Influence of Hypoxia on the Airway Epithelium
Jazyk angličtina Země Česko Médium print
Typ dokumentu časopisecké články, přehledy
PubMed
39589303
PubMed Central
PMC11627265
DOI
10.33549/physiolres.935436
PII: 935436
Knihovny.cz E-zdroje
- MeSH
- hypoxie * metabolismus MeSH
- kyslík metabolismus MeSH
- lidé MeSH
- respirační sliznice * metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- kyslík MeSH
The necessity of oxygen for metabolic processes means that hypoxia can lead to serious cell and tissue damage. On the other hand, in some situations, hypoxia occurs under physiological conditions and serves as an important regulation factor. The airway epithelium is specific in that it gains oxygen not only from the blood supply but also directly from the luminal air. Many respiratory diseases are associated with airway obstruction or excessive mucus production thus leading to luminal hypoxia. The main goal of this review is to point out how the airway epithelium reacts to hypoxic conditions. Cells detect low oxygen levels using molecular mechanisms involving hypoxia-inducible factors (HIFs). In addition, the cells of the airway epithelium appear to overexpress HIFs in hypoxic conditions. HIFs then regulate many aspects of epithelial cell functions. The effects of hypoxia include secretory cell stimulation and hyperplasia, epithelial barrier changes, and ciliogenesis impairment. All the changes can impair mucociliary clearance, exacerbate infection, and promote inflammation leading to damage of airway epithelium and subsequent airway wall remodeling. The modulation of hypoxia regulatory mechanisms may be one of the strategies for the treatment of obstructive respiratory diseases or diseases with mucus hyperproduction. Keywords: Secretory cells, Motile cilia, Epithelial barrier, Oxygenation, Obstructive respiratory diseases.
Zobrazit více v PubMed
Semenza GL. HIF-1: mediator of physiological and pathophysiological responses to hypoxia. Journal of Applied Physiology. 2000;88:1474–1480. doi: 10.1152/jappl.2000.88.4.1474. PubMed DOI
Hsia CCW, Schmitz A, Lambertz M, Perry SF, Maina JN. Evolution of air breathing: oxygen homeostasis and the transitions from water to land and sky. Compr Physiol. 2013;3:849–915. doi: 10.1002/cphy.c120003. PubMed DOI PMC
Richalet JP. The invention of hypoxia. J Appl Physiol (1985) 2021;130:157315–82. doi: 10.1152/japplphysiol.00936.2020. PubMed DOI
Sargon MF. Lungs and hypoxia: a review of the literature. Anatomy. 2021;15:76–83. doi: 10.2399/ana.21.841001. DOI
Ošt’ádal B, Kolář F. Myocardial Hypoxia and Ischemia. In: OŠŤÁDAL B, KOLÁŘ F, editors. Cardiac Ischemia: From Injury to Protection. Boston, MA: Springer US; 1999. pp. 1–44. https://doi.org/10.1007/978-1-4757-3025-8_1, https://doi.org/10.1007/978-1-4757-3025-8_1. DOI
Genbacev O, Zhou Y, Ludlow JW, Fisher SJ. Regulation of human placental development by oxygen tension. Science. 1997;277:1669–1672. doi: 10.1126/science.277.5332.1669. PubMed DOI
Wakeland AK, Soncin F, Moretto-Zita M, Chang CW, Horii M, Pizzo D, et al. Hypoxia directs human extravillous trophoblast differentiation in a hypoxia-inducible factor-dependent manner. Am J Pathol. 2017;187:767–780. doi: 10.1016/j.ajpath.2016.11.018. PubMed DOI PMC
Robrahn L, Jiao L, Cramer T. Barrier integrity and chronic inflammation mediated by HIF-1 impact on intestinal tumorigenesis. Cancer Letters. 2020;490:186–192. doi: 10.1016/j.canlet.2020.07.002. PubMed DOI
Taylor CT, Colgan SP. Regulation of immunity and inflammation by hypoxia in immunological niches. Nat Rev Immunol. 2017;17:774–785. doi: 10.1038/nri.2017.103. PubMed DOI PMC
Lee P, Chandel NS, Simon MC. Cellular adaptation to hypoxia through hypoxia inducible factors and beyond. Nat Rev Mol Cell Biol. 2020;21:268–283. doi: 10.1038/s41580-020-0227-y. PubMed DOI PMC
Nakano H, Ide H, Ogasa T, Osanai S, Imada M, Nonaka S, et al. Ambient oxygen regulates epithelial metabolism and nitric oxide production in the human nose. J Applied Physiol. 2002;93:189–194. doi: 10.1152/japplphysiol.00096.2002. PubMed DOI
Nossol C, Diesing AK, Walk N, Faber-Zuschratter H, Hartig R, Post A, et al. Air-liquid interface cultures enhance the oxygen supply and trigger the structural and functional differentiation of intestinal porcine epithelial cells (IPEC) Histochem Cell Biol. 2011;136:103–115. doi: 10.1007/s00418-011-0826-y. PubMed DOI PMC
Mikami Y, Grubb BR, Rogers TD, Dang H, Asakura T, Kota P, et al. Chronic airway epithelial hypoxia exacerbates injury in muco-obstructive lung disease through mucus hyperconcentration. Sci Transl Med. 2023;15:eabo7728. doi: 10.1126/scitranslmed.abo7728. PubMed DOI PMC
Ledford H, Callaway E. Biologists who decoded how cells sense oxygen win medicine Nobel. Nature. 2019;574:161–2. doi: 10.1038/d41586-019-02963-0. PubMed DOI
Wang GL, Jiang BH, Rue EA, Semenza GL. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A. 1995;92:5510–4. doi: 10.1073/pnas.92.12.5510. PubMed DOI PMC
Eltzschig HK, Carmeliet P. Hypoxia and inflammation. N Engl J Med. 2011;364:656–65. doi: 10.1056/NEJMra0910283. PubMed DOI PMC
Jorgensen K, Song D, Weinstein J, Garcia OA, Pearson LN, Inclán M, et al. High-altitude andean H194R HIF2A allele is a hypomorphic allele. Mol Biol Evolution. 2023;40:msad162. doi: 10.1093/molbev/msad162. PubMed DOI PMC
Gossage L, Eisen T, Maher ER. VHL, the story of a tumour suppressor gene. Nat Rev Cancer. 2015;15:55–64. doi: 10.1038/nrc3844. PubMed DOI
Chen J, Khalil RA. Chapter Four - Matrix Metalloproteinases in Normal Pregnancy and Preeclampsia. In: KHALIL RA, editor. Progress in Molecular Biology and Translational Science. Academic Press; 2017. pp. 87–165. PubMed DOI PMC
Hubbi ME, Semenza GL. Regulation of cell proliferation by hypoxia-inducible factors. Am J Physiol Cell Physiol. 2015;309:C775–82. doi: 10.1152/ajpcell.00279.2015. PubMed DOI PMC
Yang SL, Wu C, Xiong ZF, Fang X. Progress on hypoxia-inducible factor-3: Its structure, gene regulation and biological function (Review) Mol Med Rep. 2015;12:2411–2416. doi: 10.3892/mmr.2015.3689. PubMed DOI
Tolonen JP, Heikkilä M, Malinen M, Lee HM, Palvimo JJ, Wei GH, et al. A long hypoxia-inducible factor 3 isoform 2 is a transcription activator that regulates erythropoietin. Cell Mol Life Sci. 2020;77:3627–3642. doi: 10.1007/s00018-019-03387-9. PubMed DOI PMC
Slawski J, Jaśkiewicz M, Barton A, Kozioł S, Collawn JF, Bartoszewski R. Regulation of the HIF switch in human endothelial and cancer cells. Eur J Cell Biol. 2024;103:151386. doi: 10.1016/j.ejcb.2024.151386. PubMed DOI
Prabhakar NR, Semenza GL. Adaptive and maladaptive cardiorespiratory responses to continuous and intermittent hypoxia mediated by hypoxia-inducible factors 1 and 2. Physiol Rev. 2012;92:967–1003. doi: 10.1152/physrev.00030.2011. PubMed DOI PMC
Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, et al. HIFα Targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science. 2001;292:464–468. doi: 10.1126/science.1059817. PubMed DOI
Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature. 1999;399:271–275. doi: 10.1038/20459. PubMed DOI
Aronow ME, Wiley HE, Gaudric A, Krivosic V, Gorin MB, Shields CL, et al. Von Hippel-Lindau Disease: update on pathogenesis and systemic aspects. Retina. 2019;39:2243–2253. doi: 10.1097/IAE.0000000000002555. PubMed DOI
Jung YJ, Isaacs JS, Lee S, Trepel J, Neckers L. IL-1beta-mediated up-regulation of HIF-1alpha via an NFkappaB/COX-2 pathway identifies HIF-1 as a critical link between inflammation and oncogenesis. FASEB J. 2003;17:2115–2117. doi: 10.1096/fj.03-0329fje. PubMed DOI
Semenza GL. Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends Pharmacol Sci. 2012;33:207–214. doi: 10.1016/j.tips.2012.01.005. PubMed DOI PMC
Tang K, Yu Y, Zhu L, Xu P, Chen J, Ma J, et al. Hypoxia-reprogrammed tricarboxylic acid cycle promotes the growth of human breast tumorigenic cells. Oncogene. 2019;38:6970–6984. doi: 10.1038/s41388-019-0932-1. PubMed DOI
Ohh M, Yauch RL, Lonergan KM, Whaley JM, Stemmer-Rachamimov AO, Louis DN, et al. The von Hippel-Lindau tumor suppressor protein is required for proper assembly of an extracellular fibronectin matrix. Mol Cell. 1998;1:959–968. doi: 10.1016/S1097-2765(00)80096-9. PubMed DOI
Kurban G, Duplan E, Ramlal N, Hudon V, Sado Y, Ninomiya Y, et al. Collagen matrix assembly is driven by the interaction of von Hippel-Lindau tumor suppressor protein with hydroxylated collagen IV alpha 2. Oncogene. 2008;27:1004–1012. doi: 10.1038/sj.onc.1210709. PubMed DOI
Ohh M, Taber CC, Ferens FG, Tarade D. Hypoxia-inducible factor underlies von Hippel-Lindau disease stigmata. Elife. 2022;11:e80774. doi: 10.7554/eLife.80774. PubMed DOI PMC
Thoma CR, Toso A, Gutbrodt KL, Reggi SP, Frew IJ, Schraml P, et al. VHL loss causes spindle misorientation and chromosome instability. Nat Cell Biol. 2009;11:994–1001. doi: 10.1038/ncb1912. PubMed DOI
Hergovich A, Lisztwan J, Barry R, Ballschmieter P, Krek W. Regulation of microtubule stability by the von Hippel-Lindau tumour suppressor protein pVHL. Nat Cell Biol. 2003;5:64–70. doi: 10.1038/ncb899. PubMed DOI
Cao H, Yu D, Yan X, Wang B, Yu Z, Song Y, et al. Hypoxia destroys the microstructure of microtubules and causes dysfunction of endothelial cells via the PI3K/Stathmin1 pathway. Cell Biosci. 2019;9:20. doi: 10.1186/s13578-019-0283-1. PubMed DOI PMC
Schermer B, Ghenoiu C, Bartram M, Müller RU, Kotsis F, Höhne M, et al. The von Hippel-Lindau tumor suppressor protein controls ciliogenesis by orienting microtubule growth. The Journal of cell biology. 2006;175:547–54. doi: 10.1083/jcb.200605092. PubMed DOI PMC
Hasanov E, Chen G, Chowdhury P, Weldon J, Ding Z, Jonasch E, et al. Ubiquitination and regulation of AURKA identifies a hypoxia-independent E3 ligase activity of VHL. Oncogene. 2017;36:3450–63. doi: 10.1038/onc.2016.495. PubMed DOI PMC
Resnick A. HIF stabilization weakens primary cilia. PLOS ONE. 2016;11:e0165907. doi: 10.1371/journal.pone.0165907. PubMed DOI PMC
Verghese E, Zhuang J, Saiti D, Ricardo SD, Deane JA. In vitro investigation of renal epithelial injury suggests that primary cilium length is regulated by hypoxia-inducible mechanisms. Cell Biol Int. 2011;35:909–913. doi: 10.1042/CBI20090154. PubMed DOI
Esteban MA, Harten SK, Tran MG, Maxwell PH. Formation of primary cilia in the renal epithelium is regulated by the von Hippel-Lindau tumor suppressor protein. J Am Soc Nephrol. 2006;17:1801–1806. doi: 10.1681/ASN.2006020181. PubMed DOI
Pfirrmann T, Gerhardt C. Life-Saver or Undertaker: The relationship between primary cilia and cell death in vertebrate embryonic development. J Dev Biol. 2022;10:52. doi: 10.3390/jdb10040052. PubMed DOI PMC
Anvarian Z, Mykytyn K, Mukhopadhyay S, Pedersen LB, Christensen ST. Cellular signalling by primary cilia in development, organ function and disease. Nat Rev Nephrol. 2019;15:199–219. doi: 10.1038/s41581-019-0116-9. PubMed DOI PMC
Mill P, Christensen ST, Pedersen LB. Primary cilia as dynamic and diverse signalling hubs in development and disease. Nat Rev Genet. 2023;24:421–441. doi: 10.1038/s41576-023-00587-9. PubMed DOI PMC
Majmundar AJ, Wong WJ, Simon MC. Hypoxia inducible factors and the response to hypoxic stress. Mol Cell. 2010;40:294–309. doi: 10.1016/j.molcel.2010.09.022. PubMed DOI PMC
Semenza GL. A compendium of proteins that interact with HIF-1α. Exp Cell Res. 2017;356:128–135. doi: 10.1016/j.yexcr.2017.03.041. PubMed DOI PMC
Blouin CC, Pagé EL, Soucy GM, Richard DE. Hypoxic gene activation by lipopolysaccharide in macrophages: implication of hypoxia-inducible factor 1alpha. Blood. 2004;103:1124–1130. doi: 10.1182/blood-2003-07-2427. PubMed DOI
Frede S, Stockmann C, Freitag P, Fandrey J. Bacterial lipopolysaccharide induces HIF-1 activation in human monocytes via p44/42 MAPK and NF-kappaB. Biochem J. 2006;396:517–527. doi: 10.1042/BJ20051839. PubMed DOI PMC
Semenza GL. HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations. J Clin Invest. 2013;123:3664–71. doi: 10.1172/JCI67230. PubMed DOI PMC
Rohwer N, Jumpertz S, Erdem M, Egners A, Warzecha KT, Fragoulis A, et al. Non-canonical HIF-1 stabilization contributes to intestinal tumorigenesis. Oncogene. 2019;38:5670–5685. doi: 10.1038/s41388-019-0816-4. PubMed DOI
Beall CM, Cavalleri GL, Deng L, Elston RC, Gao Y, Knight J, et al. Natural selection on EPAS1 (HIF2α) associated with low hemoglobin concentration in Tibetan highlanders. Proceedings of the National Academy of Sciences. 2010;107:11459–64. doi: 10.1073/pnas.1002443107. PubMed DOI PMC
Labie D. L’adaptation aux très hautes altitudes - Sur quels gènes une pression sélective s’est-elle exercée ? Med Sci (Paris) 2010;26:1038–9. doi: 10.1051/medsci/201026121038. PubMed DOI
Eichstaedt CA, Pagani L, Antao T, Inchley CE, Cardona A, Mörseburg A, et al. Evidence of Early-Stage Selection on EPAS1 and GPR126 Genes in Andean High Altitude Populations. Sci Rep. 2017;7:13042. doi: 10.1038/s41598-017-13382-4. PubMed DOI PMC
Eichstaedt C, Pagani L, Antao T, Inchley C, Cardona A, Mörseburg A, et al. New evidence of genetic adaptation to high altitude in Andean populations. Europ Respir J. 2018;52:PA1274. https://erj.ersjournals.com/content/52/suppl_62/PA1274, https://doi.org/10.1183/13993003.congress-2018.PA1274. DOI
Song D, Navalsky BE, Guan W, Ingersoll C, Wang T, Loro E, et al. Tibetan PHD2, an allele with loss-of-function properties. Proc Natl Acad Sci U S A. 2020;117:12230–8. doi: 10.1073/pnas.1920546117. PubMed DOI PMC
Brutsaert TD, Kiyamu M, Elias Revollendo G, Isherwood JL, Lee FS, Rivera-Ch M, et al. Association of EGLN1 gene with high aerobic capacity of Peruvian Quechua at high altitude. Proc Natl Acad Sci U S A. 2019;116:24006–11. doi: 10.1073/pnas.1906171116. PubMed DOI PMC
Gale DP, Harten SK, Reid CDL, Tuddenham EGD, Maxwell PH. Autosomal dominant erythrocytosis and pulmonary arterial hypertension associated with an activating HIF2 alpha mutation. Blood. 2008;112:919–921. doi: 10.1182/blood-2008-04-153718. PubMed DOI
Olson N, Hristova M, Heintz NH, Lounsbury KM, van der Vliet A. Activation of hypoxia-inducible factor-1 protects airway epithelium against oxidant-induced barrier dysfunction. Am J Physiol Lung Cellular and Molecular Physiology. 2011;301:L993–1002. doi: 10.1152/ajplung.00250.2011. PubMed DOI PMC
Bartels K, Grenz A, Eltzschig HK. Hypoxia and inflammation are two sides of the same coin. Proceedings of the National Academy of Sciences. 2013;110:18351–2. doi: 10.1073/pnas.1318345110. PubMed DOI PMC
Palazon A, Goldrath A, Nizet V, Johnson RS. HIF Transcription factors, inflammation, and immunity. Immunity. 2014;41:518–528. doi: 10.1016/j.immuni.2014.09.008. PubMed DOI PMC
Lee SH, Lee SH, Kim CH, Yang KS, Lee EJ, Min KH, et al. Increased expression of vascular endothelial growth factor and hypoxia inducible factor-1α in lung tissue of patients with chronic bronchitis. Clin Biochem. 2014;47:552–559. doi: 10.1016/j.clinbiochem.2014.01.012. PubMed DOI
Hammond FR, Lewis A, Elks PM. If it’s not one thing, HIF’s another: immunoregulation by hypoxia inducible factors in disease. FEBS. 2020;287:3907–3916. doi: 10.1111/febs.15476. PubMed DOI PMC
McGettrick AF, O’Neill LAJ. The Role of HIF in Immunity and Inflammation. Cell Metabolism. 2020;32:524–536. doi: 10.1016/j.cmet.2020.08.002. PubMed DOI
Polke M, Seiler F, Lepper PM, Kamyschnikow A, Langer F, Monz D, et al. Hypoxia and the hypoxia-regulated transcription factor HIF-1α suppress the host defence of airway epithelial cells. Innate Immun. 2017;23:373–380. doi: 10.1177/1753425917698032. PubMed DOI
Page LK, Staples KJ, Spalluto CM, Watson A, Wilkinson TMA. Influence of hypoxia on the epithelial-pathogen interactions in the lung: implications for respiratory disease. Front Immunol. 2021;12:653969. doi: 10.3389/fimmu.2021.653969. PubMed DOI PMC
Breeze R, Turk M. Cellular structure, function and organization in the lower respiratory tract. Environ Health Perspect. 1984;55:3–24. doi: 10.1289/ehp.84553. PubMed DOI PMC
Davis JD, Wypych TP. Cellular and functional heterogeneity of the airway epithelium. Mucosal Immunol. 2021;14:978–990. doi: 10.1038/s41385-020-00370-7. PubMed DOI PMC
Dudchenko O, Ordovas-Montanes J, Bingle CD. Respiratory epithelial cell types, states and fates in the era of single-cell RNA-sequencing. Biochem J. 2023;480:921–939. doi: 10.1042/BCJ20220572. PubMed DOI PMC
Russell RJ, Boulet LP, Brightling CE, Pavord ID, Porsbjerg C, Dorscheid D, et al. The airway epithelium: an orchestrator of inflammation, a key structural barrier and a therapeutic target in severe asthma. Eur Respir J. 2024;63:2301397. doi: 10.1183/13993003.01397-2023. PubMed DOI PMC
Cho HJ, Kim CH. Oxygen matters: hypoxia as a pathogenic mechanism in rhinosinusitis. BMB Reports. 2018;51:59–64. doi: 10.5483/BMBRep.2018.51.2.014. PubMed DOI PMC
Montgomery ST, Mall MA, Kicic A, Stick SM. Hypoxia and sterile inflammation in cystic fibrosis airways: mechanisms and potential therapies. Eur Respir J. 2017;49:1600903. doi: 10.1183/13993003.00903-2016. PubMed DOI
Konrádová V, Uhlík J, Vajner L, Herget J, Adášková J. Exposure to hypoxia injures tracheal epithelium (ultrastructural study) Veterinární medicína. 2002;47:270–276. doi: 10.17221/5834-VETMED. DOI
Uhlik J, Konradova V, Vajner L, Adaskova J. Normobaric hypoxia induces mild damage to epithelium of terminal bronchioles in rabbits (ultrastructural study) Veterinární medicína. 2005;50:432–438. doi: 10.17221/5645-VETMED. DOI
Konrádová V, Kanta J, Sulová J. Effect of bronchoalveolar lavage on the ultrastructure of the tracheal epithelium in rabbits. Respiration. 1990;57:14–20. doi: 10.1159/000195813. PubMed DOI
Konrádová V, Uhlík J, Vajner L, Zocová J. Reaction of the goblet cells to cholinergic stimulation. Acta Vet Brno. 1996;65:175–180. doi: 10.2754/avb199665030175. DOI
Becci PJ, McDowell EM, Trump BF. The respiratory epithelium. II. Hamster trachea, bronchus, and bronchioles. J Natl Cancer Inst. 1978;61:551–561. PubMed
Polosukhin VV, Cates JM, Lawson WE, Milstone AP, Matafonov AG, Massion PP, et al. Hypoxia-inducible factor-1 signalling promotes goblet cell hyperplasia in airway epithelium. J Pathol. 2011;224:203–211. doi: 10.1002/path.2863. PubMed DOI PMC
Torres-Capelli M, Marsboom G, Li QOY, Tello D, Rodriguez FM, Alonso T, et al. Role Of Hif2α oxygen sensing pathway in bronchial epithelial club cell proliferation. Sci Rep. 2016;6:25357. doi: 10.1038/srep25357. PubMed DOI PMC
Zhou X, Tu J, Li Q, Kolosov VP, Perelman JM. Hypoxia induces mucin expression and secretion in human bronchial epithelial cells. Translational Research. 2012;160:419–427. doi: 10.1016/j.trsl.2012.08.001. PubMed DOI
Zhou-Suckow Z, Duerr J, Hagner M, Agrawal R, Mall MA. Airway mucus, inflammation and remodeling: emerging links in the pathogenesis of chronic lung diseases. Cell Tissue Res. 2017;367:537–550. doi: 10.1007/s00441-016-2562-z. PubMed DOI
Hey J, Paulsen M, Toth R, Weichenhan D, Butz S, Schatterny J, et al. Epigenetic reprogramming of airway macrophages promotes polarization and inflammation in muco-obstructive lung disease. Nat Commun. 2021;12:6520. doi: 10.1038/s41467-021-26777-9. PubMed DOI PMC
Shivaraju M, Chitta UK, Grange RMH, Jain IH, Capen D, Liao L, et al. Airway stem cells sense hypoxia and differentiate into protective solitary neuroendocrine cells. Science. 2021;371:52–57. doi: 10.1126/science.aba0629. PubMed DOI PMC
Glover LE, Colgan SP. Epithelial barrier regulation by hypoxia-inducible factor. Ann Am Thorac Soc. 2017;14:S233–6. doi: 10.1513/AnnalsATS.201608-610MG. PubMed DOI PMC
Colgan SP, Campbell EL, Kominsky DJ. Hypoxia and Mucosal Inflammation. Annu Rev Pathol. 2016;11:77–100. doi: 10.1146/annurev-pathol-012615-044231. PubMed DOI PMC
Song HA, Kim YS, Cho HJ, Kim SI, Kang MJ, Kim JH, et al. Hypoxia modulates epithelial permeability via regulation of vascular endothelial growth factor in airway epithelia. Am J Respir Cell Mol Biol. 2017;57:527–535. doi: 10.1165/rcmb.2016-0080OC. PubMed DOI
Zhou W, Yu T, Hua Y, Hou Y, Ding Y, Nie H. Effects of hypoxia on respiratory diseases: perspective view of epithelial ion transport. Am J Physiol-Lung Cellular and Molecular Physiology. 2022;323:L240–250. doi: 10.1152/ajplung.00065.2022. PubMed DOI
Dale TP, Santer MD, Haris M, Zuo W, Forsyth NR. Hypoxic conditions promote a proliferative, poorly differentiated phenotype in COPD lung tissue progenitor cells in vitro. Exp Lung Res. 2023;49:12–26. doi: 10.1080/01902148.2022.2158404. PubMed DOI
Gerovac BJ, Valencia M, Baumlin N, Salathe M, Conner GE, Fregien NL. Submersion and hypoxia inhibit ciliated cell differentiation in a notch-dependent manner. Am J Respir Cell Mol Biol. 2014;51:516–525. doi: 10.1165/rcmb.2013-0237OC. PubMed DOI PMC
Brooks ER, Wallingford JB. Multiciliated Cells. Current Biol. 2014;24:R973–982. doi: 10.1016/j.cub.2014.08.047. PubMed DOI PMC
Li Q, Han Z, Singh N, Terré B, Fame R, Arif U, et al. Disruption of GMNC-MCIDAS multiciliogenesis program is critical in choroid plexus carcinoma development. Cell Death & Differentiation. 2022;29:1–15. doi: 10.1038/s41418-022-00950-z. PubMed DOI PMC
Vladar EK, Mitchell BJ. It’s a family act: the geminin triplets take center stage in motile ciliogenesis. The EMBO Journal. 2016;35:904–906. doi: 10.15252/embj.201694206. PubMed DOI PMC
Rahane D, Dhingra T, Chalavady G, Datta A, Ghosh B, Rana N, et al. Hypoxia and its effect on the cellular system. Cell Biochemistry and Function. 2024;42:e3940. doi: 10.1002/cbf.3940. PubMed DOI
Ozcan SC, Kalkan BM, Cicek E, Canbaz AA, Acilan C. Prolonged overexpression of PLK4 leads to formation of centriole rosette clusters that are connected via canonical centrosome linker proteins. Sci Rep. 2024;14:4370. doi: 10.1038/s41598-024-53985-2. PubMed DOI PMC
LoMastro GM, Drown CG, Maryniak AL, Jewett CE, Strong MA, Holland AJ. PLK4 drives centriole amplification and apical surface area expansion in multiciliated cells. eLife. 11:e80643. doi: 10.7554/eLife.80643. PubMed DOI PMC
Salyha N, Oliynyk I. Hypoxia modeling techniques: A review. Heliyon. 2023;9:e13238. doi: 10.1016/j.heliyon.2023.e132382. PubMed DOI PMC