Tumor Suppressor miR-34a: Potential Biomarker of TACE Response in HCC
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
MUNI/A/1222/2022
Masarykova Univerzita
16-31765A
Ministerstvo Zdravotnictví Ceské Republiky
16-31314A
Ministerstvo Zdravotnictví Ceské Republiky
65269705
Ministerstvo Zdravotnictví Ceské Republiky
SP2023/011
Vysoká Škola Bánská - Technická Univerzita Ostrava
PubMed
39638971
DOI
10.1007/s00270-024-03908-5
PII: 10.1007/s00270-024-03908-5
Knihovny.cz E-zdroje
- Klíčová slova
- Degradable and nondegradable particles, Hepatocellular carcinoma, Hypoxia, MicroRNA and vascular endothelial growth factor, Transarterial chemoembolization, Tumor suppressor,
- MeSH
- biologické markery krev MeSH
- chemoembolizace * metody MeSH
- hepatocelulární karcinom * terapie krev genetika MeSH
- lidé středního věku MeSH
- lidé MeSH
- mikro RNA * krev MeSH
- nádorové biomarkery * krev MeSH
- nádory jater * terapie genetika krev MeSH
- prospektivní studie MeSH
- senioři MeSH
- vaskulární endoteliální růstový faktor A * krev MeSH
- výsledek terapie MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biologické markery MeSH
- mikro RNA * MeSH
- MIRN21 microRNA, human MeSH Prohlížeč
- MIRN34 microRNA, human MeSH Prohlížeč
- nádorové biomarkery * MeSH
- vaskulární endoteliální růstový faktor A * MeSH
PURPOSE: TACE induces variable systemic effects by producing factors that promote inflammation, oncogenesis, and angiogenesis. Here we compare concentrations of microRNAs (miR-21, miR-210 and miR-34a) and vascular endothelial growth factor (VEGF) in hepatocellular carcinoma (HCC) patients undergoing TACE with degradable (DSM) and nondegradable (DEB) particles and potential use of these biomarker changes for prediction of patient outcomes. MATERIALS AND METHODS: Overall, 52 patients with HCC treated with DSM TACE (24 patients) and DEB TACE (28 patients) were included in this prospective study. Concentrations of studied biomarkers were measured from blood plasma preprocedurally, immediately (< 90 min) postprocedurally, and 24-h after TACE. Levels were compared between DSM and DEB TACE and correlated with treatment response six and 12 months after the first TACE. RESULTS: Both DSM and DEB TACE elevated plasma levels of miR-21, miR-34a, and miR-210 at 24 h post-procedure compared to baseline levels (FC 1.25-4.0). MiR-34a elevation immediately after TACE was significantly associated with nonprogressive disease compared to those with progressive disease at both six months (FCa: p = 0.014) and 12 months (FCa: p = 0.029) post-TACE. No significant biomarker changes were found between the embolization particle groups. However, VEGF levels showed a decrease only in the DSM TACE group (FC24: p = < 0.001). CONCLUSION: Embolization particle type did not significantly impact miRNA or VEGF changes post-TACE. However, miR-34a elevation immediately after the procedure predicts better patient outcome and may prove useful as a biomarkers for the monitoring of clinical outcomes. LEVEL OF EVIDENCE: Level 3 Prospective cohort study.
Central European Institute of Technology Kamenice 753 5 625 00 Brno Czechia
CERIT SC Centre Institute of Computer Science Masaryk University Šumavská 416 15 602 00 Brno Czechia
Hadassah Hebrew University Medical Center Ein Karem Jerusalem Israel
Masaryk Memorial Cancer Institute Žlutý Kopec 543 7 602 00 Brno Czechia
Zobrazit více v PubMed
Yang ZF, Poon RTP. Vascular changes in hepatocellular carcinoma. Anat Rec (Hoboken). 2008;291:721–34. https://doi.org/10.1002/ar.20668 . PubMed DOI
Kulshreshtha R, Ferracin M, Wojcik SE, et al. A microRNA signature of hypoxia. Mol Cell Biol. 2007;27:1859–67. https://doi.org/10.1128/MCB.01395-06 . PubMed DOI PMC
Chan YC, Banerjee J, Choi SY, Sen CK. miR-210: the master hypoxamir. Microcirculation. 2012;19:215–23. https://doi.org/10.1111/j.1549-8719.2011.00154.x . PubMed DOI PMC
Fasanaro P, D’Alessandra Y, Di Stefano V, et al. MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3. J Biol Chem. 2008;283:15878–83. https://doi.org/10.1074/jbc.M800731200 . PubMed DOI PMC
Camps C, Buffa FM, Colella S, et al. hsa-miR-210 Is induced by hypoxia and is an independent prognostic factor in breast cancer. Clin Cancer Res. 2008;14:1340–8. https://doi.org/10.1158/1078-0432.CCR-07-1755 . PubMed DOI
Potente M, Gerhardt H, Carmeliet P. Basic and therapeutic aspects of angiogenesis. Cell. 2011;146:873–87. https://doi.org/10.1016/j.cell.2011.08.039 . PubMed DOI
Bozzato AM, Martingano P, PozziMucelli RA, et al. MicroRNAs related to TACE treatment response: a review of the literature from a radiological point of view. Diagnostics (Basel). 2022;12:374. https://doi.org/10.3390/diagnostics12020374 . PubMed DOI
Kaller M, Liffers S-T, Oeljeklaus S, et al. Genome-wide characterization of miR-34a induced changes in protein and mRNA expression by a combined pulsed SILAC and microarray analysis. Mol Cell Proteomics. 2011;10(M111):010462. https://doi.org/10.1074/mcp.M111.010462 . DOI
Farooqi AA, Tabassum S, Ahmad A. MicroRNA-34a: a versatile regulator of myriads of targets in different cancers. Int J Mol Sci. 2017;18:2089. https://doi.org/10.3390/ijms18102089 . PubMed DOI PMC
Shi K, Sun H, Zhang H, et al. miR-34a-5p aggravates hypoxia-induced apoptosis by targeting ZEB1 in cardiomyocytes. Biol Chem. 2019;400:227–36. https://doi.org/10.1515/hsz-2018-0195 . PubMed DOI
Liu J, Zhu H, Yang X, et al. MicroRNA-21 is a novel promising target in cancer radiation therapy. Tumor Biol. 2014;35:3975–9. https://doi.org/10.1007/s13277-014-1623-8 . DOI
Lendvai G, Szekerczés T, Gyöngyösi B, et al. MicroRNA expression in focal nodular hyperplasia in comparison with cirrhosis and hepatocellular carcinoma. Pathol Oncol Res. 2019;25:1103–9. https://doi.org/10.1007/s12253-018-0528-z . PubMed DOI
Wiggermann P, Wohlgemuth WA, Heibl M, et al. Dynamic evaluation and quantification of microvascularization during degradable starch microspheres transarterial chemoembolisation (DSM-TACE) of HCC lesions using contrast enhanced ultrasound (CEUS): a feasibility study. Clin Hemorheol Microcirc. 2013;53:337–48. https://doi.org/10.3233/CH-2012-1555 . PubMed DOI
Ebert M, Ebert J, Berger G. Intravital microscopic research of microembolization with degradable starch microspheres. J Drug Deliv. 2013;2013:242060. https://doi.org/10.1155/2013/242060 . PubMed DOI PMC
Andrasina T, Juracek J, Zavadil J, et al. Thermal ablation and transarterial chemoembolization are characterized by changing dynamics of circulating MicroRNAs. J Vasc Interv Radiol. 2021;32:403–11. https://doi.org/10.1016/j.jvir.2020.10.024 . PubMed DOI
Zavadil J, Juráček J, Čechová B, et al. Dynamic changes in circulating MicroRNA levels in liver cancer patients undergoing thermal ablation and transarterial chemoembolization. Klin Onkol. 2019;32:164–6. PubMed
Schicho A, Hellerbrand C, Krüger K, Beyer LP, Wohlgemuth W, Niessen C, Hohenstein E, Stroszczynski C, Pereira PL, Wiggermann P. Impact of different embolic agents for transarterial chemoembolization (TACE) procedures on systemic vascular endothelial growth factor (VEGF) levels. J Clin Transl Hepatol. 2016;4(4):288. PubMed DOI PMC
Stechele M, Link H, Hirner-Eppeneder H, et al. Circulating miR-21 as a prognostic biomarker in HCC treated by CT-guided high-dose rate brachytherapy. Radiat Oncol. 2023;18:125. https://doi.org/10.1186/s13014-023-02316-2 . PubMed DOI PMC
Zhan M, Li Y, Hu B, et al. Serum microRNA-210 as a predictive biomarker for treatment response and prognosis in patients with hepatocellular carcinoma undergoing transarterial chemoembolization. J Vasc Interv Radiol. 2014;25:1279-1287.e1. https://doi.org/10.1016/j.jvir.2014.04.013 . PubMed DOI
Jia Z, Jiang G, Feng Y. Serum HIF-1alpha and VEGF levels pre- and post-TACE in patients with primary liver cancer. Chin Med Sci J. 2011;26:158–62. https://doi.org/10.1016/s1001-9294(11)60041-2 . PubMed DOI
Shim JH, Park J-W, Kim JH, et al. Association between increment of serum VEGF level and prognosis after transcatheter arterial chemoembolization in hepatocellular carcinoma patients. Cancer Sci. 2008;99:2037–44. https://doi.org/10.1111/j.1349-7006.2008.00909.x . PubMed DOI PMC
Chao Y, Wu C-Y, Kuo C-Y, et al. Cytokines are associated with postembolization fever and survival in hepatocellular carcinoma patients receiving transcatheter arterial chemoembolization. Hepatol Int. 2013;7:883–92. https://doi.org/10.1007/s12072-012-9409-9 . PubMed DOI
Poon RT-P, Lau C, Yu W-C, et al. High serum levels of vascular endothelial growth factor predict poor response to transarterial chemoembolization in hepatocellular carcinoma: a prospective study. Oncol Rep. 2004;11:1077–84. PubMed
Hsieh M-Y, Lin Z-Y, Chuang W-L. Serial serum VEGF-A, angiopoietin-2, and endostatin measurements in cirrhotic patients with hepatocellular carcinoma treated by transcatheter arterial chemoembolization. Kaohsiung J Med Sci. 2011;27:314–22. https://doi.org/10.1016/j.kjms.2011.03.008 . PubMed DOI
Pelizzaro F, Cardin R, Sartori A, et al. Circulating MicroRNA-21 and MicroRNA-122 as prognostic biomarkers in hepatocellular carcinoma patients treated with transarterial chemoembolization. Biomedicines. 2021;9:890. https://doi.org/10.3390/biomedicines9080890 . PubMed DOI PMC
Cui X, Wu Y, Wang Z, et al. MicroRNA-34a expression is predictive of recurrence after radiofrequency ablation in early hepatocellular carcinoma. Tumour Biol. 2015;36:3887–93. https://doi.org/10.1007/s13277-014-3031-5 . PubMed DOI
Canale M, Foschi FG, Andreone P, et al. Role of circulating microRNAs to predict hepatocellular carcinoma recurrence in patients treated with radiofrequency ablation or surgery. HPB. 2022;24:244–54. https://doi.org/10.1016/j.hpb.2021.06.421 . PubMed DOI
Chen S, Mao Y, Chen W, et al. Serum exosomal miR-34a as a potential biomarker for the diagnosis and prognostic of hepatocellular carcinoma. J Cancer. 2022;13:1410–7. https://doi.org/10.7150/jca.57205 . PubMed DOI PMC
Lacombe J, Zenhausern F. Emergence of miR-34a in radiation therapy. Crit Rev Oncol Hematol. 2017;109:69–78. https://doi.org/10.1016/j.critrevonc.2016.11.017 . PubMed DOI
Oda T, Tsuda H, Scarpa A, et al. p53 gene mutation spectrum in hepatocellular carcinoma1. Can Res. 1992;52:6358–64.
Bahrami A, Aledavood A, Anvari K, et al. The prognostic and therapeutic application of microRNAs in breast cancer: Tissue and circulating microRNAs. J Cell Physiol. 2018;233:774–86. https://doi.org/10.1002/jcp.25813 . PubMed DOI
Bertoli G, Cava C, Castiglioni I. The potential of miRNAs for diagnosis, treatment and monitoring of breast cancer. Scand J Clin Lab Invest. 2016;76:S34–9. https://doi.org/10.1080/00365513.2016.1208444 . DOI
Brenner C, Galluzzi L, Kepp O, Kroemer G. Decoding cell death signals in liver inflammation. J Hepatol. 2013;59:583–94. https://doi.org/10.1016/j.jhep.2013.03.033 . PubMed DOI
Hendgen-Cotta UB, Luedike P, Totzeck M, et al. Dietary nitrate supplementation improves revascularization in chronic ischemia. Circulation. 2012;126:1983–92. https://doi.org/10.1161/CIRCULATIONAHA.112.112912 . PubMed DOI
Totzeck M, Schicho A, Stock P, et al. Nitrite circumvents canonical cGMP signaling to enhance proliferation of myocyte precursor cells. Mol Cell Biochem. 2015;401:175–83. https://doi.org/10.1007/s11010-014-2305-y . PubMed DOI
Kohli V, Selzner M, Madden JF, et al. Endothelial cell and hepatocyte deaths occur by apoptosis after ischemie-injury in the rat liver. Transplantation. 1999;67:1099. PubMed DOI
Lee K-H, Liapi E, Vossen JA, et al. Distribution of Iron oxide–containing embosphere particles after transcatheter arterial embolization in an animal model of liver cancer: evaluation with MR imaging and implication for therapy. J Vasc Interv Radiol. 2008;19:1490–6. https://doi.org/10.1016/j.jvir.2008.06.008 . PubMed DOI PMC
Li X, Feng G-S, Zheng C-S, et al. Expression of plasma vascular endothelial growth factor in patients with hepatocellular carcinoma and effect of transcatheter arterial chemoembolization therapy on plasma vascular endothelial growth factor level. World J Gastroenterol. 2004;10:2878–82. https://doi.org/10.3748/wjg.v10.i19.2878 . PubMed DOI PMC
Ranieri G, Ammendola M, Marech I, et al. Vascular endothelial growth factor and tryptase changes after chemoembolization in hepatocarcinoma patients. World J Gastroenterol. 2015;21:6018–25. https://doi.org/10.3748/wjg.v21.i19.6018 . PubMed DOI PMC
Matsui D, Nagai H, Mukozu T, et al. VEGF in patients with advanced hepatocellular carcinoma receiving intra-arterial chemotherapy. Anticancer Res. 2015;35:2205–10. PubMed
Wang J, Yu J-P, Ni X-C, et al. Pathological response and serum VEGF changes during chemoradiotherapy for esophageal carcinoma. Medicine (Baltimore). 2019;98:e15627. https://doi.org/10.1097/MD.0000000000015627 . PubMed DOI
Liu K, Min XL, Peng J, Yang K, Yang L, Zhang XM. The changes of HIF-1α and VEGF expression after TACE in patients with hepatocellular carcinoma. J Clin Med Res. 2016;8(4):297. PubMed DOI PMC
Lee YK, Kim SU, Kim DY, et al. Prognostic value of α-fetoprotein and des-γ-carboxy prothrombin responses in patients with hepatocellular carcinoma treated with transarterial chemoembolization. BMC Cancer. 2013;13:5. https://doi.org/10.1186/1471-2407-13-5 . PubMed DOI PMC