CineECG Repolarization Gradients Predict Acute Hemodynamic Response in CRT Patients
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
This study was supported by the project National Institute for Research of Metabolic and Cardiovascular Diseases (Programme EXCELES, Project No. LX22NPO5104) - Funded by the European Union - Next Generation EU. This work was also funded by the project (Ministry of Health, Czech Republic) for development of research organization 00023001 (IKEM, Prague, Czech Republic) - Institutional support and by the Czech Technical University in Prague (SGS22/203/OHK4/3T/17).
PubMed
39618333
PubMed Central
PMC11837882
DOI
10.1111/jce.16525
Knihovny.cz E-zdroje
- Klíčová slova
- cardiac resynchronization therapy, heart failure, hemodynamics, multipoint pacing, multisite pacing, repolarization,
- MeSH
- akční potenciály * MeSH
- blokáda Tawarova raménka * patofyziologie terapie diagnóza MeSH
- časové faktory MeSH
- dilatační kardiomyopatie * patofyziologie terapie diagnóza MeSH
- elektrokardiografie * MeSH
- funkce levé komory srdeční * MeSH
- hemodynamika * MeSH
- lidé středního věku MeSH
- lidé MeSH
- prediktivní hodnota testů MeSH
- senioři MeSH
- srdeční frekvence MeSH
- srdeční resynchronizační terapie * MeSH
- výsledek terapie MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
INTRODUCTION: A variable proportion of non-responders to cardiac resynchronization therapy (CRT) warrants the search for new approaches to optimize the position of the left ventricular (LV) lead and the CRT device programming. CineECG is a novel ECG modality proposed for the spatial visualization and quantification of myocardial depolarization and repolarization sequences. OBJECTIVE: The present study aimed to evaluate CineECG-derived parameters in different pacing modes and to test their associations with acute hemodynamic responses in CRT patients. METHODS AND RESULTS: CineECG was used to construct the average electrical path within the cardiac anatomy from the 12-lead ECG. CineECG and LV dP/dt max were tested in 15 patients with nonischemic dilated cardiomyopathy and left bundle branch block (QRS: 170 ± 17 ms; LVEF: 26 ± 5.5%) under pacing protocols with different LV lead localizations. The CineECG-derived path directions were computed for the QRS and ST-T intervals for the anteroposterior (Xh), interventricular (Yh), and apicobasal (Zh) axes. In a multivariate linear regression analysis with adjustment for the pacing protocol type, the ST-T path direction Yh was independently associated with the increase in dP/dt max during CRT, [regression coefficient 639.4 (95% confidence interval: 187.9-1090.9), p = 0.006]. In ROC curve analysis, the ST-T path direction Yh was associated with the achievement of a 10% increase in dP/dt max (AUC: 0.779, p = 0.002) with the optimal cut-off > 0.084 (left-to-right direction) with sensitivity 0.67 and specificity 0.92. CONCLUSION: The acute hemodynamic response in CRT patients was associated with specific CineECG repolarization sequence parameters, warranting their further testing as potential predictors of clinical outcomes.
Center for Digital Medicine and Robotics Jagiellonian University Medical College Krakow Poland
Department of Cardiology Institute for Clinical and Experimental Medicine Prague Czech Republic
Zobrazit více v PubMed
Glikson M., Nielsen J. C., Kronborg M. B., et al., “2021 ESC Guidelines on Cardiac Pacing and Cardiac Resynchronization Therapy,” European Heart Journal 42 (2021): 3427–3520. PubMed
Akhtar Z., Gallagher M. M., Kontogiannis C., et al., “Progress in Cardiac Resynchronisation Therapy and Optimisation,” Journal of Cardiovascular Development and Disease 10 (2023): 428. PubMed PMC
Sohal M., Shetty A., Niederer S., et al., “Mechanistic Insights Into the Benefits of Multisite Pacing in Cardiac Resynchronization Therapy: The Importance of Electrical Substrate and Rate of Left Ventricular Activation,” Heart Rhythm: The Official Journal of the Heart Rhythm Society 12 (2015): 2449–2457. PubMed
Heckman L. I. B., Kuiper M., Anselme F., et al., “Evaluating Multisite Pacing Strategies in Cardiac Resynchronization Therapy in the Preclinical Setting,” Heart Rhythm O2 1 (2020): 111–119. PubMed PMC
Sramko M., Kryze L., Kukla J., et al., “Acute Hemodynamic Effect of a Novel Dual‐Vein, Multisite Biventricular Pacing Configuration,” JACC: Clinical Electrophysiology 9 (2023): 2329–2338. PubMed
Wijesuriya N., Elliott M. K., Mehta V., et al., “Pacing Interventions in Non‐Responders to Cardiac Resynchronization Therapy,” Frontiers in Physiology 14 (2023): 1054095. PubMed PMC
Bordachar P., Gras D., Clementy N., et al., “Clinical Impact of an Additional Left Ventricular Lead in Cardiac Resynchronization Therapy Nonresponders: The v(3) Trial,” Heart Rhythm: The Official Journal of the Heart Rhythm Society 15 (2018): 870–876. PubMed
Gould J., Claridge S., Jackson T., et al., “Standard Care Vs. Triventricular Pacing in Heart Failure (STRIVE HF): A Prospective Multicentre Randomized Controlled Trial of Triventricular Pacing Vs. Conventional Biventricular Pacing in Patients With Heart Failure and Intermediate Qrs Left Bundle Branch Block,” Europace: European Pacing, Arrhythmias, and Cardiac Electrophysiology: Journal of the Working Groups on Cardiac Pacing, Arrhythmias, and Cardiac Cellular Electrophysiology of the European Society of Cardiology 24 (2022): 796–806. PubMed PMC
San Antonio R., Guasch E., González‐Ascaso A., et al., “Optimized Single‐Point Left Ventricular Pacing Leads to Improved Resynchronization Compared With Multipoint Pacing,” Pacing and Clinical Electrophysiology 44 (2021): 519–527. PubMed
Elliott M. K., Mehta V., Wijesuriya N., et al., “Multi‐Lead Pacing for Cardiac Resynchronization Therapy in Heart Failure: A Meta‐Analysis of Randomized Controlled Trials,” European Heart Journal Open 2, no. 2 (2022): oeac013. PubMed PMC
Strauss D. G., Selvester R. H., and Wagner G. S., “Defining Left Bundle Branch Block in the Era of Cardiac Resynchronization Therapy,” American Journal of Cardiology 107 (2011): 927–934. PubMed
Strauss D. G., “Differentiation Between Left Bundle Branch Block and Left Ventricular Hypertrophy: Implications for Cardiac Resynchronization Therapy,” Journal of Electrocardiology 45 (2012): 635–639. PubMed
Mugnai G., Donazzan L., Tomasi L., et al., “Electrocardiographic Predictors of Echocardiographic Response in Cardiac Resynchronization Therapy: Update of an Old Story,” Journal of Electrocardiology 75 (2022): 36–43. PubMed
van Dam P. M., Boonstra M., Locati E. T., and Loh P., “The Relation of 12 Lead ECG to the Cardiac Anatomy: The Normal CineECG,” Journal of Electrocardiology 69S (2021): 67–74. PubMed
Boonstra M. J., Brooks D. H., Loh P., and van Dam P. M., “CineECG: A Novel Method to Image the Average Activation Sequence in the Heart From the 12‐lead Ecg,” Computers in Biology and Medicine 141 (2022): 105128. PubMed
van der Schaaf I., Kloosterman M., Boonstra M. J., van Dam P. M., and Gorgels A. P. M., “CineECG Illustrating the Ventricular Activation Sequence in Progressive AV‐Junctional Conduction Block,” Journal of Electrocardiology 78 (2023): 1–4. PubMed
Frosted R., Paludan‐Müller C., Vad O. B., et al., “CineECG Analysis Provides New Insights Into Familial ST‐Segment Depression Syndrome,” Europace 25, no. 5 (2023): euad116. PubMed PMC
van Dam P. M., Boonstra M., Locati E. T., and Loh P., “The Relation of 12 Lead ECG to the Cardiac Anatomy: The normal CineECG,” Journal of Electrocardiology 69 (2021): 67–74. PubMed
Boonstra M. J., Brooks D. H., Loh P., and van Dam P. M., “Relationship Between Cardiac Isochrones and Its Mean Anatomical Position in the Heart: The CineECG,” Computing in Cardiology (CinC) 48 (2021): 1–4.
van Dam P. M., Locati E. T., Ciconte G., et al., “Novel CineECG Derived From Standard 12‐Lead ECG Enables Right Ventricle Outflow Tract Localization of Electrical Substrate in Patients With Brugada Syndrome,” Circulation: Arrhythmia and Electrophysiology 13 (2020): e008524. PubMed
Jastrzębski M., Baranchuk A., Fijorek K., et al., “Cardiac Resynchronization Therapy‐Induced Acute Shortening of QRS Duration Predicts Long‐Term Mortality Only in Patients With Left Bundle Branch Block,” EP Europace 21, no. 2 (2019): 281–289. PubMed
Fung J. W. H., “Variable Left Ventricular Activation Pattern in Patients With Heart Failure and Left Bundle Branch Block,” Heart 90 (2004): 17–19. PubMed PMC
Derval N., Duchateau J., Mahida S., et al., “Distinctive Left Ventricular Activations Associated With ECG Pattern in Heart Failure Patients,” Circulation: Arrhythmia and Electrophysiology 10 (2017): e005073. PubMed
Feaster T. K., Casciola M., Narkar A., and Blinova K., “Acute Effects of Cardiac Contractility Modulation on Human Induced Pluripotent Stem Cell–Derived Cardiomyocytes,” Physiological Reports 9, no. 21 (2021): e15085. PubMed PMC
Engels E. B., Végh E. M., Van Deursen C. J. M., Vernooy K., Singh J. P., and Prinzen F. W., “T‐Wave Area Predicts Response to Cardiac Resynchronization Therapy in Patients With Left Bundle Branch Block,” Journal of Cardiovascular Electrophysiology 26 (2015): 176–183. PubMed
Végh E. M., Engels E. B., Van Deursen C. J. M., et al., “T‐Wave Area as Biomarker of Clinical Response to Cardiac Resynchronization Therapy,” Europace 18 (2016): 1077–1085. PubMed
Arteyeva N. V. and Azarov J. E., “Effect of Action Potential Duration on Tpeak ‐Tend Interval, T‐Wave Area and T‐Wave Amplitude as Indices of Dispersion of Repolarization: Theoretical and Simulation Study in the Rabbit Heart,” Journal of Electrocardiology 50 (2017): 919–924. PubMed
Lellouche N., De Diego C., Boyle N. G., et al., “Relationship Between Mechanical and Electrical Remodelling in Patients With Cardiac Resynchronization Implanted Defibrillators,” Europace 13 (2011): 1180–1187. PubMed PMC
Itoh M., Yoshida A., Fukuzawa K., et al., “Time‐Dependent Effect of Cardiac Resynchronization Therapy on Ventricular Repolarization and Ventricular Arrhythmias,” Europace 15 (2013): 1798–1804. PubMed
Xue C., Hua W., Cai C., et al., “Acute and Chronic Changes and Predictive Value of Tpeak‐Tend for Ventricular Arrhythmia Risk in Cardiac Resynchronization Therapy Patients,” Chinese Medical Journal 129 (2016): 2204–2211. PubMed PMC
Elliott M. K., Strocchi M., Mehta V. S., et al., “Dispersion of Repolarization Increases With Cardiac Resynchronization Therapy and Is Associated With Left Ventricular Reverse Remodeling,” Journal of Electrocardiology 72 (2022): 120–127. PubMed PMC
Cvijić M., Antolič B., Klemen L., and Zupan I., “Repolarization Heterogeneity in Patients With Cardiac Resynchronization Therapy and Its Relation to Ventricular Tachyarrhythmias,” Heart Rhythm: The Official Journal of the Heart Rhythm Society 15 (2018): 1784–1790. PubMed