Associations Among Estrogens, the Gut Microbiome and Osteoporosis
Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
LQ200202105
Czech Academy of Sciences under the Lumina quaeruntur fellowship
CZ.02.01.01/00/22_008/0004597
Ministry of Education, Youth and Sports of the Czech Republic under the Johannes Amos Comenius Program
RVO 00023728
Charles University Project SVV 260 523
PubMed
39585466
PubMed Central
PMC11588883
DOI
10.1007/s11914-024-00896-w
PII: 10.1007/s11914-024-00896-w
Knihovny.cz E-zdroje
- Klíčová slova
- Aging, Estrogen, Inflammation, Leaky gut, Microbiota, Osteoporosis, Ovariectomy,
- MeSH
- estrogeny * MeSH
- lidé MeSH
- osteoporóza MeSH
- postmenopauzální osteoporóza * MeSH
- remodelace kosti * MeSH
- stárnutí buněk MeSH
- střevní mikroflóra * MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- estrogeny * MeSH
PURPOSE OF THE REVIEW: The purpose of this Review was to summarize the evidence on the associations among estrogen status, cellular senescence, the gut microbiome and osteoporosis. RECENT FINDINGS: Indicate that osteoporosis is a global public health problem that impacts individuals and society. In postmenopausal women, a decrease in estrogen levels is associated with a decrease in gut microbial diversity and richness, as well as increased permeability of the gut barrier, which allows for low-grade inflammation. The direct effects of estrogen status on the association between bone and the gut microbiome were observed in untreated and treated ovariectomized women. In addition to the direct effects of estrogens on bone remodeling, estrogen therapy could reduce the risk of postmenopausal osteoporosis by preventing increased gut epithelial permeability, bacterial translocation and inflammaging. However, in studies comparing the gut microbiota of older women, there were no changes at the phylum level, suggesting that age-related comorbidities may have a greater impact on changes in the gut microbiota than menopausal status does. Estrogens modify bone health not only by directly influencing bone remodeling, but also indirectly by influencing the gut microbiota, gut barrier function and the resulting changes in immune system reactivity.
Zobrazit více v PubMed
Kanis JA, Burlet N, Cooper C, Delmas PD, Reginster JY, Borgstrom F, et al. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int. 2008;19(4):399–428. 10.1007/s00198-008-0560-z. PubMed PMC
Willers C, Norton N, Harvey NC, Jacobson T, Johansson H, Lorentzon M, et al. Osteoporosis in Europe: a compendium of country-specific reports. Arch Osteoporos. 2022;17(1):23. 10.1007/s11657-021-00969-8. PubMed PMC
Trajanoska K, Schoufour JD, de Jonge EAL, Kieboom BCT, Mulder M, Stricker BH, et al. Fracture incidence and secular trends between 1989 and 2013 in a population based cohort: The Rotterdam Study. Bone. 2018;114:116–24. 10.1016/j.bone.2018.06.004. PubMed
da Silva PFL, Ogrodnik M, Kucheryavenko O, Glibert J, Miwa S, Cameron K, et al. The bystander effect contributes to the accumulation of senescent cells in vivo. Aging Cell. 2019;18(1):e12848. 10.1111/acel.12848. PubMed PMC
Steinmann GG, Klaus B, Muller-Hermelink HK. The involution of the ageing human thymic epithelium is independent of puberty. A morphometric study Scand J Immunol. 1985;22(5):563–75. 10.1111/j.1365-3083.1985.tb01916.x. PubMed
Adeel S, Singh K, Vydareny KH, Kumari M, Shah E, Weitzmann MN, et al. Bone loss in surgically ovariectomized premenopausal women is associated with T lymphocyte activation and thymic hypertrophy. J Investig Med. 2013;61(8):1178–83. 10.2310/JIM.0000000000000016. PubMed PMC
Thomas R, Wang W, Su DM. Contributions of Age-Related Thymic Involution to Immunosenescence and Inflammaging. Immun Ageing. 2020;17:2. 10.1186/s12979-020-0173-8. PubMed PMC
Pangrazzi L, Weinberger B. T cells, aging and senescence. Exp Gerontol. 2020;134:110887. 10.1016/j.exger.2020.110887. PubMed
Farr JN, Fraser DG, Wang H, Jaehn K, Ogrodnik MB, Weivoda MM, et al. Identification of Senescent Cells in the Bone Microenvironment. J Bone Miner Res. 2016;31(11):1920–9. 10.1002/jbmr.2892. PubMed PMC
Li CJ, Xiao Y, Sun YC, He WZ, Liu L, Huang M, et al. Senescent immune cells release grancalcin to promote skeletal aging. Cell Metab. 2021;33(10):1957-73 e6. 10.1016/j.cmet.2021.08.009. PubMed
Bano G, Trevisan C, Carraro S, Solmi M, Luchini C, Stubbs B, et al. Inflammation and sarcopenia: A systematic review and meta-analysis. Maturitas. 2017;96:10–5. 10.1016/j.maturitas.2016.11.006. PubMed
Liu ZJ, Zhuge Y, Velazquez OC. Trafficking and differentiation of mesenchymal stem cells. J Cell Biochem. 2009;106(6):984–91. 10.1002/jcb.22091. PubMed
Mi B, Xiong Y, Knoedler S, Alfertshofer M, Panayi AC, Wang H, et al. Ageing-related bone and immunity changes: insights into the complex interplay between the skeleton and the immune system. Bone Research. 2024;12(1):42. 10.1038/s41413-024-00346-4. PubMed PMC
Ru JY, Wang YF. Osteocyte apoptosis: the roles and key molecular mechanisms in resorption-related bone diseases. Cell Death Dis. 2020;11(10):846. 10.1038/s41419-020-03059-8. PubMed PMC
Josephson AM, Bradaschia-Correa V, Lee S, Leclerc K, Patel KS, Muinos Lopez E, et al. Age-related inflammation triggers skeletal stem/progenitor cell dysfunction. Proc Natl Acad Sci U S A. 2019;116(14):6995–7004. 10.1073/pnas.1810692116. PubMed PMC
Wei Y, Fu J, Wu W, Ma P, Ren L, Wu J. Estrogen prevents cellular senescence and bone loss through Usp10-dependent p53 degradation in osteocytes and osteoblasts: the role of estrogen in bone cell senescence. Cell Tissue Res. 2021;386(2):297–308. 10.1007/s00441-021-03496-7. PubMed
Farr JN, Xu M, Weivoda MM, Monroe DG, Fraser DG, Onken JL, et al. Targeting cellular senescence prevents age-related bone loss in mice. Nat Med. 2017;23(9):1072–9. 10.1038/nm.4385. PubMed PMC
Faubion L, White TA, Peterson BJ, Geske JR, LeBrasseur NK, Schafer MJ, et al. Effect of menopausal hormone therapy on proteins associated with senescence and inflammation. Physiol Rep. 2020;8(16):e14535. 10.14814/phy2.14535. PubMed PMC
Tlaskalova-Hogenova H, Stepankova R, Kozakova H, Hudcovic T, Vannucci L, Tuckova L, et al. The role of gut microbiota (commensal bacteria) and the mucosal barrier in the pathogenesis of inflammatory and autoimmune diseases and cancer: contribution of germ-free and gnotobiotic animal models of human diseases. Cell Mol Immunol. 2011;8(2):110–20. 10.1038/cmi.2010.67. PubMed PMC
Levy M, Kolodziejczyk AA, Thaiss CA, Elinav E. Dysbiosis and the immune system. Nat Rev Immunol. 2017;17(4):219–32. 10.1038/nri.2017.7. PubMed
Baechle JJ, Chen N, Makhijani P, Winer S, Furman D, Winer DA. Chronic inflammation and the hallmarks of aging. Mol Metab. 2023;74:101755. 10.1016/j.molmet.2023.101755. PubMed PMC
Kverka M, Tlaskalova-Hogenova H. Intestinal Microbiota: Facts and Fiction. Dig Dis. 2017;35(1–2):139–47. 10.1159/000449095. PubMed
Bajer L, Kverka M, Kostovcik M, Macinga P, Dvorak J, Stehlikova Z, et al. Distinct gut microbiota profiles in patients with primary sclerosing cholangitis and ulcerative colitis. World J Gastroenterol. 2017;23(25):4548–58. 10.3748/wjg.v23.i25.4548. PubMed PMC
David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505(7484):559–63. 10.1038/nature12820. PubMed PMC
Thaiss CA, Zeevi D, Levy M, Zilberman-Schapira G, Suez J, Tengeler AC, et al. Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell. 2014;159(3):514–29. 10.1016/j.cell.2014.09.048. PubMed
Byberg L, Bellavia A, Larsson SC, Orsini N, Wolk A, Michaelsson K. Mediterranean Diet and Hip Fracture in Swedish Men and Women. J Bone Miner Res. 2016;31(12):2098–105. 10.1002/jbmr.2896. PubMed
Kimble R, Gouinguenet P, Ashor A, Stewart C, Deighton K, Matu J, et al. Effects of a mediterranean diet on the gut microbiota and microbial metabolites: A systematic review of randomized controlled trials and observational studies. Crit Rev Food Sci Nutr. 2023;63(27):8698–719. 10.1080/10408398.2022.2057416. PubMed
O’Toole PW, Jeffery IB. Gut microbiota and aging. Science. 2015;350(6265):1214–5. 10.1126/science.aac8469. PubMed
Gupta VK, Paul S, Dutta C. Geography, Ethnicity or Subsistence-Specific Variations in Human Microbiome Composition and Diversity. Front Microbiol. 2017;8:1162. 10.3389/fmicb.2017.01162. PubMed PMC
Xu Y, Liu X, Liu X, Chen D, Wang M, Jiang X, et al. The Roles of the Gut Microbiota and Chronic Low-Grade Inflammation in Older Adults With Frailty. Front Cell Infect Microbiol. 2021;11:675414. 10.3389/fcimb.2021.675414. PubMed PMC
Claesson MJ, Cusack S, O’Sullivan O, Greene-Diniz R, de Weerd H, Flannery E, et al. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci U S A. 2011;108(Suppl 1):4586–91. 10.1073/pnas.1000097107. PubMed PMC
Biagi E, Nylund L, Candela M, Ostan R, Bucci L, Pini E, et al. Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PLoS ONE. 2010;5(5):e10667. 10.1371/journal.pone.0010667. PubMed PMC
Ren J, Li H, Zeng G, Pang B, Wang Q, Wei J. Gut microbiome-mediated mechanisms in aging-related diseases: are probiotics ready for prime time? Frontiers in Pharmacology. 2023;14:1178596. 10.3389/fphar.2023.1178596. PubMed PMC
Odamaki T, Kato K, Sugahara H, Hashikura N, Takahashi S, Xiao JZ, et al. Age-related changes in gut microbiota composition from newborn to centenarian: a cross-sectional study. BMC Microbiol. 2016;16:90. 10.1186/s12866-016-0708-5. PubMed PMC
Xu C, Zhu H, Qiu P. Aging progression of human gut microbiota. BMC Microbiol. 2019;19(1):236. 10.1186/s12866-019-1616-2. PubMed PMC
Badal VD, Vaccariello ED, Murray ER, Yu KE, Knight R, Jeste DV, et al. The Gut Microbiome, Aging, and Longevity: A Systematic Review. Nutrients. 2020;12(12):3759. 10.3390/nu12123759. PubMed PMC
Bosco N, Noti M. The aging gut microbiome and its impact on host immunity. Genes Immun. 2021;22(5):289–303. 10.1038/s41435-021-00126-8. PubMed PMC
Warman DJ, Jia H, Kato H. The Potential Roles of Probiotics, Resistant Starch, and Resistant Proteins in Ameliorating Inflammation during Aging (Inflammaging). Nutrients. 2022;14(4):747. PubMed PMC
Andersen SL, Sebastiani P, Dworkis DA, Feldman L, Perls TT. Health span approximates life span among many supercentenarians: compression of morbidity at the approximate limit of life span. J Gerontol A Biol Sci Med Sci. 2012;67(4):395–405. 10.1093/gerona/glr223. PubMed PMC
Liu X, Zou L, Nie C, Qin Y, Tong X, Wang J, et al. Mendelian randomization analyses reveal causal relationships between the human microbiome and longevity. Sci Rep. 2023;13(1):5127. 10.1038/s41598-023-31115-8. PubMed PMC
Biagi E, Franceschi C, Rampelli S, Severgnini M, Ostan R, Turroni S, et al. Gut Microbiota and Extreme Longevity. Current biology : CB. 2016;26(11):1480–5. 10.1016/j.cub.2016.04.016. PubMed
Omar JM, Chan Y-M, Jones ML, Prakash S, Jones PJH. Lactobacillus fermentum and Lactobacillus amylovorus as probiotics alter body adiposity and gut microflora in healthy persons. J Funct Foods. 2013;5(1):116–23. 10.1016/j.jff.2012.09.001.
Kostic AD, Chun E, Robertson L, Glickman JN, Gallini CA, Michaud M, et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe. 2013;14(2):207–15. 10.1016/j.chom.2013.07.007. PubMed PMC
He Y, Mujagond P, Tang W, Wu W, Zheng H, Chen X, et al. Non-nucleatum Fusobacterium species are dominant in the Southern Chinese population with distinctive correlations to host diseases compared with F. nucleatum. Gut. 2021;70(4):810–2. 10.1136/gutjnl-2020-322090. PubMed
Zepeda-Rivera M, Minot SS, Bouzek H, Wu H, Blanco-Míguez A, Manghi P, et al. A distinct Fusobacterium nucleatum clade dominates the colorectal cancer niche. Nature. 2024;628(8007):424–32. 10.1038/s41586-024-07182-w. PubMed PMC
Baker JM, Al-Nakkash L, Herbst-Kralovetz MM. Estrogen-gut microbiome axis: Physiological and clinical implications. Maturitas. 2017;103:45–53. 10.1016/j.maturitas.2017.06.025. PubMed
Chen KL, Madak-Erdogan Z. Estrogen and Microbiota Crosstalk: Should We Pay Attention? Trends Endocrinol Metab. 2016;27(11):752–5. 10.1016/j.tem.2016.08.001. PubMed
Kwa M, Plottel CS, Blaser MJ, Adams S. The Intestinal Microbiome and Estrogen Receptor-Positive Female Breast Cancer. J Natl Cancer Inst. 2016;108(8):djw029. 10.1093/jnci/djw029. PubMed PMC
Van de Wiele T, Vanhaecke L, Boeckaert C, Peru K, Headley J, Verstraete W, et al. Human colon microbiota transform polycyclic aromatic hydrocarbons to estrogenic metabolites. Environ Health Perspect. 2005;113(1):6–10. 10.1289/ehp.7259. PubMed PMC
Hogan AM, Collins D, Baird AW, Winter DC. Estrogen and its role in gastrointestinal health and disease. Int J Colorectal Dis. 2009;24(12):1367–75. 10.1007/s00384-009-0785-0. PubMed
Waclawiková B, Codutti A, Alim K, El Aidy S. Gut microbiota-motility interregulation: insights from in vivo, ex vivo and in silico studies. Gut Microbes. 2022;14(1):1997296. 10.1080/19490976.2021.1997296. PubMed PMC
So SY, Savidge TC. Sex-Bias in Irritable Bowel Syndrome: Linking Steroids to the Gut-Brain Axis. Front Endocrinol. 2021;12:684096. 10.3389/fendo.2021.684096. PubMed PMC
So SY, Savidge TC. Gut feelings: the microbiota-gut-brain axis on steroids. Am J Physiol Gastrointest Liver Physiol. 2022;322(1):G1–20. 10.1152/ajpgi.00294.2021. PubMed PMC
Li JY, Chassaing B, Tyagi AM, Vaccaro C, Luo T, Adams J, et al. Sex steroid deficiency-associated bone loss is microbiota dependent and prevented by probiotics. J Clin Invest. 2016;126(6):2049–63. 10.1172/JCI86062. PubMed PMC
Shieh A, Epeldegui M, Karlamangla AS, Greendale GA. Gut permeability, inflammation, and bone density across the menopause transition. JCI Insight. 2020;5(2). 10.1172/jci.insight.134092. PubMed PMC
Salazar AM, Aparicio R, Clark RI, Rera M, Walker DW. Intestinal barrier dysfunction: an evolutionarily conserved hallmark of aging. Dis Model Mech. 2023;16(4):dmm049969. 10.1242/dmm.049969. PubMed PMC
Benedek G, Zhang J, Nguyen H, Kent G, Seifert HA, Davin S, et al. Estrogen protection against EAE modulates the microbiota and mucosal-associated regulatory cells. J Neuroimmunol. 2017;310:51–9. 10.1016/j.jneuroim.2017.06.007. PubMed PMC
Chen KLA, Zhao YC, Hieronymi K, Smith BP, Madak-Erdogan Z. Bazedoxifene and conjugated estrogen combination maintains metabolic homeostasis and benefits liver health. PLoS ONE. 2017;12(12):e0189911. 10.1371/journal.pone.0189911. PubMed PMC
Kaliannan K, Robertson RC, Murphy K, Stanton C, Kang C, Wang B, et al. Estrogen-mediated gut microbiome alterations influence sexual dimorphism in metabolic syndrome in mice. Microbiome. 2018;6(1):205. 10.1186/s40168-018-0587-0. PubMed PMC
Acharya KD, Gao X, Bless EP, Chen J, Tetel MJ. Estradiol and high fat diet associate with changes in gut microbiota in female ob/ob mice. Sci Rep. 2019;9(1):20192. 10.1038/s41598-019-56723-1. PubMed PMC
Wang N, Meng F, Ma S, Fu L. Species-level gut microbiota analysis in ovariectomized osteoporotic rats by Shallow shotgun sequencing. Gene. 2022;817:146205. 10.1016/j.gene.2022.146205. PubMed
Meng Q, Ma M, Zhang W, Bi Y, Cheng P, Yu X, et al. The gut microbiota during the progression of atherosclerosis in the perimenopausal period shows specific compositional changes and significant correlations with circulating lipid metabolites. Gut Microbes. 2021;13(1):1–27. 10.1080/19490976.2021.1880220. PubMed PMC
d’Afflitto M, Upadhyaya A, Green A, Peiris M. Association Between Sex Hormone Levels and Gut Microbiota Composition and Diversity-A Systematic Review. J Clin Gastroenterol. 2022;56(5):384–92. 10.1097/MCG.0000000000001676. PubMed PMC
Yang M, Wen S, Zhang J, Peng J, Shen X, Xu L. Systematic Review and Meta-analysis: Changes of Gut Microbiota before and after Menopause. Dis Markers. 2022;2022:3767373. 10.1155/2022/3767373. PubMed PMC
Huang R, Liu P, Bai Y, Huang J, Pan R, Li H, et al. Changes in the gut microbiota of osteoporosis patients based on 16S rRNA gene sequencing: a systematic review and meta-analysis. J Zhejiang Univ Sci B. 2022;23(12):1002–13. 10.1631/jzus.B2200344. PubMed PMC
Xue Y, Wang X, Liu H, Kang J, Liang X, Yao A, et al. Assessment of the relationship between gut microbiota and bone mineral density: a two-sample Mendelian randomization study. Front Microbiol. 2024;15:1298838. 10.3389/fmicb.2024.1298838. PubMed PMC
Santos-Marcos JA, Rangel-Zuniga OA, Jimenez-Lucena R, Quintana-Navarro GM, Garcia-Carpintero S, Malagon MM, et al. Influence of gender and menopausal status on gut microbiota. Maturitas. 2018;116:43–53. 10.1016/j.maturitas.2018.07.008. PubMed
Zhu J, Liao M, Yao Z, Liang W, Li Q, Liu J, et al. Breast cancer in postmenopausal women is associated with an altered gut metagenome. Microbiome. 2018;6(1):136. 10.1186/s40168-018-0515-3. PubMed PMC
Jackova Z, Stepan JJ, Coufal S, Kostovcik M, Galanova N, Reiss Z, et al. Interindividual differences contribute to variation in microbiota composition more than hormonal status: A prospective study. Front Endocrinol. 2023;14:1139056. 10.3389/fendo.2023.1139056. PubMed PMC
Mayneris-Perxachs J, Arnoriaga-Rodriguez M, Luque-Cordoba D, Priego-Capote F, Perez-Brocal V, Moya A, et al. Gut microbiota steroid sexual dimorphism and its impact on gonadal steroids: influences of obesity and menopausal status. Microbiome. 2020;8(1):136. 10.1186/s40168-020-00913-x. PubMed PMC
Zhao H, Chen J, Li X, Sun Q, Qin P, Wang Q. Compositional and functional features of the female premenopausal and postmenopausal gut microbiota. FEBS Lett. 2019;593(18):2655–64. 10.1002/1873-3468.13527. PubMed
He J, Xu S, Zhang B, Xiao C, Chen Z, Si F, et al. Gut microbiota and metabolite alterations associated with reduced bone mineral density or bone metabolic indexes in postmenopausal osteoporosis. Aging (Albany NY). 2020;12(9):8583–604. 10.18632/aging.103168. PubMed PMC
Ozaki D, Kubota R, Maeno T, Abdelhakim M, Hitosugi N. Association between gut microbiota, bone metabolism, and fracture risk in postmenopausal Japanese women. Osteoporos Int. 2021;32(1):145–56. 10.1007/s00198-020-05728-y. PubMed PMC
Wu J, Zhuo Y, Liu Y, Chen Y, Ning Y, Yao J. Association between premature ovarian insufficiency and gut microbiota. BMC Pregnancy Childbirth. 2021;21(1):418. 10.1186/s12884-021-03855-w. PubMed PMC
Wei M, Li C, Dai Y, Zhou H, Cui Y, Zeng Y, et al. High-Throughput Absolute Quantification Sequencing Revealed Osteoporosis-Related Gut Microbiota Alterations in Han Chinese Elderly. Front Cell Infect Microbiol. 2021;11:630372. 10.3389/fcimb.2021.630372. PubMed PMC
Rettedal EA, Ilesanmi-Oyelere BL, Roy NC, Coad J, Kruger MC. The Gut Microbiome Is Altered in Postmenopausal Women With Osteoporosis and Osteopenia. JBMR Plus. 2021;5(3):e10452. 10.1002/jbm4.10452. PubMed PMC
Peters BA, Xue X, Sheira LA, Qi Q, Sharma A, Santoro N, et al. Menopause Is Associated With Immune Activation in Women With HIV. J Infect Dis. 2022;225(2):295–305. 10.1093/infdis/jiab341. PubMed PMC
Wu Z, Pfeiffer RM, Byrd DA, Wan Y, Ansong D, Clegg-Lamptey JN, et al. Associations of Circulating Estrogens and Estrogen Metabolites with Fecal and Oral Microbiome in Postmenopausal Women in the Ghana Breast Health Study. Microbiol Spectr. 2023;11(4):e0157223. 10.1128/spectrum.01572-23. PubMed PMC
Huang D, Wang J, Zeng Y, Li Q, Wang Y. Identifying microbial signatures for patients with postmenopausal osteoporosis using gut microbiota analyses and feature selection approaches. Front Microbiol. 2023;14:1113174. 10.3389/fmicb.2023.1113174. PubMed PMC
Peters B, Hanna D, Wang Y, Weber K, Topper E, Appleton A, et al. Sex Hormones, the Stool Microbiome, and Subclinical Atherosclerosis in Women With and Without HIV. J Clin Endocrinol Metab. 2024;109(2):483–97. 10.1210/clinem/dgad510. PubMed PMC
Wang J, Wang Y, Gao W, Wang B, Zhao H, Zeng Y, et al. Diversity analysis of gut microbiota in osteoporosis and osteopenia patients. PeerJ. 2017;5:e3450. 10.7717/peerj.3450. PubMed PMC
Ling CW, Miao Z, Xiao ML, Zhou H, Jiang Z, Fu Y, et al. The Association of Gut Microbiota With Osteoporosis Is Mediated by Amino Acid Metabolism: Multiomics in a Large Cohort. J Clin Endocrinol Metab. 2021;106(10):e3852–64. 10.1210/clinem/dgab492. PubMed
Wang Z, Chen K, Wu C, Chen J, Pan H, Liu Y, et al. An emerging role of Prevotella histicola on estrogen deficiency-induced bone loss through the gut microbiota-bone axis in postmenopausal women and in ovariectomized mice. Am J Clin Nutr. 2021;114(4):1304–13. 10.1093/ajcn/nqab194. PubMed
Custodero C, Mankowski RT, Lee SA, Chen Z, Wu S, Manini TM, et al. Evidence-based nutritional and pharmacological interventions targeting chronic low-grade inflammation in middle-age and older adults: A systematic review and meta-analysis. Ageing Res Rev. 2018;46:42–59. 10.1016/j.arr.2018.05.004. PubMed PMC
Inan MS, Rasoulpour RJ, Yin L, Hubbard AK, Rosenberg DW, Giardina C. The luminal short-chain fatty acid butyrate modulates NF-kappaB activity in a human colonic epithelial cell line. Gastroenterology. 2000;118(4):724–34. 10.1016/s0016-5085(00)70142-9. PubMed
Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013;504(7480):446–50. 10.1038/nature12721. PubMed
Huang S, Chen J, Cui Z, Ma K, Wu D, Luo J, et al. Lachnospiraceae-derived butyrate mediates protection of high fermentable fiber against placental inflammation in gestational diabetes mellitus. Sci Adv. 2023;9(44):eadi7337. 10.1126/sciadv.adi7337. PubMed PMC
Yan J, Charles JF. Gut Microbiota and IGF-1. Calcif Tissue Int. 2018;102(4):406–14. 10.1007/s00223-018-0395-3. PubMed PMC
Schwarzer M, Gautam UK, Makki K, Lambert A, Brabec T, Joly A, et al. Microbe-mediated intestinal NOD2 stimulation improves linear growth of undernourished infant mice. Science. 2023;379(6634):826–33. 10.1126/science.ade9767. PubMed
Zeng Y, Wu Y, Zhang Q, Xiao X. Crosstalk between glucagon-like peptide 1 and gut microbiota in metabolic diseases. mBio. 2024;15(1):e0203223. 10.1128/mbio.02032-23. PubMed PMC
Liu H, Xiao H, Lin S, Zhou H, Cheng Y, Xie B, et al. Effect of gut hormones on bone metabolism and their possible mechanisms in the treatment of osteoporosis. Front Pharmacol. 2024;15:1372399. 10.3389/fphar.2024.1372399. PubMed PMC
Covasa M, Stephens RW, Toderean R, Cobuz C. Intestinal Sensing by Gut Microbiota: Targeting Gut Peptides. Front Endocrinol. 2019;10:82. 10.3389/fendo.2019.00082. PubMed PMC
Bikle DD. Vitamin D and bone. Curr Osteoporos Rep. 2012;10:151–9. 10.1007/s11914-012-0098-z. PubMed PMC
Menon R, Watson SE, Thomas LN, Allred CD, Dabney A, Azcarate-Peril MA, et al. Diet complexity and estrogen receptor beta status affect the composition of the murine intestinal microbiota. Appl Environ Microbiol. 2013;79(18):5763–73. 10.1128/AEM.01182-13. PubMed PMC
Yamamoto EA, Jorgensen TN. Relationships Between Vitamin D, Gut Microbiome, and Systemic Autoimmunity. Front Immunol. 2019;10:3141. 10.3389/fimmu.2019.03141. PubMed PMC
Colin EM, Van Den Bemd GJ, Van Aken M, Christakos S, De Jonge HR, Deluca HF, et al. Evidence for involvement of 17beta-estradiol in intestinal calcium absorption independent of 1,25-dihydroxyvitamin D3 level in the Rat. J Bone Miner Res. 1999;14(1):57–64. 10.1359/jbmr.1999.14.1.57. PubMed
Ten Bolscher M, Netelenbos JC, Barto R, Van Buuren LM, Vandervijgh WJ. Estrogen regulation of intestinal calcium absorption in the intact and ovariectomized adult rat. J Bone Miner Res. 1999;14(7):1197–202. 10.1359/jbmr.1999.14.7.1197. PubMed
Liel Y, Shany S, Smirnoff P, Schwartz B. Estrogen increases 1,25-dihydroxyvitamin D receptors expression and bioresponse in the rat duodenal mucosa. Endocrinology. 1999;140(1):280–5. 10.1210/endo.140.1.6408. PubMed
Fakhoury HMA, Kvietys PR, AlKattan W, Anouti FA, Elahi MA, Karras SN, et al. Vitamin D and intestinal homeostasis: Barrier, microbiota, and immune modulation. J Steroid Biochem Mol Biol. 2020;200:105663. 10.1016/j.jsbmb.2020.105663. PubMed
Fawaz L, Mrad MF, Kazan JM, Sayegh S, Akika R, Khoury SJ. Comparative effect of 25(OH)D3 and 1,25(OH)2D3 on Th17 cell differentiation. Clin Immunol. 2016;166–167:59–71. 10.1016/j.clim.2016.02.011. PubMed
Schieren A, Koch S, Pecht T, Simon MC. Impact of Physiological Fluctuations of Sex Hormones During the Menstrual Cycle on Glucose Metabolism and the Gut Microbiota. Exp Clin Endocrinol Diabetes. 2024;132(5):267–78. 10.1055/a-2273-5602. PubMed PMC
Mihajlovic J, Leutner M, Hausmann B, Kohl G, Schwarz J, Röver H, et al. Combined hormonal contraceptives are associated with minor changes in composition and diversity in gut microbiota of healthy women. Environ Microbiol. 2021;23(6):3037–47. 10.1111/1462-2920.15517. PubMed
Vighi G, Marcucci F, Sensi L, Di Cara G, Frati F. Allergy and the gastrointestinal system. Clin Exp Immunol. 2008;153(Suppl 1):3–6. 10.1111/j.1365-2249.2008.03713.x. PubMed PMC
Mörbe UM, Jørgensen PB, Fenton TM, von Burg N, Riis LB, Spencer J, et al. Human gut-associated lymphoid tissues (GALT); diversity, structure, and function. Mucosal Immunol. 2021;14(4):793–802. 10.1038/s41385-021-00389-4. PubMed
Ryan MR, Shepherd R, Leavey JK, Gao Y, Grassi F, Schnell FJ, et al. An IL-7-dependent rebound in thymic T cell output contributes to the bone loss induced by estrogen deficiency. Proc Natl Acad Sci U S A. 2005;102(46):16735–40. 10.1073/pnas.0505168102. PubMed PMC
Weitzmann MN, Pacifici R. Estrogen deficiency and bone loss: an inflammatory tale. J Clin Invest. 2006;116(5):1186–94. 10.1172/JCI28550. PubMed PMC
Eghbali-Fatourechi G, Khosla S, Sanyal A, Boyle WJ, Lacey DL, Riggs BL. Role of RANK ligand in mediating increased bone resorption in early postmenopausal women. J Clin Invest. 2003;111(8):1221–30. 10.1172/JCI17215. PubMed PMC
Charatcharoenwitthaya N, Khosla S, Atkinson EJ, McCready LK, Riggs BL. Effect of blockade of TNF-alpha and interleukin-1 action on bone resorption in early postmenopausal women. J Bone Miner Res. 2007;22(5):724–9. 10.1359/jbmr.070207. PubMed
Pacifici R. Role of T cells in ovariectomy induced bone loss–revisited. J Bone Miner Res. 2012;27(2):231–9. 10.1002/jbmr.1500. PubMed
Ono T, Hayashi M, Sasaki F, Nakashima T. RANKL biology: bone metabolism, the immune system, and beyond. Inflamm Regen. 2020;40:2. 10.1186/s41232-019-0111-3. PubMed PMC
Marahleh A, Kitaura H, Ohori F, Noguchi T, Mizoguchi I. The osteocyte and its osteoclastogenic potential. Front Endocrinol. 2023;14:1121727. 10.3389/fendo.2023.1121727. PubMed PMC
Bengtsson AK, Ryan EJ. Immune function of the decoy receptor osteoprotegerin. Crit Rev Immunol. 2002;22(3):201–15. PubMed
Knoop KA, Kumar N, Butler BR, Sakthivel SK, Taylor RT, Nochi T, et al. RANKL is necessary and sufficient to initiate development of antigen-sampling M cells in the intestinal epithelium. J Immunol. 2009;183(9):5738–47. 10.4049/jimmunol.0901563. PubMed PMC
Mabbott NA, Donaldson DS, Ohno H, Williams IR, Mahajan A. Microfold (M) cells: important immunosurveillance posts in the intestinal epithelium. Mucosal Immunol. 2013;6(4):666–77. 10.1038/mi.2013.30. PubMed PMC
Nakamura Y, Kimura S, Hase K. M cell-dependent antigen uptake on follicle-associated epithelium for mucosal immune surveillance. Inflamm Regen. 2018;38(1):15. 10.1186/s41232-018-0072-y. PubMed PMC
Kimura S, Nakamura Y, Kobayashi N, Shiroguchi K, Kawakami E, Mutoh M, et al. Osteoprotegerin-dependent M cell self-regulation balances gut infection and immunity. Nat Commun. 2020;11(1):234. 10.1038/s41467-019-13883-y. PubMed PMC
Wang N, Ma S, Fu L. Gut Microbiota Dysbiosis as One Cause of Osteoporosis by Impairing Intestinal Barrier Function. Calcif Tissue Int. 2022;110(2):225–35. 10.1007/s00223-021-00911-7. PubMed
Naydenov NG, Baranwal S, Khan S, Feygin A, Gupta P, Ivanov AI. Novel mechanism of cytokine-induced disruption of epithelial barriers: Janus kinase and protein kinase D-dependent downregulation of junction protein expression. Tissue Barriers. 2013;1(4):e25231. 10.4161/tisb.25231. PubMed PMC
Ozaki H, Ishii K, Horiuchi H, Arai H, Kawamoto T, Okawa K, et al. Cutting edge: combined treatment of TNF-alpha and IFN-gamma causes redistribution of junctional adhesion molecule in human endothelial cells. J Immunol. 1999;163(2):553–7. PubMed
Yu M, Pal S, Paterson CW, Li JY, Tyagi AM, Adams J, et al. Ovariectomy induces bone loss via microbial-dependent trafficking of intestinal TNF+ T cells and Th17 cells. J Clin Invest. 2021;131(4). 10.1172/JCI143137. PubMed PMC
Cline-Smith A, Axelbaum A, Shashkova E, Chakraborty M, Sanford J, Panesar P, et al. Ovariectomy Activates Chronic Low-Grade Inflammation Mediated by Memory T Cells, Which Promotes Osteoporosis in Mice. J Bone Miner Res. 2020;35(6):1174–87. 10.1002/jbmr.3966. PubMed PMC
Li JY, D’Amelio P, Robinson J, Walker LD, Vaccaro C, Luo T, et al. IL-17A Is Increased in Humans with Primary Hyperparathyroidism and Mediates PTH-Induced Bone Loss in Mice. Cell Metab. 2015;22(5):799–810. 10.1016/j.cmet.2015.09.012. PubMed PMC
Tyagi AM, Mansoori MN, Srivastava K, Khan MP, Kureel J, Dixit M, et al. Enhanced immunoprotective effects by anti-IL-17 antibody translates to improved skeletal parameters under estrogen deficiency compared with anti-RANKL and anti-TNF-alpha antibodies. J Bone Miner Res. 2014;29(9):1981–92. 10.1002/jbmr.2228. PubMed
Dart DA, Waxman J, Aboagye EO, Bevan CL. Visualising androgen receptor activity in male and female mice. PLoS ONE. 2013;8(8):e71694. 10.1371/journal.pone.0071694. PubMed PMC
Wada-Hiraike O, Imamov O, Hiraike H, Hultenby K, Schwend T, Omoto Y, et al. Role of estrogen receptor beta in colonic epithelium. Proc Natl Acad Sci U S A. 2006;103(8):2959–64. 10.1073/pnas.0511271103. PubMed PMC
Peters BA, Santoro N, Kaplan RC, Qi Q. Spotlight on the Gut Microbiome in Menopause: Current Insights. Int J Women’s Health. 2022;14:1059–72. 10.2147/IJWH.S340491. PubMed PMC
Leite G, Barlow G, Parodi G, Pimentel M, Chang C, Hosseini A, et al. Duodenal microbiome changes in postmenopausal women: effects of hormone therapy and implications for cardiovascular risk. Menopause. 2022;29(3):264–75. 10.1097/GME.0000000000001917. PubMed PMC
Kawano N, Koji T, Hishikawa Y, Murase K, Murata I, Kohno S. Identification and localization of estrogen receptor alpha- and beta-positive cells in adult male and female mouse intestine at various estrogen levels. Histochem Cell Biol. 2004;121(5):399–405. 10.1007/s00418-004-0644-6. PubMed
Moorefield EC, Andres SF, Blue RE, Van Landeghem L, Mah AT, Santoro MA, et al. Aging effects on intestinal homeostasis associated with expansion and dysfunction of intestinal epithelial stem cells. Aging (Albany NY). 2017;9(8):1898–915. 10.18632/aging.101279. PubMed PMC
Sehl ME, Ganz PA. Potential Mechanisms of Age Acceleration Caused by Estrogen Deprivation: Do Endocrine Therapies Carry the Same Risks? JNCI Cancer Spectrum. 2018;2(3):pky035. 10.1093/jncics/pky035. PubMed PMC
Hohman LS, Osborne LC. A gut-centric view of aging: Do intestinal epithelial cells contribute to age-associated microbiota changes, inflammaging, and immunosenescence? Aging Cell. 2022;21(9):e13700. 10.1111/acel.13700. PubMed PMC
Tan TG, Sefik E, Geva-Zatorsky N, Kua L, Naskar D, Teng F, et al. Identifying species of symbiont bacteria from the human gut that, alone, can induce intestinal Th17 cells in mice. Proc Natl Acad Sci U S A. 2016;113(50):E8141–50. 10.1073/pnas.1617460113. PubMed PMC
Yu M, Malik Tyagi A, Li JY, Adams J, Denning TL, Weitzmann MN, et al. PTH induces bone loss via microbial-dependent expansion of intestinal TNF(+) T cells and Th17 cells. Nat Commun. 2020;11(1):468. 10.1038/s41467-019-14148-4. PubMed PMC
Chetty A, Blekhman R. Multi-omic approaches for host-microbiome data integration. Gut Microbes. 2024;16(1):2297860. 10.1080/19490976.2023.2297860. PubMed PMC
Gomez A, Petrzelkova KJ, Burns MB, Yeoman CJ, Amato KR, Vlckova K, et al. Gut Microbiome of Coexisting BaAka Pygmies and Bantu Reflects Gradients of Traditional Subsistence Patterns. Cell Rep. 2016;14(9):2142–53. 10.1016/j.celrep.2016.02.013. PubMed
Human Microbiome Project C. Structure function and diversity of the healthy human microbiome. Nature. 2012;486(7402):207–14. 10.1038/nature11234. PubMed PMC
Koren O, Goodrich JK, Cullender TC, Spor A, Laitinen K, Backhed HK, et al. Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell. 2012;150(3):470–80. 10.1016/j.cell.2012.07.008. PubMed PMC
Pena JA, Li SY, Wilson PH, Thibodeau SA, Szary AJ, Versalovic J. Genotypic and phenotypic studies of murine intestinal lactobacilli: species differences in mice with and without colitis. Appl Environ Microbiol. 2004;70(1):558–68. 10.1128/AEM.70.1.558-568.2004. PubMed PMC
Ottman N, Smidt H, de Vos WM, Belzer C. The function of our microbiota: who is out there and what do they do? Front Cell Infect Microbiol. 2012;2:104. 10.3389/fcimb.2012.00104. PubMed PMC
Adlercreutz H, Pulkkinen MO, Hamalainen EK, Korpela JT. Studies on the role of intestinal bacteria in metabolism of synthetic and natural steroid hormones. J Steroid Biochem. 1984;20(1):217–29. 10.1016/0022-4731(84)90208-5. PubMed
Fuhrman BJ, Feigelson HS, Flores R, Gail MH, Xu X, Ravel J, et al. Associations of the fecal microbiome with urinary estrogens and estrogen metabolites in postmenopausal women. J Clin Endocrinol Metab. 2014;99(12):4632–40. 10.1210/jc.2014-2222. PubMed PMC
Chen TY, Huang WY, Liu KH, Kor CT, Chao YC, Wu HM. The relationship between hot flashes and fatty acid binding protein 2 in postmenopausal women. PLoS ONE. 2022;17(10):e0276391. 10.1371/journal.pone.0276391. PubMed PMC
LeBoff MS, Greenspan SL, Insogna KL, Lewiecki EM, Saag KG, Singer AJ, et al. The clinician’s guide to prevention and treatment of osteoporosis. Osteoporos Int. 2022;33(10):2049–102. 10.1007/s00198-021-05900-y. PubMed PMC
Stepan JJ, Hruskova H, Kverka M. Update on Menopausal Hormone Therapy for Fracture Prevention. Curr Osteoporos Rep. 2019;17(6):465–73. 10.1007/s11914-019-00549-3. PubMed PMC