomized Clinical Trial. JAMA. 2023;330(6):512–27. 10.1001/jama.2023.13239. PubMed PMC
Shulman M, Kong J, O’Gorman J, et al. TANGO: a placebo-controlled randomized phase 2 study of efficacy and safety of the anti-tau monoclonal antibody gosuranemab in early Alzheimer’s disease. Nat Aging. 2023. 10.1038/s43587-023-00523-w. PubMed PMC
Monteiro C, Toth B, Brunstein F, et al. Randomized Phase II Study of the Safety and Efficacy of Semorinemab in Participants With Mild-to-Moderate Alzheimer Disease: Lauriet. Neurology. 2023;101(14):e1391–401. 10.1212/WNL.0000000000207663. PubMed PMC
Teng E, Manser PT, Pickthorn K, et al. Safety and Efficacy of Semorinemab in Individuals With Prodromal to Mild Alzheimer Disease: A Randomized Clinical Trial. JAMA Neurol. 2022;79(8):758–67. 10.1001/jamaneurol.2022.1375. PubMed PMC
Florian H, Wang D, Arnold SE, et al. Tilavonemab in early Alzheimer’s disease: results from a phase 2, randomized, double-blind study. Brain : a journal of neurology. 2023;146(6):2275–84. 10.1093/brain/awad024. PubMed PMC
Willis BA, Lo AC, Dage JL, et al. Safety, Tolerability, and Pharmacokinetics of Zagotenemab in Participants with Symptomatic Alzheimer’s Disease: A Phase I Clinical Trial. J Alzheimers Dis Rep. 2023;7(1):1015–24. 10.3233/ADR-230012. PubMed PMC
Jabbari E, Duff KE. Tau-targeting antibody therapies: too late, wrong epitope or wrong target? Nat Med. 2021;27(8):1341–2. 10.1038/s41591-021-01465-9. PubMed
Salvado G, Horie K, Barthelemy NR, et al. Disease staging of Alzheimer's disease using a CSF-based biomarker model. Nat Aging 2023; online ahead of print. 10.1038/s43587-024-00599-y PubMed PMC
Horie K, Salvado G, Barthelemy NR, et al. CSF MTBR-tau243 is a specific biomarker of tau tangle pathology in Alzheimer’s disease. Nat Med. 2023;29(8):1954–63. 10.1038/s41591-023-02443-z. PubMed PMC
Weisova P, Cehlar O, Skrabana R, et al. Therapeutic antibody targeting microtubule-binding domain prevents neuronal internalization of extracellular tau via masking neuron surface proteoglycans. Acta Neuropathol Commun. 2019;7(1):129. 10.1186/s40478-019-0770-y. PubMed PMC
Zilkova M, Nolle A, Kovacech B, et al. Humanized tau antibodies promote tau uptake by human microglia without any increase of inflammation. Acta Neuropathol Commun. 2020;8(1):74. 10.1186/s40478-020-00948-z. PubMed PMC
Novak P, Zilka N, Zilkova M, et al. AADvac1, an Active Immunotherapy for Alzheimer’s Disease and Non Alzheimer Tauopathies: An Overview of Preclinical and Clinical Development. J Prev Alzheimers Dis. 2019;6(1):63–9. 10.14283/jpad.2018.45. PubMed
Novak P, Schmidt R, Kontsekova E, et al. Safety and immunogenicity of the tau vaccine AADvac1 in patients with Alzheimer’s disease: a randomised, double-blind, placebo-controlled, phase 1 trial. Lancet Neurol. 2017;16(2):123–34. 10.1016/S1474-4422(16)30331-3. PubMed
Moscoso A, Grothe MJ, Ashton NJ, et al. Longitudinal Associations of Blood Phosphorylated Tau181 and Neurofilament Light Chain With Neurodegeneration in Alzheimer Disease. JAMA Neurol. 2021;78(4):396–406. 10.1001/jamaneurol.2020.4986. PubMed PMC
van Dyck CH, Swanson CJ, Aisen P, et al. Lecanemab in Early Alzheimer’s Disease. N Engl J Med. 2023;388(1):9–21. 10.1056/NEJMoa2212948. PubMed
Pontecorvo MJ, Lu M, Burnham SC, et al. Association of Donanemab Treatment With Exploratory Plasma Biomarkers in Early Symptomatic Alzheimer Disease: A Secondary Analysis of the TRAILBLAZER-ALZ Randomized Clinical Trial. JAMA Neurol. 2022;79(12):1250–9. 10.1001/jamaneurol.2022.3392. PubMed PMC
Ferreira PCL, Therriault J, Tissot C, et al. Plasma p-tau231 and p-tau217 inform on tau tangles aggregation in cognitively impaired individuals. Alzheimer’s Dementia. 2023;19(10):4463–74. 10.1002/alz.13393. PubMed PMC
Bermudez C, Graff-Radford J, Syrjanen JA, et al. Plasma biomarkers for prediction of Alzheimer’s disease neuropathologic change. Acta Neuropathol. 2023;146(1):13–29. 10.1007/s00401-023-02594-w. PubMed PMC
Yang Z, Sreenivasan K, Toledano Strom EN, et al. Clinical and biological relevance of glial fibrillary acidic protein in Alzheimer’s disease. Alzheimers Res Ther. 2023;15(1):190. 10.1186/s13195-023-01340-4. PubMed PMC
Ayton S. Brain volume loss due to donanemab. Eur J Neurol. 2021;28(9):e67–8. 10.1111/ene.15007. PubMed
Decourt B, Noorda K, Noorda K, Shi J, Sabbagh MN. Review of Advanced Drug Trials Focusing on the Reduction of Brain Beta-Amyloid to Prevent and Treat Dementia. J Exp Pharmacol. 2022;14:331–52. 10.2147/JEP.S265626. PubMed PMC
Hansson O, Edelmayer RM, Boxer AL, et al. The Alzheimer’s Association appropriate use recommendations for blood biomarkers in Alzheimer’s disease. Alzheimer’s Dementia. 2022;18:2669–86. 10.1002/alz.12756. PubMed PMC
Pascoal T, Rohden F, Ferreira P, Bellaver B, Ferrari-Souza JP, Aguzzoli C, et al. Glial reactivity is linked to synaptic dysfunction across the aging and Alzheimer’s disease spectrum. Res Sq. 2024. 10.21203/rs.3.rs-4782732/v1. PubMed PMC
ClinicalTrials.gov
NCT02579252