Photosystem II in bio-photovoltaic devices

. 2022 ; 60 (1) : 121-135. [epub] 20220307

Status PubMed-not-MEDLINE Jazyk angličtina Země Česko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid39649000

Hybrid photoelectrodes containing biological pigment-protein complexes can be used for environmentally friendly solar energy conversion, herbicide detection, and other applications. The total number of scientific publications on hybrid bio-based devices has grown rapidly over the past decades. Particular attention is paid to the integration of the complexes of PSII into photoelectrochemical devices. A notable feature of these complexes from a practical point of view is their ability to obtain electrons from abundant water. The utilization or imitation of the PSII functionality seems promising for all of the following: generating photoelectricity, photo-producing hydrogen, and detecting herbicides. This review summarizes recent advances in the development of hybrid devices based on PSII. In a brief historical review, we also highlighted the use of quinone-type bacterial reaction centers in hybrid devices. These proteins are the first from which the photoelectricity signal was detected. The photocurrent in these first systems, developed in the 70s-80s, was about 1 nA cm-2. In the latest work, by Güzel et al. (2020), a stable current of about 888 μA cm-2 as achieved in a PSII-based solar cell. The present review is inspired by this impressive progress. The advantages, disadvantages, and future endeavors of PSII-inspired bio-photovoltaic devices are also presented.

Zobrazit více v PubMed

Allakhverdiev S.I., Kreslavski V.D. Thavasi V. et al.: Hydrogen photoproduction by use of photosynthetic organisms and biomimetic systems. – Photoch. Photobio. Sci. 8: 148-156, 2009. https://pubs.rsc.org/en/content/articlelanding/2009/PP/B814932A PubMed

Allakhverdiev S.I., Kreslavski V., Thavasi V. et al.: Photosynthetic energy conversion: Hydrogen photoproduction by natural and biomimetic means. – In: Mukherjee A. (ed.): Biomimetics Learning from Nature. Pp. 49-75. InTech; 2010a. https://www.intechopen.com/chapters/10038

Allakhverdiev S.I., Thavasi V., Kreslavski V.D. et al.: Photosynthetic hydrogen production. – J. Photoch. Photobio. C 11: 101-113, 2010b. https://www.sciencedirect.com/science/article/pii/S1389556710000390?via%3Dihub

Allen M.J.: Direct conversion of radiant into electrical energy using plant systems. – In: Buvet R., Allen M.J., Massué J.-P. (ed.): Living Systems As Energy Converters. Proceedings of the European Conference on Living Systems as Energy Converters. Pp. 271-274. Elsevier; 1977. https://www.sciencedirect.com/science/article/pii/B9780720406290500269

Antonacci A., Attaallah R., Arduini F. et al.: A dual electro-optical biosensor based on Chlamydomonas reinhardtii immobilised on paper-based nanomodified screen-printed electrodes for herbicide monitoring. – J. Nanobiotechnology 19: 145, 2021. https://jnanobiotechnology.biomedcentral.com/articles/10.1186/s12951-021-00887-4 PubMed DOI PMC

Babu V.J., Kumar M.K., Nair A.S. et al.: Visible light photocatalytic water splitting for hydrogen production from N-TiO2 rice grain shaped electrospun nanostructures. – Int. J. Hydrogen Energ. 37: 8897-8904, 2012. https://www.sciencedirect.com/science/article/pii/S036031991102667X?via%3Dihub

Badura A., Guschin D., Esper B. et al.: Photo-induced electron transfer between photosystem 2 via cross-linked redox hydrogels. – Electroanalysis 20: 1043-1047, 2008. https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/elan.200804191 DOI

Barber J., Tran P.D.: From natural to artificial photosynthesis. – J. R. Soc. Interface 10: 20120984, 2013. https://royalsocietypublishing.org/doi/10.1098/rsif.2012.0984 PubMed DOI PMC

Bettazzi F., Laschi S., Mascini M.: One-shot screen-printed thylakoid membrane-based biosensor for the detection of photosynthetic inhibitors in discrete samples. – Anal. Chim. Acta 589: 14-21, 2007. https://www.sciencedirect.com/science/article/pii/S0003267007003923?via%3Dihub PubMed

Brinkert K., Le Formal F., Li X. et al.: Photocurrents from photosystem II in a metal oxide hybrid system: Electron transfer pathways. – BBA-Bioenergetics 1857: 1497-1505, 2016. https://www.sciencedirect.com/science/article/pii/S0005272816300500?via%3Dihub PubMed PMC

Bukhov N.G., Egorova E.A., Govindachary S., Carpentier R.: Changes in polyphasic chlorophyll a fluorescence induction curve upon inhibition of donor or acceptor side of photosystem II in isolated thylakoids. – BBA-Bioenergetics 1657: 121-130, 2004. https://www.sciencedirect.com/science/article/pii/S0005272804001100?via%3Dihub PubMed

Carpentier R., Loranger C., Chartrand J., Purcell M.: Photoelectrochemical cell containing chloroplast membranes as a biosensor for phytotoxicity measurement. – Anal. Chim. Acta 249: 55-60, 1991. https://www.sciencedirect.com/science/article/abs/pii/000326709187007T?via%3Dihub

Chen H., Blaber M.G., Standridge S.D. et al.: Computational modeling of plasmon-enhanced light absorption in a multicomponent dye sensitized solar cell. – J. Phys. Chem. C 116: 10215-10221, 2012. https://pubs.acs.org/doi/10.1021/jp301950q DOI

Chou L.Y., Liu R., He W. et al.: Direct oxygen and hydrogen production by photo water splitting using a robust bioinspired manganese-oxo oligomer complex/tungsten oxide catalytic system. – Int. J. Hydrogen Energ. 37: 8889-8896, 2012. https://www.sciencedirect.com/science/article/pii/S0360319912004387?via%3Dihub

Conrad R., Büchel C., Wilhelm C. et al.: Changes in yield of in-vivo fluorescence of chlorophyll a as a tool for selective herbicide monitoring. – J. Appl. Phycol. 5: 505-516, 1993. https://link.springer.com/article/10.1007/BF02182509 DOI

Cox N., Messinger J.: Reflections on substrate water and dioxygen formation. – BBA-Bioenergetics 1827: 1020-1030, 2013. https://www.sciencedirect.com/science/article/pii/S0005272813000170?via%3Dihub PubMed

Dankov K., Rashkov G., Misra A.N., Apostolova E.L.: Temperature sensitivity of photosystem II in isolated thylakoid membranes from fluridone-treated pea leaves. – Turk. J. Bot. 39: 420-428, 2015. https://journals.tubitak.gov.tr/botany/issues/bot-15-39-3/bot-39-3-4-1407-46.pdf

den Hollander M.J., Magis J.G., Fuchsenberger P. et al.: Enhanced photocurrent generation by photosynthetic bacterial reaction centers through molecular relays, light-harvesting complexes, and direct protein-gold interactions. – Langmuir 27: 10282-10294, 2011. https://pubs.acs.org/doi/10.1021/la2013528 PubMed DOI

Dogutan D.K., Nocera D.G.: Artificial photosynthesis at efficiencies greatly exceeding that of natural photosynthesis. – Acc. Chem. Res. 52: 3143-3148, 2019. https://pubs.acs.org/doi/10.1021/acs.accounts.9b00380 PubMed DOI

Drachev L.A., Kondrashin A.A., Samuilov V.D., Skulachev V.P.: Generation of electric potential by reaction center complexes from Rhodospirillum rubrum. – FEBS Lett. 50: 219-222, 1975. https://febs.onlinelibrary.wiley.com/doi/abs/10.1016/0014-5793%2875%2980492-3 PubMed DOI

Emerson R., Chalmers R., Cederstrand C.: Some factors influencing the long-wave limit of photosynthesis. – P. Natl. Acad. Sci. USA 43: 133-143, 1957. https://www.pnas.org/content/43/1/133 PubMed PMC

Faulkner C.J., Lees S., Ciesielski P.N. et al.: Rapid assembly of photosystem I monolayers on gold electrodes. – Langmuir 24: 8409-8412, 2008. https://pubs.acs.org/doi/abs/10.1021/la800670b PubMed DOI

Faure B., Salazar-Alvarez G., Ahniyaz A. et al.: Dispersion and surface functionalization of oxide nanoparticles for transparent photocatalytic and UV-protecting coatings and sunscreens. – Sci. Technol. Adv. Mater. 14: 023001, 2013. https://www.tandfonline.com/doi/full/10.1088/1468-6996/14/2/023001 PubMed DOI PMC

Frenzel M., Hirsch T., Gutzmer J.: Gallium, germanium, indium, and other trace and minor elements in sphalerite as a function of deposit type – A meta-analysis. – Ore Geol. Rev. 76: 52-78, 2016. https://www.sciencedirect.com/science/article/pii/S0169136815302961?via%3Dihub

Friebe V.M., Frese R.N.: Photosynthetic reaction center-based biophotovoltaics. – Curr. Opin. Electrochem. 5: 126-134, 2017. https://www.sciencedirect.com/science/article/pii/S2451910317300789?via%3Dihub

Friebe V.M., Millo D., Swainsbury D.J.K. et al.: Cytochrome c provides an electron-funneling antenna for efficient photocurrent generation in a reaction center biophotocathode. – ACS Appl. Mater. Interfaces 9: 23379-23388, 2017. https://pubs.acs.org/doi/10.1021/acsami.7b03278 PubMed DOI PMC

Frolov L., Rosenwaks Y., Carmeli C., Carmeli I.: Fabrication of a photoelectronic device by direct chemical binding of the photosynthetic reaction center protein to metal surfaces. – Adv. Mater. 17: 2434-2437, 2005. https://onlinelibrary.wiley.com/doi/10.1002/adma.200500295 DOI

Fu H.-Y., Picot D., Choquet Y. et al.: Redesigning the QA binding site of Photosystem II allows reduction of exogenous quinones. – Nat. Commun. 8: 15274, 2017. https://www.nature.com/articles/ncomms15274 PubMed PMC

Fujishima A., Honda K.: Electrochemical photolysis of water at a semiconductor electrode. – Nature 238: 37-38, 1972. https://www.nature.com/articles/238037a0 PubMed

Gall B., Zehetner A., Scherz A., Scheer H.: Modification of pigment composition in the isolated reaction center of photosystem II. – FEBS Lett. 434: 88-92, 1998. https://febs.onlinelibrary.wiley.com/doi/abs/10.1016/S0014-5793%2898%2900956-9 PubMed DOI

Gangotri K.M., Bhimwal M.K.: The photochemical conversion of solar energy into electrical energy: Eosin-fructose system. – Environ. Prog. Sustain. Energy 30: 493-499, 2011. https://aiche.onlinelibrary.wiley.com/doi/10.1002/ep.10488 DOI

Giardi M.T., Guzzella L., Euzet P. et al.: Detection of herbicide subclasses by an optical multibiosensor based on an array of photosystem II mutants. – Environ. Sci. Technol. 39: 5378-5384, 2005. https://pubs.acs.org/doi/10.1021/es040511b PubMed DOI

Giardi M.T., Koblížek M., Masojídek J.: Photosystem II-based biosensors for the detection of pollutants. – Biosens. Bioelectron. 16: 1027-1033, 2001. https://www.sciencedirect.com/science/article/abs/pii/S095656630100197X?via%3Dihub PubMed

Gizzie E.A., Scott Niezgoda J., Robinson M.T. et al.: Photosystem I-polyaniline/TiO 2 solid-state solar cells: simple devices for biohybrid solar energy conversion. – Energy Environ. Sci. 8: 3572-3576, 2015. https://pubs.rsc.org/en/content/articlelanding/2015/ee/c5ee03008k

Govindjee, Kern J.F., Messinger J., Whitmarsh J.: Photosystem II. – In: Encyclopedia of Life Sciences. Pp. 1-15. John Wiley & Sons, Ltd, Chichester: 2010. https://www.life.illinois.edu/govindjee/Electronic%20Publications/2010/2010_govindjee_et_al_Encyclopedia%20of%20Life%20Sciences%282010%29.pdf

Grätzel M.: Mesoporous oxide junctions and nanostructured solar cells. – Curr. Opin. Colloid Interface Sci. 4: 314-321, 1999. https://www.sciencedirect.com/science/article/abs/pii/S1359029499900134?via%3Dihub

Grätzel M.: Photoelectrochemical cells. – Nature 414: 338-344, 2001. https://www.nature.com/articles/35104607 PubMed

Grätzel M.: Photovoltaic and photoelectrochemical conversion of solar energy. – Philos. T. Roy. Soc. A 365: 993-1005, 2007. https://royalsocietypublishing.org/doi/10.1098/rsta.2006.1963 PubMed DOI

Güzel R., Yediyıldız F., Ocak Y.S. et al.: Photosystem (PSII)-based hybrid nanococktails for the fabrication of BIO-DSSC and photo-induced memory device. – J. Photoch. Photobio. A Chem. 401: 112743, 2020. https://www.sciencedirect.com/science/article/abs/pii/S1010603020305426?via%3Dihub

Hakala M., Rantamäki S., Puputti E.M. et al.: Photoinhibition of manganese enzymes: Insights into the mechanism of photosystem II photoinhibition. – J. Exp. Bot. 57: 1809-1816, 2006. https://academic.oup.com/jxb/article/57/8/1809/524578 PubMed

Hasan K., Grippo V., Sperling E. et al.: Evaluation of photocurrent generation from different photosynthetic organisms. – ChemElectroChem 4: 412-417, 2017. https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/celc.201600541 DOI

He Y., Hamann T., Wang D.: Thin film photoelectrodes for solar water splitting. – Chem. Soc. Rev. 48: 2182-2215, 2019. https://pubs.rsc.org/en/content/articlelanding/2019/CS/C8CS00868J PubMed

Hou H.J.M.: Toward molecular mechanisms of solar water splitting in semiconductor/manganese materials and photosystem II. – In: Shen J.R., Satoh K., Allakhverdiev S.I. (ed.): Photosynthesis: Molecular Approaches to Solar Energy Conversion. Advances in Photosynthesis and Respiration (Including Bioenergy and Related Processes). Vol. 47. Pp. 105-129. Springer, Cham: 2021. https://link.springer.com/chapter/10.1007/978-3-030-67407-6_4 DOI

IEA: World Energy Outlook 2019. IEA, Paris: 2019. https://www.iea.org/reports/world-energy-outlook-2019

Ihssen J., Braun A., Faccio G. et al.: Light harvesting proteins for solar fuel generation in bioengineered photoelectrochemical cells. – Curr. Protein Pept. Sci. 15: 374-384, 2014. http://www.eurekaselect.com/article/59789 PubMed PMC

Kalaji H.M., Schansker G., Brestic M. et al.: Frequently asked questions about chlorophyll fluorescence, the sequel. – Photosynth. Res. 132: 13-66, 2017. https://link.springer.com/article/10.1007/s11120-016-0318-y PubMed DOI PMC

Kalaji H.M., Schansker G., Ladle R.J. et al.: Frequently asked questions about in vivo chlorophyll fluorescence: Practical issues. – Photosynth. Res. 122: 121-158, 2014. https://link.springer.com/article/10.1007/s11120-014-0024-6 PubMed DOI PMC

Kato M., Cardona T., Rutherford A.W., Reisner E.: Covalent immobilization of oriented photosystem II on a nanostructured electrode for solar water oxidation. – J. Am. Chem. Soc. 135: 10610-10613, 2013. https://pubs.acs.org/doi/10.1021/ja404699h PubMed DOI PMC

Kato M., Zhang J.Z., Paul N., Reisner E.: Protein film photoelectrochemistry of the water oxidation enzyme photosystem II. – Chem. Soc. Rev. 43: 6485-6497, 2014. https://pubs.rsc.org/en/content/articlelanding/2014/CS/C4CS00031E PubMed

Kavadiya S., Chadha T.S., Liu H. et al.: Directed assembly of the thylakoid membrane on nanostructured TiO2 for a photo-electrochemical cell. – Nanoscale 8: 1868-1872, 2016. https://pubs.rsc.org/en/content/articlelanding/2016/NR/C5NR08178E PubMed

Kavan L., O'Regan B., Kay A., Grätzel M.: Preparation of TiO2 (anatase) films on electrodes by anodic oxidative hydrolysis of TiCl3. – J. Electroanal. Chem. 346: 291-307, 1993. https://www.sciencedirect.com/science/article/abs/pii/002207289385020H?via%3Dihub

Kiley P., Zhao X., Vaughn M. et al.: Self-assembling peptide detergents stabilize isolated photosystem I on a dry surface for an extended time. – PLoS Biol. 3: e230, 2005. https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.0030230 PubMed PMC

Koblížek M., Malý J., Masojídek J. et al.: A biosensor for the detection of triazine and phenylurea herbicides designed using Photosystem II coupled to a screen-printed electrode. – Biotechnol. Bioeng. 78: 110-116, 2002. https://onlinelibrary.wiley.com/doi/10.1002/bit.10190 PubMed DOI

Kornienko N., Zhang J.Z., Sakimoto K.K. et al.: Interfacing nature's catalytic machinery with synthetic materials for semi-artificial photosynthesis. – Nat. Nanotechnol. 13: 890-899, 2018. https://www.nature.com/articles/s41565-018-0251-7/ PubMed

Kostic M.M.: Energy : Global and Historical Background. – In: Capehart B.L. (ed.): Encyclopedia of Energy Engeneering. Pp. 1-15. Taylor & Francis/Marcel Dekker; 2007.

Kothe T., Plumeré N., Badura A. et al.: Combination of a photosystem 1-based photocathode and a photosystem 2-based photoanode to a Z-scheme mimic for biophotovoltaic applications. – Angew. Chem. Int. Ed. 52: 14233-14236, 2013. https://onlinelibrary.wiley.com/doi/full/10.1002/anie.201303671 PubMed DOI PMC

Kumar P., Kuppam C. (eds.): Bioelectrochemical Systems. Pp. 326. Springer Singapore, Singapore: 2020. https://link.springer.com/book/10.1007/978-981-15-6872-5 DOI

Lavergne J., Trissl H.W.: Theory of fluorescence induction in photosystem II: derivation of analytical expressions in a model including exciton–radical-pair equilibrium and restricted energy transfer between photosynthetic units. – Biophys. J. 68: 2474-2492, 1995. https://www.cell.com/biophysj/pdf/S0006-3495(95)80429-7.pdf PubMed PMC

Lebedev N., Trammell S.A., Spano A. et al.: Conductive wiring of immobilized photosynthetic reaction center to electrode by cytochrome c. – J. Am. Chem. Soc. 128: 12044-12045, 2006. https://pubs.acs.org/doi/10.1021/ja063367y PubMed DOI

Lewis N.S., Nocera D.G.: Powering the planet: chemical challenges in solar energy utilization. – P. Natl. Acad. Sci. USA 103: 15729-15735, 2006. https://www.pnas.org/content/103/43/15729 PubMed PMC

Li J., Wei X., Peng T.: Fabrication of herbicide biosensors based on the inhibition of enzyme activity that catalyzes the scavenging of hydrogen peroxide in a thylakoid membrane. – Anal. Sci. 21: 1217-1222, 2005. https://www.jstage.jst.go.jp/article/analsci/21/10/21_10_1217/_article PubMed

Li Z., Wang W., Ding C. et al.: Biomimetic electron transport via multiredox shuttles from photosystem II to a photoelectrochemical cell for solar water splitting. – Energy Environ. Sci. 10: 765-771, 2017. https://pubs.rsc.org/en/content/articlelanding/2017/EE/C6EE03401B

Liu R., Lin Y., Chou L.-Y. et al.: Water splitting by tungsten oxide prepared by atomic layer deposition and decorated with an oxygen-evolving catalyst. – Angew. Chem. Int. Ed. 50: 499-502, 2011. https://onlinelibrary.wiley.com/doi/10.1002/anie.201004801 PubMed DOI

Lu Y., Yuan M., Liu Y. et al.: Photoelectric performance of bacteria photosynthetic proteins entrapped on tailored mesoporous WO3-TiO2 films. – Langmuir 21: 4071-4076, 2005a. PubMed

Lu Y.D., Liu Y., Xu J.J. et al.: Bio-nanocomposite photoelectrode composed of the bacteria photosynthetic reaction center entrapped on a nanocrystalline TiO2 matrix. – Sensors-Basel 5: 258-265, 2005b. https://www.mdpi.com/1424-8220/5/4/258

Lukashev E.P., Nadtochenko V.A., Permenova E.P. et al.: Electron phototransfer between photosynthetic reaction centers of the bacteria Rhodobacter sphaeroides and semiconductor mesoporous TiO2 films. – Dokl. Biochem. Biophys. 415: 211-216, 2007. https://link.springer.com/article/10.1134/S1607672907040138 PubMed DOI

Maksimov E.G., Lukashev E.P., Seifullina N.K. et al.: Photophysical properties of hybrid complexes of quantum dots and reaction centers of purple photosynthetic bacteria Rhodobacter sphaeroides adsorbed on crystalline mesoporous TiO2 films. – Nanotechnol. Russ. 8: 423-431, 2013. https://link.springer.com/article/10.1134/S1995078013040095 DOI

Malý J., Klem K., Lukavská A., Masojídek J.: Degradation and movement in soil of the herbicide isoproturon analyzed by a Photosystem II-based biosensor. – J. Environ. Qual. 34: 1780-1788, 2005a. https://acsess.onlinelibrary.wiley.com/doi/abs/10.2134/jeq2004.0351 PubMed DOI

Malý J., Krejčí J., Ilie M. et al.: Monolayers of photosystem II on gold electrodes with enhanced sensor response – effect of porosity and protein layer arrangement. – Anal. Bioanal. Chem. 381: 1558-1567, 2005b. https://link.springer.com/article/10.1007/s00216-005-3149-9 PubMed DOI

Masojídek J., Souček P., Máchová J. et al.: Detection of photosynthetic herbicides: Algal growth inhibition test vs. electrochemical photosystem II biosensor. – Ecotox. Environ. Safe. 74: 117-122, 2011. https://www.sciencedirect.com/science/article/abs/pii/S0147651310002393?via%3Dihub PubMed

McConnell I., Li G., Brudvig G.W.: Energy conversion in natural and artificial photosynthesis. – Chem. Biol. 17: 434-447, 2010. https://www.sciencedirect.com/science/article/pii/S1074552110001675?via%3Dihub PubMed PMC

Mersch D., Lee C.Y., Zhang J.Z. et al.: Wiring of photosystem II to hydrogenase for photoelectrochemical water splitting. – J. Am. Chem. Soc. 137: 8541-8549, 2015. https://pubs.acs.org/doi/10.1021/jacs.5b03737 PubMed DOI

Mershin A., Matsumoto K., Kaiser L. et al.: Self-assembled photosystem-I biophotovoltaics on nanostructured TiO2 and ZnO. – Sci. Rep.-UK 2: 234, 2012. https://www.nature.com/articles/srep00234 PubMed PMC

Merz D., Geyer M., Moss D.A., Ache H.-J.: Chlorophyll fluorescence biosensor for the detection of herbicides. – Fresenius J. Anal. Chem. 354: 299-305, 1996. https://link.springer.com/article/10.1007/s0021663540299 PubMed DOI

Michel H., Deisenhofer J.: Relevance of the photosynthetic reaction center from purple bacteria to the structure of photosystem II. – Biochemistry 27: 1-7, 1988. https://pubs.acs.org/doi/abs/10.1021/bi00401a001 DOI

Miyachi M., Ikehira S., Nishiori D. et al.: Photocurrent generation of reconstituted photosystem ii on a self-assembled gold film. – Langmuir 33: 1351-1358, 2017. https://pubs.acs.org/doi/pdf/10.1021/acs.langmuir.6b03499 PubMed DOI

Müh F., Glöckner C., Hellmich J., Zouni A.: Light-induced quinone reduction in photosystem II. – BBA-Bioenergetics 1817: 44-65, 2012. https://www.sciencedirect.com/science/article/pii/S0005272811001381?via%3Dihub PubMed

Musazade E., Voloshin R.A., Brady N. et al.: Biohybrid solar cells: Fundamentals, progress, and challenges. – J. Photoch. Photobio. C 35: 134-156, 2018. https://www.sciencedirect.com/science/article/abs/pii/S1389556718300030?via%3Dihub

Nelson N., Yocum C.F.: Structure and function of photosystems I and II. – Annu. Rev. Plant Biol. 57: 521-565, 2006. https://www.annualreviews.org/doi/10.1146/annurev.arplant.57.032905.105350 PubMed DOI

Nguyen K., Bruce B.D.: Growing green electricity: Progress and strategies for use of Photosystem I for sustainable photovoltaic energy conversion. – BBA-Bioenergetics 1837: 1553-1566, 2014. https://www.sciencedirect.com/science/article/pii/S000527281300234X?via%3Dihub PubMed

Nikandrov V.V., Borisova Y.V., Bocharov E.A. et al.: Photochemical properties of photosystem 1 immobilized in a mesoporous semiconductor matrix. – High Energy Chem. 46: 200-205, 2012. https://link.springer.com/article/10.1134%2FS0018143912030095

Nisbet E.G., Grassineau N.V., Howe C.J. et al.: The age of Rubisco: The evolution of oxygenic photosynthesis. – Geobiology 5: 311-335, 2007. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1472-4669.2007.00127.x DOI

Nishiori D., Zhu W., Salles R. et al.: Photosensing system using photosystem I and gold nanoparticle on graphene field-effect transistor. – ACS Appl. Mater. Interfaces 11: 42773-42779, 2019. https://pubs.acs.org/doi/10.1021/acsami.9b14771 PubMed DOI

Noji T., Suzuki H., Gotoh T. et al.: Photosystem II–gold nanoparticle conjugate as a nanodevice for the development of artificial light-driven water-splitting systems. – J. Phys. Chem. Lett. 2: 2448-2452, 2011. https://pubs.acs.org/doi/10.1021/jz201172y DOI

Oshima T., Nishioka S., Kikuchi Y. et al.: An artificial Z-scheme constructed from dye-sensitized metal oxide nanosheets for visible light-driven overall water splitting. – J. Am. Chem. Soc. 142: 8412-8420, 2020. https://pubs.acs.org/doi/10.1021/jacs.0c02053 PubMed DOI

Packham N.K., Packham C., Mueller P. et al.: Reconstitution de photochemically active reaction centers in planar phospholipid membranes. Light-induced electrical currents under voltage-clamped conditions. – FEBS Lett. 110: 101-106, 1980. https://febs.onlinelibrary.wiley.com/doi/abs/10.1016/0014-5793%2880%2980033-0 PubMed DOI

Pandey A.K., Tyagi V.V., Selvaraj J.A. et al.: Recent advances in solar photovoltaic systems for emerging trends and advanced applications. – Renew. Sust. Energ. Rev. 53: 859-884, 2016. https://www.sciencedirect.com/science/article/abs/pii/S1364032115010138?via%3Dihub

Pinhassi R.I., Kallmann D., Saper G. et al.: Hybrid bio-photo-electro-chemical cells for solar water splitting. – Nat. Commun. 7: 12552, 2016. https://www.nature.com/articles/ncomms12552 PubMed PMC

Plumeré N., Nowaczyk M.M.: Biophotoelectrochemistry of photosynthetic proteins. – In: Jeuken L. (ed.): Biophotoelectrochemistry: From Bioelectrochemistry to Biophotovoltaics. Advances in Biochemical Engineering/Biotechnology. Vol. 158. Pp. 111-136. Springer, Cham: 2016. https://link.springer.com/chapter/10.1007/10_2016_7 PubMed DOI

Pratiyush A.S., Krishnamoorthy S., Muralidharan R. et al.: Advances in Ga2O3 solar-blind UV photodetectors. – In: Pearton S., Ren F., Mastro M. (ed.): Gallium Oxide: Technology, Devices and Applications. Pp. 369-399. Elsevier, Amsterdam: 2018. https://www.sciencedirect.com/science/article/pii/B9780128145210000166

Rao K.K., Hall D.O., Vlachopoulos N. et al.: Photoelectrochemical responses of photosystem II particles immobilized on dye-derivatized TiO2 films. – J. Photoch. Photobio. B 5: 379-389, 1990. https://www.sciencedirect.com/science/article/abs/pii/101113449085052X?via%3Dihub

Rasmussen M., Minteer S.D.: Photobioelectrochemistry: Solar energy conversion and biofuel production with photosynthetic catalysts. – J. Electrochem. Soc. 161: H647-H655, 2014. https://iopscience.iop.org/article/10.1149/2.0651410jes DOI

Ridge Carter J., Baker D.R., Austin Witt T. et al.: Enhanced photocurrent from Photosystem I upon in vitro truncation of the antennae chlorophyll. – Photosynth. Res. 127: 161-170, 2016. https://link.springer.com/article/10.1007/s11120-015-0162-5 PubMed DOI

Rodionova M.V., Poudyal R.S., Tiwari I. et al.: Biofuel production: Challenges and opportunities. – Int. J. Hydrogen Energ. 42: 8450-8461, 2017. https://www.sciencedirect.com/science/article/abs/pii/S0360319916334139?via%3Dihub

Say R., Kılıç G.A., Özcan A.A. et al.: Bioconjugated and cross-linked bionanostructures for bifunctional immunohistochemical labeling. – Microsc. Microanal. 18: 324-330, 2012. https://www.cambridge.org/core/journals/microscopy-and-microanalysis/article/abs/bioconjugated-and-crosslinked-bionanostructures-for-bifunctional-immunohistochemical-labeling/FA89284F69504B93063A98E426F36CD2 PubMed

Schansker G., Tóth S.Z., Kovács L. et al.: Evidence for a fluorescence yield change driven by a light-induced conformational change within photosystem II during the fast chlorophyll a fluorescence rise. – BBA-Bioenergetics 1807: 1032-1043, 2011. https://www.sciencedirect.com/science/article/pii/S000527281100140X?via%3Dihub PubMed

Seibert M., Janzen A.F., Kendall-Tobias M.: Light-induced electron transport across semiconductor electrode/reaction-center film/electrolyte interfaces. – Photochem. Photobiol. 35: 193-200, 1982. https://onlinelibrary.wiley.com/doi/10.1111/j.1751-1097.1982.tb03831.x DOI

Shah V.B., Henson W.R., Chadha T.S. et al.: Linker-free deposition and adhesion of photosystem I onto nanostructured TiO2 for biohybrid photoelectrochemical cells. – Langmuir 31: 1675-1682, 2015. https://pubs.acs.org/doi/abs/10.1021/la503776b PubMed DOI

Shah V.B., Orf G.S., Reisch S. et al.: Characterization and deposition of various light-harvesting antenna complexes by electrospray atomization. – Anal. Bioanal. Chem. 404: 2329-2338, 2012. https://link.springer.com/article/10.1007/s00216-012-6368-x PubMed DOI

Shevela D., Björn L.O., Govindjee: Oxygenic Photosynthesis. – In: Razeghifard R. (ed.): Natural and Artificial Photosynthesis: Solar Power as an Energy Source. Pp. 13-63. John Wiley & Sons Inc., Hoboken: 2013. https://onlinelibrary.wiley.com/doi/10.1002/9781118659892.ch2 DOI

Sokol K.P., Mersch D., Hartmann V. et al.: Rational wiring of photosystem II to hierarchical indium tin oxide electrodes using redox polymers. – Energy Environ. Sci. 9: 3698-3709, 2016. https://pubs.rsc.org/en/content/articlelanding/2016/ee/c6ee01363e

Spies J.A., Perets E.A., Fisher K.J. et al.: Collaboration between experiment and theory in solar fuels research. – Chem. Soc. Rev. 48: 1865-1873, 2019. https://pubs.rsc.org/en/content/articlelanding/2019/CS/C8CS00819A PubMed

Stirbet A., Govindjee: On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and Photosystem II: Basics and applications of the OJIP fluorescence transient. – J. Photoch. Photobio. B 104: 236-257, 2011. https://www.sciencedirect.com/science/article/abs/pii/S1011134410002812?via%3Dihub PubMed

Stirbet A., Lazár D., Kromdijk J., Govindjee: Chlorophyll a fluorescence induction: Can just a one-second measurement be used to quantify abiotic stress responses? – Photosynthetica 56: 86-104, 2018. https://ps.ueb.cas.cz/artkey/phs-201801-0008_chlorophyll-a-fluorescence-induction-can-just-a-one-second-measurement-be-used-to-quantify-abiotic-stress-resp.php

Szewczyk S., Białek R., Burdziński G., Gibasiewicz K.: Photovoltaic activity of electrodes based on intact photosystem I electrodeposited on bare conducting glass. – Photosynth. Res. 144: 1-12, 2020. https://link.springer.com/article/10.1007/s11120-020-00722-1 PubMed DOI PMC

Terasaki N., Iwai M., Yamamoto N. et al.: Photocurrent generation properties of Histag-photosystem II immobilized on nanostructured gold electrode. – Thin Solid Films 516: 2553-2557, 2008. https://www.sciencedirect.com/science/article/abs/pii/S0040609007007213?via%3Dihub

Terasaki N., Yamamoto N., Hiraga T. et al.: Fabrication of novel photosystem I–gold nanoparticle hybrids and their photocurrent enhancement. – Thin Solid Films 499: 153-156, 2006. https://www.sciencedirect.com/science/article/abs/pii/S0040609005008230?via%3Dihub

Terasaki N., Yamamoto N., Hiraga T. et al.: Plugging a molecular wire into photosystem I: Reconstitution of the photoelectric conversion system on a gold electrode. – Angew. Chem. Int. Ed. 48: 1585-1587, 2009. https://onlinelibrary.wiley.com/doi/10.1002/anie.200805748 PubMed DOI

Tian W., Zhang H., Sibbons J. et al.: Photoelectrochemical water oxidation and longevous photoelectric conversion by a photosystem II electrode. – Adv. Energy Mater. 11: 2100911, 2021. https://onlinelibrary.wiley.com/doi/10.1002/aenm.202100911 DOI

Tikhonov A.N.: pH-Dependent regulation of electron transport and ATP synthesis in chloroplasts. – Photosynth. Res. 116: 511-534, 2013. https://link.springer.com/article/10.1007/s11120-013-9845-y PubMed DOI

Touloupakis E., Giannoudi L., Piletsky S.A. et al.: A multi-biosensor based on immobilized Photosystem II on screen-printed electrodes for the detection of herbicides in river water. – Biosens. Bioelectron. 20: 1984-1992, 2005. https://www.sciencedirect.com/science/article/abs/pii/S0956566304004051?via%3Dihub PubMed

Trammell S.A., Spano A., Price R., Lebedev N.: Effect of protein orientation on electron transfer between photosynthetic reaction centers and carbon electrodes. – Biosens. Bioelectron. 21: 1023-1028, 2006. https://www.sciencedirect.com/science/article/abs/pii/S0956566305000990?via%3Dihub PubMed

Trammell S.A., Wang L., Zullo J.M. et al.: Orientated binding of photosynthetic reaction centers on gold using Ni-NTA self-assembled monolayers. – Biosens. Bioelectron. 19: 1649-1655, 2004. https://www.sciencedirect.com/science/article/abs/pii/S095656630400003X?via%3Dihub PubMed

Tucci M., Bombelli P., Howe C.J. et al.: A storable mediatorless electrochemical biosensor for herbicide detection. – Microorganisms 7: 630, 2019. https://www.mdpi.com/2076-2607/7/12/630 PubMed PMC

Vittadello M., Gorbunov M.Y., Mastrogiovanni D.T. et al.: Photoelectron generation by photosystem II core complexes tethered to gold surfaces. – ChemSusChem 3: 471-475, 2010. https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cssc.200900255 PubMed DOI

Vogt L., Vinyard D.J., Khan S., Brudvig G.W.: Oxygen-evolving complex of Photosystem II: An analysis of second-shell residues and hydrogen-bonding networks. – Curr. Opin. Chem. Biol. 25: 152-158, 2015. https://www.sciencedirect.com/science/article/abs/pii/S1367593115000022?via%3Dihub PubMed

Voloshin R.A., Bedbenov V.S., Gabrielyan D.A. et al.: Optimization and characterization of TiO2-based solar cell design using diverse plant pigments. – Int. J. Hydrogen Energ. 42: 8576-8585, 2017. https://www.sciencedirect.com/science/article/abs/pii/S036031991633436X

Voloshin R.A., Brady N.G., Zharmukhamedov S.K. et al.: Influence of osmolytes on the stability of thylakoid-based dyesensitized solar cells. – Int. J. Energy Res. 43: 8878-8889, 2019. https://onlinelibrary.wiley.com/doi/10.1002/er.4866 DOI

Voloshin R.A., Kreslavski V.D., Zharmukhamedov S.K. et al.: Photoelectrochemical cells based on photosynthetic systems: a review. – Biofuel Res. J. 2: 227-235, 2015. https://www.biofueljournal.com/pdf_8880_8497199bdd6403f8d0f0a1db5bbdd203.html

Voloshin R.A., Rodionova M.V., Zharmukhamedov S.K. et al.: Components of natural photosynthetic apparatus in solar cells. – In: Najafpour M.M. (ed.): Applied Photosynthesis – New Progress. Pp. 161-188. InTech, Rijeka: 2016. https://www.intechopen.com/chapters/49842

Walker D.A.: Polarographic measurement of oxygen. – In: Hall D.O., Scurlock J.M.O., Bolhàr-Nordenkampf H.R. et al. (ed.): Photosynthesis and Production in a Changing Environment. Pp. 168-180. Springer, Dordrecht: 1993. https://link.springer.com/chapter/10.1007/978-94-011-1566-7_10 DOI

Walker D.A., Sivak M.N., Prinsley R.T., Cheesbrough J.K.: Simultaneous measurement of oscillations in oxygen evolution and chlorophyll a fluorescence in leaf pieces. – Plant Physiol. 73: 542-549, 1983. https://academic.oup.com/plphys/article/73/3/542/6079244 PubMed PMC

Walsh F.C., Arenas L.F., Ponce de León C. et al.: The continued development of reticulated vitreous carbon as a versatile electrode material: Structure, properties and applications. – Electrochim. Acta 215: 566-591, 2016. https://www.sciencedirect.com/science/article/abs/pii/S0013468616318278?via%3Dihub

Wang P., Zhao F., Hartmann V. et al.: Reassessing the rationale behind herbicide biosensors: The case of a photosystem II/redox polymer-based bioelectrodefs. – Bioelectrochemistry 136: 107597, 2020. https://www.sciencedirect.com/science/article/abs/pii/S1567539420302978?via%3Dihub PubMed

Wang W.-Q., Chapman D.J., Barber J.: Inhibition of water splitting increases the susceptibility of photosystem II to photoinhibition. – Plant Physiol. 99: 16-20, 1992. https://academic.oup.com/plphys/article/99/1/16/6088145 PubMed PMC

Weijermars R., Taylor P., Bahn O. et al.: Review of models and actors in energy mix optimization – can leader visions and decisions align with optimum model strategies for our future energy systems? – Energy Strategy Rev. 1: 5-18, 2012. https://www.sciencedirect.com/science/article/abs/pii/S2211467X11000022?via%3Dihub

Wey L.T., Bombelli P., Chen X. et al.: The development of biophotovoltaic systems for power generation and biological analysis. – ChemElectroChem 6: 5375-5386, 2019. https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/celc.201900997 PubMed DOI PMC

Wiederrecht G.P., Seibert M., Govindjee, Wasielewski M.R.: Femtosecond photodichroism studies of isolated photosystem II reaction centers. – P. Natl. Acad. Sci. USA 91: 8999-9003, 1994. https://www.pnas.org/content/91/19/8999 PubMed PMC

Xuan M., Li J.: Photosystem II-based biomimetic assembly for enhanced photosynthesis. – Natl. Sci. Rev. 8: nwab051, 2021. https://academic.oup.com/nsr/article/8/8/nwab051/6204681 PubMed PMC

Yehezkeli O., Bedford N.M., Park E. et al.: Semiconductor-based, solar-driven photochemical cells for fuel generation from carbon dioxide in aqueous solutions. – ChemSusChem 9: 3188-3195, 2016. https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cssc.201601105 PubMed DOI

Yehezkeli O., Tel-Vered R., Michaeli D. et al.: Photosystem I (PSI)/Photosystem II (PSII)-based photo-bioelectrochemical cells revealing directional generation of photocurrents. – Small 9: 2970-2978, 2013. https://onlinelibrary.wiley.com/doi/10.1002/smll.201300051 PubMed DOI

Yehezkeli O., Tel-Vered R., Michaeli D. et al.: Photosynthetic reaction center-functionalized electrodes for photo-bioelectrochemical cells. – Photosynth. Res. 120: 71-85, 2014. https://link.springer.com/article/10.1007/s11120-013-9796-3 PubMed DOI

Yu D., Wang M., Zhu G. et al.: Enhanced photocurrent production by bio-dyes of photosynthetic macromolecules on designed TiO2 film. – Sci. Rep.-UK 5: 9375, 2015. https://www.nature.com/articles/srep09375 PubMed PMC

Zaspa A.A., Vitukhnovskaya L.A., Mamedova A.M. et al.: Photovoltage generation by photosystem II core complexes immobilized onto a Millipore filter on an indium tin oxide electrode. – J. Bioenerg. Biomembr. 52: 495-504, 2020. https://link.springer.com/article/10.1007/s10863-020-09857-1 PubMed DOI

Zhang J.Z., Reisner E.: Advancing photosystem II photoelectrochemistry for semi-artificial photosynthesis. – Nat. Rev. Chem. 4: 6-21, 2020. https://www.nature.com/articles/s41570-019-0149-4

Zhang J.Z., Sokol K.P., Paul N. et al.: Competing charge transfer pathways at the photosystem II-electrode interface. – Nat. Chem. Biol. 12: 1046-1052, 2016. https://www.nature.com/articles/nchembio.2192 PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...