Photosystem II in bio-photovoltaic devices
Status PubMed-not-MEDLINE Language English Country Czech Republic Media electronic-ecollection
Document type Journal Article, Review
PubMed
39649000
PubMed Central
PMC11559483
DOI
10.32615/ps.2022.010
PII: PS60121
Knihovny.cz E-resources
- Keywords
- electron transfer, photo-bioelectrochemical cell, photoanode, photocurrent,
- Publication type
- Journal Article MeSH
- Review MeSH
Hybrid photoelectrodes containing biological pigment-protein complexes can be used for environmentally friendly solar energy conversion, herbicide detection, and other applications. The total number of scientific publications on hybrid bio-based devices has grown rapidly over the past decades. Particular attention is paid to the integration of the complexes of PSII into photoelectrochemical devices. A notable feature of these complexes from a practical point of view is their ability to obtain electrons from abundant water. The utilization or imitation of the PSII functionality seems promising for all of the following: generating photoelectricity, photo-producing hydrogen, and detecting herbicides. This review summarizes recent advances in the development of hybrid devices based on PSII. In a brief historical review, we also highlighted the use of quinone-type bacterial reaction centers in hybrid devices. These proteins are the first from which the photoelectricity signal was detected. The photocurrent in these first systems, developed in the 70s-80s, was about 1 nA cm-2. In the latest work, by Güzel et al. (2020), a stable current of about 888 μA cm-2 as achieved in a PSII-based solar cell. The present review is inspired by this impressive progress. The advantages, disadvantages, and future endeavors of PSII-inspired bio-photovoltaic devices are also presented.
College of Science King Saud University Riyadh Saudi Arabia
Institute of Basic Biological Problems RAS Pushchino 142290 Moscow Region Russia
See more in PubMed
Allakhverdiev S.I., Kreslavski V.D. Thavasi V. et al.: Hydrogen photoproduction by use of photosynthetic organisms and biomimetic systems. – Photoch. Photobio. Sci. 8: 148-156, 2009. https://pubs.rsc.org/en/content/articlelanding/2009/PP/B814932A PubMed
Allakhverdiev S.I., Kreslavski V., Thavasi V. et al.: Photosynthetic energy conversion: Hydrogen photoproduction by natural and biomimetic means. – In: Mukherjee A. (ed.): Biomimetics Learning from Nature. Pp. 49-75. InTech; 2010a. https://www.intechopen.com/chapters/10038
Allakhverdiev S.I., Thavasi V., Kreslavski V.D. et al.: Photosynthetic hydrogen production. – J. Photoch. Photobio. C 11: 101-113, 2010b. https://www.sciencedirect.com/science/article/pii/S1389556710000390?via%3Dihub
Allen M.J.: Direct conversion of radiant into electrical energy using plant systems. – In: Buvet R., Allen M.J., Massué J.-P. (ed.): Living Systems As Energy Converters. Proceedings of the European Conference on Living Systems as Energy Converters. Pp. 271-274. Elsevier; 1977. https://www.sciencedirect.com/science/article/pii/B9780720406290500269
Antonacci A., Attaallah R., Arduini F. et al.: A dual electro-optical biosensor based on Chlamydomonas reinhardtii immobilised on paper-based nanomodified screen-printed electrodes for herbicide monitoring. – J. Nanobiotechnology 19: 145, 2021. https://jnanobiotechnology.biomedcentral.com/articles/10.1186/s12951-021-00887-4 PubMed DOI PMC
Babu V.J., Kumar M.K., Nair A.S. et al.: Visible light photocatalytic water splitting for hydrogen production from N-TiO2 rice grain shaped electrospun nanostructures. – Int. J. Hydrogen Energ. 37: 8897-8904, 2012. https://www.sciencedirect.com/science/article/pii/S036031991102667X?via%3Dihub
Badura A., Guschin D., Esper B. et al.: Photo-induced electron transfer between photosystem 2 via cross-linked redox hydrogels. – Electroanalysis 20: 1043-1047, 2008. https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/elan.200804191 DOI
Barber J., Tran P.D.: From natural to artificial photosynthesis. – J. R. Soc. Interface 10: 20120984, 2013. https://royalsocietypublishing.org/doi/10.1098/rsif.2012.0984 PubMed DOI PMC
Bettazzi F., Laschi S., Mascini M.: One-shot screen-printed thylakoid membrane-based biosensor for the detection of photosynthetic inhibitors in discrete samples. – Anal. Chim. Acta 589: 14-21, 2007. https://www.sciencedirect.com/science/article/pii/S0003267007003923?via%3Dihub PubMed
Brinkert K., Le Formal F., Li X. et al.: Photocurrents from photosystem II in a metal oxide hybrid system: Electron transfer pathways. – BBA-Bioenergetics 1857: 1497-1505, 2016. https://www.sciencedirect.com/science/article/pii/S0005272816300500?via%3Dihub PubMed PMC
Bukhov N.G., Egorova E.A., Govindachary S., Carpentier R.: Changes in polyphasic chlorophyll a fluorescence induction curve upon inhibition of donor or acceptor side of photosystem II in isolated thylakoids. – BBA-Bioenergetics 1657: 121-130, 2004. https://www.sciencedirect.com/science/article/pii/S0005272804001100?via%3Dihub PubMed
Carpentier R., Loranger C., Chartrand J., Purcell M.: Photoelectrochemical cell containing chloroplast membranes as a biosensor for phytotoxicity measurement. – Anal. Chim. Acta 249: 55-60, 1991. https://www.sciencedirect.com/science/article/abs/pii/000326709187007T?via%3Dihub
Chen H., Blaber M.G., Standridge S.D. et al.: Computational modeling of plasmon-enhanced light absorption in a multicomponent dye sensitized solar cell. – J. Phys. Chem. C 116: 10215-10221, 2012. https://pubs.acs.org/doi/10.1021/jp301950q DOI
Chou L.Y., Liu R., He W. et al.: Direct oxygen and hydrogen production by photo water splitting using a robust bioinspired manganese-oxo oligomer complex/tungsten oxide catalytic system. – Int. J. Hydrogen Energ. 37: 8889-8896, 2012. https://www.sciencedirect.com/science/article/pii/S0360319912004387?via%3Dihub
Conrad R., Büchel C., Wilhelm C. et al.: Changes in yield of in-vivo fluorescence of chlorophyll a as a tool for selective herbicide monitoring. – J. Appl. Phycol. 5: 505-516, 1993. https://link.springer.com/article/10.1007/BF02182509 DOI
Cox N., Messinger J.: Reflections on substrate water and dioxygen formation. – BBA-Bioenergetics 1827: 1020-1030, 2013. https://www.sciencedirect.com/science/article/pii/S0005272813000170?via%3Dihub PubMed
Dankov K., Rashkov G., Misra A.N., Apostolova E.L.: Temperature sensitivity of photosystem II in isolated thylakoid membranes from fluridone-treated pea leaves. – Turk. J. Bot. 39: 420-428, 2015. https://journals.tubitak.gov.tr/botany/issues/bot-15-39-3/bot-39-3-4-1407-46.pdf
den Hollander M.J., Magis J.G., Fuchsenberger P. et al.: Enhanced photocurrent generation by photosynthetic bacterial reaction centers through molecular relays, light-harvesting complexes, and direct protein-gold interactions. – Langmuir 27: 10282-10294, 2011. https://pubs.acs.org/doi/10.1021/la2013528 PubMed DOI
Dogutan D.K., Nocera D.G.: Artificial photosynthesis at efficiencies greatly exceeding that of natural photosynthesis. – Acc. Chem. Res. 52: 3143-3148, 2019. https://pubs.acs.org/doi/10.1021/acs.accounts.9b00380 PubMed DOI
Drachev L.A., Kondrashin A.A., Samuilov V.D., Skulachev V.P.: Generation of electric potential by reaction center complexes from Rhodospirillum rubrum. – FEBS Lett. 50: 219-222, 1975. https://febs.onlinelibrary.wiley.com/doi/abs/10.1016/0014-5793%2875%2980492-3 PubMed DOI
Emerson R., Chalmers R., Cederstrand C.: Some factors influencing the long-wave limit of photosynthesis. – P. Natl. Acad. Sci. USA 43: 133-143, 1957. https://www.pnas.org/content/43/1/133 PubMed PMC
Faulkner C.J., Lees S., Ciesielski P.N. et al.: Rapid assembly of photosystem I monolayers on gold electrodes. – Langmuir 24: 8409-8412, 2008. https://pubs.acs.org/doi/abs/10.1021/la800670b PubMed DOI
Faure B., Salazar-Alvarez G., Ahniyaz A. et al.: Dispersion and surface functionalization of oxide nanoparticles for transparent photocatalytic and UV-protecting coatings and sunscreens. – Sci. Technol. Adv. Mater. 14: 023001, 2013. https://www.tandfonline.com/doi/full/10.1088/1468-6996/14/2/023001 PubMed DOI PMC
Frenzel M., Hirsch T., Gutzmer J.: Gallium, germanium, indium, and other trace and minor elements in sphalerite as a function of deposit type – A meta-analysis. – Ore Geol. Rev. 76: 52-78, 2016. https://www.sciencedirect.com/science/article/pii/S0169136815302961?via%3Dihub
Friebe V.M., Frese R.N.: Photosynthetic reaction center-based biophotovoltaics. – Curr. Opin. Electrochem. 5: 126-134, 2017. https://www.sciencedirect.com/science/article/pii/S2451910317300789?via%3Dihub
Friebe V.M., Millo D., Swainsbury D.J.K. et al.: Cytochrome c provides an electron-funneling antenna for efficient photocurrent generation in a reaction center biophotocathode. – ACS Appl. Mater. Interfaces 9: 23379-23388, 2017. https://pubs.acs.org/doi/10.1021/acsami.7b03278 PubMed DOI PMC
Frolov L., Rosenwaks Y., Carmeli C., Carmeli I.: Fabrication of a photoelectronic device by direct chemical binding of the photosynthetic reaction center protein to metal surfaces. – Adv. Mater. 17: 2434-2437, 2005. https://onlinelibrary.wiley.com/doi/10.1002/adma.200500295 DOI
Fu H.-Y., Picot D., Choquet Y. et al.: Redesigning the QA binding site of Photosystem II allows reduction of exogenous quinones. – Nat. Commun. 8: 15274, 2017. https://www.nature.com/articles/ncomms15274 PubMed PMC
Fujishima A., Honda K.: Electrochemical photolysis of water at a semiconductor electrode. – Nature 238: 37-38, 1972. https://www.nature.com/articles/238037a0 PubMed
Gall B., Zehetner A., Scherz A., Scheer H.: Modification of pigment composition in the isolated reaction center of photosystem II. – FEBS Lett. 434: 88-92, 1998. https://febs.onlinelibrary.wiley.com/doi/abs/10.1016/S0014-5793%2898%2900956-9 PubMed DOI
Gangotri K.M., Bhimwal M.K.: The photochemical conversion of solar energy into electrical energy: Eosin-fructose system. – Environ. Prog. Sustain. Energy 30: 493-499, 2011. https://aiche.onlinelibrary.wiley.com/doi/10.1002/ep.10488 DOI
Giardi M.T., Guzzella L., Euzet P. et al.: Detection of herbicide subclasses by an optical multibiosensor based on an array of photosystem II mutants. – Environ. Sci. Technol. 39: 5378-5384, 2005. https://pubs.acs.org/doi/10.1021/es040511b PubMed DOI
Giardi M.T., Koblížek M., Masojídek J.: Photosystem II-based biosensors for the detection of pollutants. – Biosens. Bioelectron. 16: 1027-1033, 2001. https://www.sciencedirect.com/science/article/abs/pii/S095656630100197X?via%3Dihub PubMed
Gizzie E.A., Scott Niezgoda J., Robinson M.T. et al.: Photosystem I-polyaniline/TiO 2 solid-state solar cells: simple devices for biohybrid solar energy conversion. – Energy Environ. Sci. 8: 3572-3576, 2015. https://pubs.rsc.org/en/content/articlelanding/2015/ee/c5ee03008k
Govindjee, Kern J.F., Messinger J., Whitmarsh J.: Photosystem II. – In: Encyclopedia of Life Sciences. Pp. 1-15. John Wiley & Sons, Ltd, Chichester: 2010. https://www.life.illinois.edu/govindjee/Electronic%20Publications/2010/2010_govindjee_et_al_Encyclopedia%20of%20Life%20Sciences%282010%29.pdf
Grätzel M.: Mesoporous oxide junctions and nanostructured solar cells. – Curr. Opin. Colloid Interface Sci. 4: 314-321, 1999. https://www.sciencedirect.com/science/article/abs/pii/S1359029499900134?via%3Dihub
Grätzel M.: Photoelectrochemical cells. – Nature 414: 338-344, 2001. https://www.nature.com/articles/35104607 PubMed
Grätzel M.: Photovoltaic and photoelectrochemical conversion of solar energy. – Philos. T. Roy. Soc. A 365: 993-1005, 2007. https://royalsocietypublishing.org/doi/10.1098/rsta.2006.1963 PubMed DOI
Güzel R., Yediyıldız F., Ocak Y.S. et al.: Photosystem (PSII)-based hybrid nanococktails for the fabrication of BIO-DSSC and photo-induced memory device. – J. Photoch. Photobio. A Chem. 401: 112743, 2020. https://www.sciencedirect.com/science/article/abs/pii/S1010603020305426?via%3Dihub
Hakala M., Rantamäki S., Puputti E.M. et al.: Photoinhibition of manganese enzymes: Insights into the mechanism of photosystem II photoinhibition. – J. Exp. Bot. 57: 1809-1816, 2006. https://academic.oup.com/jxb/article/57/8/1809/524578 PubMed
Hasan K., Grippo V., Sperling E. et al.: Evaluation of photocurrent generation from different photosynthetic organisms. – ChemElectroChem 4: 412-417, 2017. https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/celc.201600541 DOI
He Y., Hamann T., Wang D.: Thin film photoelectrodes for solar water splitting. – Chem. Soc. Rev. 48: 2182-2215, 2019. https://pubs.rsc.org/en/content/articlelanding/2019/CS/C8CS00868J PubMed
Hou H.J.M.: Toward molecular mechanisms of solar water splitting in semiconductor/manganese materials and photosystem II. – In: Shen J.R., Satoh K., Allakhverdiev S.I. (ed.): Photosynthesis: Molecular Approaches to Solar Energy Conversion. Advances in Photosynthesis and Respiration (Including Bioenergy and Related Processes). Vol. 47. Pp. 105-129. Springer, Cham: 2021. https://link.springer.com/chapter/10.1007/978-3-030-67407-6_4 DOI
IEA: World Energy Outlook 2019. IEA, Paris: 2019. https://www.iea.org/reports/world-energy-outlook-2019
Ihssen J., Braun A., Faccio G. et al.: Light harvesting proteins for solar fuel generation in bioengineered photoelectrochemical cells. – Curr. Protein Pept. Sci. 15: 374-384, 2014. http://www.eurekaselect.com/article/59789 PubMed PMC
Kalaji H.M., Schansker G., Brestic M. et al.: Frequently asked questions about chlorophyll fluorescence, the sequel. – Photosynth. Res. 132: 13-66, 2017. https://link.springer.com/article/10.1007/s11120-016-0318-y PubMed DOI PMC
Kalaji H.M., Schansker G., Ladle R.J. et al.: Frequently asked questions about in vivo chlorophyll fluorescence: Practical issues. – Photosynth. Res. 122: 121-158, 2014. https://link.springer.com/article/10.1007/s11120-014-0024-6 PubMed DOI PMC
Kato M., Cardona T., Rutherford A.W., Reisner E.: Covalent immobilization of oriented photosystem II on a nanostructured electrode for solar water oxidation. – J. Am. Chem. Soc. 135: 10610-10613, 2013. https://pubs.acs.org/doi/10.1021/ja404699h PubMed DOI PMC
Kato M., Zhang J.Z., Paul N., Reisner E.: Protein film photoelectrochemistry of the water oxidation enzyme photosystem II. – Chem. Soc. Rev. 43: 6485-6497, 2014. https://pubs.rsc.org/en/content/articlelanding/2014/CS/C4CS00031E PubMed
Kavadiya S., Chadha T.S., Liu H. et al.: Directed assembly of the thylakoid membrane on nanostructured TiO2 for a photo-electrochemical cell. – Nanoscale 8: 1868-1872, 2016. https://pubs.rsc.org/en/content/articlelanding/2016/NR/C5NR08178E PubMed
Kavan L., O'Regan B., Kay A., Grätzel M.: Preparation of TiO2 (anatase) films on electrodes by anodic oxidative hydrolysis of TiCl3. – J. Electroanal. Chem. 346: 291-307, 1993. https://www.sciencedirect.com/science/article/abs/pii/002207289385020H?via%3Dihub
Kiley P., Zhao X., Vaughn M. et al.: Self-assembling peptide detergents stabilize isolated photosystem I on a dry surface for an extended time. – PLoS Biol. 3: e230, 2005. https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.0030230 PubMed PMC
Koblížek M., Malý J., Masojídek J. et al.: A biosensor for the detection of triazine and phenylurea herbicides designed using Photosystem II coupled to a screen-printed electrode. – Biotechnol. Bioeng. 78: 110-116, 2002. https://onlinelibrary.wiley.com/doi/10.1002/bit.10190 PubMed DOI
Kornienko N., Zhang J.Z., Sakimoto K.K. et al.: Interfacing nature's catalytic machinery with synthetic materials for semi-artificial photosynthesis. – Nat. Nanotechnol. 13: 890-899, 2018. https://www.nature.com/articles/s41565-018-0251-7/ PubMed
Kostic M.M.: Energy : Global and Historical Background. – In: Capehart B.L. (ed.): Encyclopedia of Energy Engeneering. Pp. 1-15. Taylor & Francis/Marcel Dekker; 2007.
Kothe T., Plumeré N., Badura A. et al.: Combination of a photosystem 1-based photocathode and a photosystem 2-based photoanode to a Z-scheme mimic for biophotovoltaic applications. – Angew. Chem. Int. Ed. 52: 14233-14236, 2013. https://onlinelibrary.wiley.com/doi/full/10.1002/anie.201303671 PubMed DOI PMC
Kumar P., Kuppam C. (eds.): Bioelectrochemical Systems. Pp. 326. Springer Singapore, Singapore: 2020. https://link.springer.com/book/10.1007/978-981-15-6872-5 DOI
Lavergne J., Trissl H.W.: Theory of fluorescence induction in photosystem II: derivation of analytical expressions in a model including exciton–radical-pair equilibrium and restricted energy transfer between photosynthetic units. – Biophys. J. 68: 2474-2492, 1995. https://www.cell.com/biophysj/pdf/S0006-3495(95)80429-7.pdf PubMed PMC
Lebedev N., Trammell S.A., Spano A. et al.: Conductive wiring of immobilized photosynthetic reaction center to electrode by cytochrome c. – J. Am. Chem. Soc. 128: 12044-12045, 2006. https://pubs.acs.org/doi/10.1021/ja063367y PubMed DOI
Lewis N.S., Nocera D.G.: Powering the planet: chemical challenges in solar energy utilization. – P. Natl. Acad. Sci. USA 103: 15729-15735, 2006. https://www.pnas.org/content/103/43/15729 PubMed PMC
Li J., Wei X., Peng T.: Fabrication of herbicide biosensors based on the inhibition of enzyme activity that catalyzes the scavenging of hydrogen peroxide in a thylakoid membrane. – Anal. Sci. 21: 1217-1222, 2005. https://www.jstage.jst.go.jp/article/analsci/21/10/21_10_1217/_article PubMed
Li Z., Wang W., Ding C. et al.: Biomimetic electron transport via multiredox shuttles from photosystem II to a photoelectrochemical cell for solar water splitting. – Energy Environ. Sci. 10: 765-771, 2017. https://pubs.rsc.org/en/content/articlelanding/2017/EE/C6EE03401B
Liu R., Lin Y., Chou L.-Y. et al.: Water splitting by tungsten oxide prepared by atomic layer deposition and decorated with an oxygen-evolving catalyst. – Angew. Chem. Int. Ed. 50: 499-502, 2011. https://onlinelibrary.wiley.com/doi/10.1002/anie.201004801 PubMed DOI
Lu Y., Yuan M., Liu Y. et al.: Photoelectric performance of bacteria photosynthetic proteins entrapped on tailored mesoporous WO3-TiO2 films. – Langmuir 21: 4071-4076, 2005a. PubMed
Lu Y.D., Liu Y., Xu J.J. et al.: Bio-nanocomposite photoelectrode composed of the bacteria photosynthetic reaction center entrapped on a nanocrystalline TiO2 matrix. – Sensors-Basel 5: 258-265, 2005b. https://www.mdpi.com/1424-8220/5/4/258
Lukashev E.P., Nadtochenko V.A., Permenova E.P. et al.: Electron phototransfer between photosynthetic reaction centers of the bacteria Rhodobacter sphaeroides and semiconductor mesoporous TiO2 films. – Dokl. Biochem. Biophys. 415: 211-216, 2007. https://link.springer.com/article/10.1134/S1607672907040138 PubMed DOI
Maksimov E.G., Lukashev E.P., Seifullina N.K. et al.: Photophysical properties of hybrid complexes of quantum dots and reaction centers of purple photosynthetic bacteria Rhodobacter sphaeroides adsorbed on crystalline mesoporous TiO2 films. – Nanotechnol. Russ. 8: 423-431, 2013. https://link.springer.com/article/10.1134/S1995078013040095 DOI
Malý J., Klem K., Lukavská A., Masojídek J.: Degradation and movement in soil of the herbicide isoproturon analyzed by a Photosystem II-based biosensor. – J. Environ. Qual. 34: 1780-1788, 2005a. https://acsess.onlinelibrary.wiley.com/doi/abs/10.2134/jeq2004.0351 PubMed DOI
Malý J., Krejčí J., Ilie M. et al.: Monolayers of photosystem II on gold electrodes with enhanced sensor response – effect of porosity and protein layer arrangement. – Anal. Bioanal. Chem. 381: 1558-1567, 2005b. https://link.springer.com/article/10.1007/s00216-005-3149-9 PubMed DOI
Masojídek J., Souček P., Máchová J. et al.: Detection of photosynthetic herbicides: Algal growth inhibition test vs. electrochemical photosystem II biosensor. – Ecotox. Environ. Safe. 74: 117-122, 2011. https://www.sciencedirect.com/science/article/abs/pii/S0147651310002393?via%3Dihub PubMed
McConnell I., Li G., Brudvig G.W.: Energy conversion in natural and artificial photosynthesis. – Chem. Biol. 17: 434-447, 2010. https://www.sciencedirect.com/science/article/pii/S1074552110001675?via%3Dihub PubMed PMC
Mersch D., Lee C.Y., Zhang J.Z. et al.: Wiring of photosystem II to hydrogenase for photoelectrochemical water splitting. – J. Am. Chem. Soc. 137: 8541-8549, 2015. https://pubs.acs.org/doi/10.1021/jacs.5b03737 PubMed DOI
Mershin A., Matsumoto K., Kaiser L. et al.: Self-assembled photosystem-I biophotovoltaics on nanostructured TiO2 and ZnO. – Sci. Rep.-UK 2: 234, 2012. https://www.nature.com/articles/srep00234 PubMed PMC
Merz D., Geyer M., Moss D.A., Ache H.-J.: Chlorophyll fluorescence biosensor for the detection of herbicides. – Fresenius J. Anal. Chem. 354: 299-305, 1996. https://link.springer.com/article/10.1007/s0021663540299 PubMed DOI
Michel H., Deisenhofer J.: Relevance of the photosynthetic reaction center from purple bacteria to the structure of photosystem II. – Biochemistry 27: 1-7, 1988. https://pubs.acs.org/doi/abs/10.1021/bi00401a001 DOI
Miyachi M., Ikehira S., Nishiori D. et al.: Photocurrent generation of reconstituted photosystem ii on a self-assembled gold film. – Langmuir 33: 1351-1358, 2017. https://pubs.acs.org/doi/pdf/10.1021/acs.langmuir.6b03499 PubMed DOI
Müh F., Glöckner C., Hellmich J., Zouni A.: Light-induced quinone reduction in photosystem II. – BBA-Bioenergetics 1817: 44-65, 2012. https://www.sciencedirect.com/science/article/pii/S0005272811001381?via%3Dihub PubMed
Musazade E., Voloshin R.A., Brady N. et al.: Biohybrid solar cells: Fundamentals, progress, and challenges. – J. Photoch. Photobio. C 35: 134-156, 2018. https://www.sciencedirect.com/science/article/abs/pii/S1389556718300030?via%3Dihub
Nelson N., Yocum C.F.: Structure and function of photosystems I and II. – Annu. Rev. Plant Biol. 57: 521-565, 2006. https://www.annualreviews.org/doi/10.1146/annurev.arplant.57.032905.105350 PubMed DOI
Nguyen K., Bruce B.D.: Growing green electricity: Progress and strategies for use of Photosystem I for sustainable photovoltaic energy conversion. – BBA-Bioenergetics 1837: 1553-1566, 2014. https://www.sciencedirect.com/science/article/pii/S000527281300234X?via%3Dihub PubMed
Nikandrov V.V., Borisova Y.V., Bocharov E.A. et al.: Photochemical properties of photosystem 1 immobilized in a mesoporous semiconductor matrix. – High Energy Chem. 46: 200-205, 2012. https://link.springer.com/article/10.1134%2FS0018143912030095
Nisbet E.G., Grassineau N.V., Howe C.J. et al.: The age of Rubisco: The evolution of oxygenic photosynthesis. – Geobiology 5: 311-335, 2007. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1472-4669.2007.00127.x DOI
Nishiori D., Zhu W., Salles R. et al.: Photosensing system using photosystem I and gold nanoparticle on graphene field-effect transistor. – ACS Appl. Mater. Interfaces 11: 42773-42779, 2019. https://pubs.acs.org/doi/10.1021/acsami.9b14771 PubMed DOI
Noji T., Suzuki H., Gotoh T. et al.: Photosystem II–gold nanoparticle conjugate as a nanodevice for the development of artificial light-driven water-splitting systems. – J. Phys. Chem. Lett. 2: 2448-2452, 2011. https://pubs.acs.org/doi/10.1021/jz201172y DOI
Oshima T., Nishioka S., Kikuchi Y. et al.: An artificial Z-scheme constructed from dye-sensitized metal oxide nanosheets for visible light-driven overall water splitting. – J. Am. Chem. Soc. 142: 8412-8420, 2020. https://pubs.acs.org/doi/10.1021/jacs.0c02053 PubMed DOI
Packham N.K., Packham C., Mueller P. et al.: Reconstitution de photochemically active reaction centers in planar phospholipid membranes. Light-induced electrical currents under voltage-clamped conditions. – FEBS Lett. 110: 101-106, 1980. https://febs.onlinelibrary.wiley.com/doi/abs/10.1016/0014-5793%2880%2980033-0 PubMed DOI
Pandey A.K., Tyagi V.V., Selvaraj J.A. et al.: Recent advances in solar photovoltaic systems for emerging trends and advanced applications. – Renew. Sust. Energ. Rev. 53: 859-884, 2016. https://www.sciencedirect.com/science/article/abs/pii/S1364032115010138?via%3Dihub
Pinhassi R.I., Kallmann D., Saper G. et al.: Hybrid bio-photo-electro-chemical cells for solar water splitting. – Nat. Commun. 7: 12552, 2016. https://www.nature.com/articles/ncomms12552 PubMed PMC
Plumeré N., Nowaczyk M.M.: Biophotoelectrochemistry of photosynthetic proteins. – In: Jeuken L. (ed.): Biophotoelectrochemistry: From Bioelectrochemistry to Biophotovoltaics. Advances in Biochemical Engineering/Biotechnology. Vol. 158. Pp. 111-136. Springer, Cham: 2016. https://link.springer.com/chapter/10.1007/10_2016_7 PubMed DOI
Pratiyush A.S., Krishnamoorthy S., Muralidharan R. et al.: Advances in Ga2O3 solar-blind UV photodetectors. – In: Pearton S., Ren F., Mastro M. (ed.): Gallium Oxide: Technology, Devices and Applications. Pp. 369-399. Elsevier, Amsterdam: 2018. https://www.sciencedirect.com/science/article/pii/B9780128145210000166
Rao K.K., Hall D.O., Vlachopoulos N. et al.: Photoelectrochemical responses of photosystem II particles immobilized on dye-derivatized TiO2 films. – J. Photoch. Photobio. B 5: 379-389, 1990. https://www.sciencedirect.com/science/article/abs/pii/101113449085052X?via%3Dihub
Rasmussen M., Minteer S.D.: Photobioelectrochemistry: Solar energy conversion and biofuel production with photosynthetic catalysts. – J. Electrochem. Soc. 161: H647-H655, 2014. https://iopscience.iop.org/article/10.1149/2.0651410jes DOI
Ridge Carter J., Baker D.R., Austin Witt T. et al.: Enhanced photocurrent from Photosystem I upon in vitro truncation of the antennae chlorophyll. – Photosynth. Res. 127: 161-170, 2016. https://link.springer.com/article/10.1007/s11120-015-0162-5 PubMed DOI
Rodionova M.V., Poudyal R.S., Tiwari I. et al.: Biofuel production: Challenges and opportunities. – Int. J. Hydrogen Energ. 42: 8450-8461, 2017. https://www.sciencedirect.com/science/article/abs/pii/S0360319916334139?via%3Dihub
Say R., Kılıç G.A., Özcan A.A. et al.: Bioconjugated and cross-linked bionanostructures for bifunctional immunohistochemical labeling. – Microsc. Microanal. 18: 324-330, 2012. https://www.cambridge.org/core/journals/microscopy-and-microanalysis/article/abs/bioconjugated-and-crosslinked-bionanostructures-for-bifunctional-immunohistochemical-labeling/FA89284F69504B93063A98E426F36CD2 PubMed
Schansker G., Tóth S.Z., Kovács L. et al.: Evidence for a fluorescence yield change driven by a light-induced conformational change within photosystem II during the fast chlorophyll a fluorescence rise. – BBA-Bioenergetics 1807: 1032-1043, 2011. https://www.sciencedirect.com/science/article/pii/S000527281100140X?via%3Dihub PubMed
Seibert M., Janzen A.F., Kendall-Tobias M.: Light-induced electron transport across semiconductor electrode/reaction-center film/electrolyte interfaces. – Photochem. Photobiol. 35: 193-200, 1982. https://onlinelibrary.wiley.com/doi/10.1111/j.1751-1097.1982.tb03831.x DOI
Shah V.B., Henson W.R., Chadha T.S. et al.: Linker-free deposition and adhesion of photosystem I onto nanostructured TiO2 for biohybrid photoelectrochemical cells. – Langmuir 31: 1675-1682, 2015. https://pubs.acs.org/doi/abs/10.1021/la503776b PubMed DOI
Shah V.B., Orf G.S., Reisch S. et al.: Characterization and deposition of various light-harvesting antenna complexes by electrospray atomization. – Anal. Bioanal. Chem. 404: 2329-2338, 2012. https://link.springer.com/article/10.1007/s00216-012-6368-x PubMed DOI
Shevela D., Björn L.O., Govindjee: Oxygenic Photosynthesis. – In: Razeghifard R. (ed.): Natural and Artificial Photosynthesis: Solar Power as an Energy Source. Pp. 13-63. John Wiley & Sons Inc., Hoboken: 2013. https://onlinelibrary.wiley.com/doi/10.1002/9781118659892.ch2 DOI
Sokol K.P., Mersch D., Hartmann V. et al.: Rational wiring of photosystem II to hierarchical indium tin oxide electrodes using redox polymers. – Energy Environ. Sci. 9: 3698-3709, 2016. https://pubs.rsc.org/en/content/articlelanding/2016/ee/c6ee01363e
Spies J.A., Perets E.A., Fisher K.J. et al.: Collaboration between experiment and theory in solar fuels research. – Chem. Soc. Rev. 48: 1865-1873, 2019. https://pubs.rsc.org/en/content/articlelanding/2019/CS/C8CS00819A PubMed
Stirbet A., Govindjee: On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and Photosystem II: Basics and applications of the OJIP fluorescence transient. – J. Photoch. Photobio. B 104: 236-257, 2011. https://www.sciencedirect.com/science/article/abs/pii/S1011134410002812?via%3Dihub PubMed
Stirbet A., Lazár D., Kromdijk J., Govindjee: Chlorophyll a fluorescence induction: Can just a one-second measurement be used to quantify abiotic stress responses? – Photosynthetica 56: 86-104, 2018. https://ps.ueb.cas.cz/artkey/phs-201801-0008_chlorophyll-a-fluorescence-induction-can-just-a-one-second-measurement-be-used-to-quantify-abiotic-stress-resp.php
Szewczyk S., Białek R., Burdziński G., Gibasiewicz K.: Photovoltaic activity of electrodes based on intact photosystem I electrodeposited on bare conducting glass. – Photosynth. Res. 144: 1-12, 2020. https://link.springer.com/article/10.1007/s11120-020-00722-1 PubMed DOI PMC
Terasaki N., Iwai M., Yamamoto N. et al.: Photocurrent generation properties of Histag-photosystem II immobilized on nanostructured gold electrode. – Thin Solid Films 516: 2553-2557, 2008. https://www.sciencedirect.com/science/article/abs/pii/S0040609007007213?via%3Dihub
Terasaki N., Yamamoto N., Hiraga T. et al.: Fabrication of novel photosystem I–gold nanoparticle hybrids and their photocurrent enhancement. – Thin Solid Films 499: 153-156, 2006. https://www.sciencedirect.com/science/article/abs/pii/S0040609005008230?via%3Dihub
Terasaki N., Yamamoto N., Hiraga T. et al.: Plugging a molecular wire into photosystem I: Reconstitution of the photoelectric conversion system on a gold electrode. – Angew. Chem. Int. Ed. 48: 1585-1587, 2009. https://onlinelibrary.wiley.com/doi/10.1002/anie.200805748 PubMed DOI
Tian W., Zhang H., Sibbons J. et al.: Photoelectrochemical water oxidation and longevous photoelectric conversion by a photosystem II electrode. – Adv. Energy Mater. 11: 2100911, 2021. https://onlinelibrary.wiley.com/doi/10.1002/aenm.202100911 DOI
Tikhonov A.N.: pH-Dependent regulation of electron transport and ATP synthesis in chloroplasts. – Photosynth. Res. 116: 511-534, 2013. https://link.springer.com/article/10.1007/s11120-013-9845-y PubMed DOI
Touloupakis E., Giannoudi L., Piletsky S.A. et al.: A multi-biosensor based on immobilized Photosystem II on screen-printed electrodes for the detection of herbicides in river water. – Biosens. Bioelectron. 20: 1984-1992, 2005. https://www.sciencedirect.com/science/article/abs/pii/S0956566304004051?via%3Dihub PubMed
Trammell S.A., Spano A., Price R., Lebedev N.: Effect of protein orientation on electron transfer between photosynthetic reaction centers and carbon electrodes. – Biosens. Bioelectron. 21: 1023-1028, 2006. https://www.sciencedirect.com/science/article/abs/pii/S0956566305000990?via%3Dihub PubMed
Trammell S.A., Wang L., Zullo J.M. et al.: Orientated binding of photosynthetic reaction centers on gold using Ni-NTA self-assembled monolayers. – Biosens. Bioelectron. 19: 1649-1655, 2004. https://www.sciencedirect.com/science/article/abs/pii/S095656630400003X?via%3Dihub PubMed
Tucci M., Bombelli P., Howe C.J. et al.: A storable mediatorless electrochemical biosensor for herbicide detection. – Microorganisms 7: 630, 2019. https://www.mdpi.com/2076-2607/7/12/630 PubMed PMC
Vittadello M., Gorbunov M.Y., Mastrogiovanni D.T. et al.: Photoelectron generation by photosystem II core complexes tethered to gold surfaces. – ChemSusChem 3: 471-475, 2010. https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cssc.200900255 PubMed DOI
Vogt L., Vinyard D.J., Khan S., Brudvig G.W.: Oxygen-evolving complex of Photosystem II: An analysis of second-shell residues and hydrogen-bonding networks. – Curr. Opin. Chem. Biol. 25: 152-158, 2015. https://www.sciencedirect.com/science/article/abs/pii/S1367593115000022?via%3Dihub PubMed
Voloshin R.A., Bedbenov V.S., Gabrielyan D.A. et al.: Optimization and characterization of TiO2-based solar cell design using diverse plant pigments. – Int. J. Hydrogen Energ. 42: 8576-8585, 2017. https://www.sciencedirect.com/science/article/abs/pii/S036031991633436X
Voloshin R.A., Brady N.G., Zharmukhamedov S.K. et al.: Influence of osmolytes on the stability of thylakoid-based dyesensitized solar cells. – Int. J. Energy Res. 43: 8878-8889, 2019. https://onlinelibrary.wiley.com/doi/10.1002/er.4866 DOI
Voloshin R.A., Kreslavski V.D., Zharmukhamedov S.K. et al.: Photoelectrochemical cells based on photosynthetic systems: a review. – Biofuel Res. J. 2: 227-235, 2015. https://www.biofueljournal.com/pdf_8880_8497199bdd6403f8d0f0a1db5bbdd203.html
Voloshin R.A., Rodionova M.V., Zharmukhamedov S.K. et al.: Components of natural photosynthetic apparatus in solar cells. – In: Najafpour M.M. (ed.): Applied Photosynthesis – New Progress. Pp. 161-188. InTech, Rijeka: 2016. https://www.intechopen.com/chapters/49842
Walker D.A.: Polarographic measurement of oxygen. – In: Hall D.O., Scurlock J.M.O., Bolhàr-Nordenkampf H.R. et al. (ed.): Photosynthesis and Production in a Changing Environment. Pp. 168-180. Springer, Dordrecht: 1993. https://link.springer.com/chapter/10.1007/978-94-011-1566-7_10 DOI
Walker D.A., Sivak M.N., Prinsley R.T., Cheesbrough J.K.: Simultaneous measurement of oscillations in oxygen evolution and chlorophyll a fluorescence in leaf pieces. – Plant Physiol. 73: 542-549, 1983. https://academic.oup.com/plphys/article/73/3/542/6079244 PubMed PMC
Walsh F.C., Arenas L.F., Ponce de León C. et al.: The continued development of reticulated vitreous carbon as a versatile electrode material: Structure, properties and applications. – Electrochim. Acta 215: 566-591, 2016. https://www.sciencedirect.com/science/article/abs/pii/S0013468616318278?via%3Dihub
Wang P., Zhao F., Hartmann V. et al.: Reassessing the rationale behind herbicide biosensors: The case of a photosystem II/redox polymer-based bioelectrodefs. – Bioelectrochemistry 136: 107597, 2020. https://www.sciencedirect.com/science/article/abs/pii/S1567539420302978?via%3Dihub PubMed
Wang W.-Q., Chapman D.J., Barber J.: Inhibition of water splitting increases the susceptibility of photosystem II to photoinhibition. – Plant Physiol. 99: 16-20, 1992. https://academic.oup.com/plphys/article/99/1/16/6088145 PubMed PMC
Weijermars R., Taylor P., Bahn O. et al.: Review of models and actors in energy mix optimization – can leader visions and decisions align with optimum model strategies for our future energy systems? – Energy Strategy Rev. 1: 5-18, 2012. https://www.sciencedirect.com/science/article/abs/pii/S2211467X11000022?via%3Dihub
Wey L.T., Bombelli P., Chen X. et al.: The development of biophotovoltaic systems for power generation and biological analysis. – ChemElectroChem 6: 5375-5386, 2019. https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/celc.201900997 PubMed DOI PMC
Wiederrecht G.P., Seibert M., Govindjee, Wasielewski M.R.: Femtosecond photodichroism studies of isolated photosystem II reaction centers. – P. Natl. Acad. Sci. USA 91: 8999-9003, 1994. https://www.pnas.org/content/91/19/8999 PubMed PMC
Xuan M., Li J.: Photosystem II-based biomimetic assembly for enhanced photosynthesis. – Natl. Sci. Rev. 8: nwab051, 2021. https://academic.oup.com/nsr/article/8/8/nwab051/6204681 PubMed PMC
Yehezkeli O., Bedford N.M., Park E. et al.: Semiconductor-based, solar-driven photochemical cells for fuel generation from carbon dioxide in aqueous solutions. – ChemSusChem 9: 3188-3195, 2016. https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cssc.201601105 PubMed DOI
Yehezkeli O., Tel-Vered R., Michaeli D. et al.: Photosystem I (PSI)/Photosystem II (PSII)-based photo-bioelectrochemical cells revealing directional generation of photocurrents. – Small 9: 2970-2978, 2013. https://onlinelibrary.wiley.com/doi/10.1002/smll.201300051 PubMed DOI
Yehezkeli O., Tel-Vered R., Michaeli D. et al.: Photosynthetic reaction center-functionalized electrodes for photo-bioelectrochemical cells. – Photosynth. Res. 120: 71-85, 2014. https://link.springer.com/article/10.1007/s11120-013-9796-3 PubMed DOI
Yu D., Wang M., Zhu G. et al.: Enhanced photocurrent production by bio-dyes of photosynthetic macromolecules on designed TiO2 film. – Sci. Rep.-UK 5: 9375, 2015. https://www.nature.com/articles/srep09375 PubMed PMC
Zaspa A.A., Vitukhnovskaya L.A., Mamedova A.M. et al.: Photovoltage generation by photosystem II core complexes immobilized onto a Millipore filter on an indium tin oxide electrode. – J. Bioenerg. Biomembr. 52: 495-504, 2020. https://link.springer.com/article/10.1007/s10863-020-09857-1 PubMed DOI
Zhang J.Z., Reisner E.: Advancing photosystem II photoelectrochemistry for semi-artificial photosynthesis. – Nat. Rev. Chem. 4: 6-21, 2020. https://www.nature.com/articles/s41570-019-0149-4
Zhang J.Z., Sokol K.P., Paul N. et al.: Competing charge transfer pathways at the photosystem II-electrode interface. – Nat. Chem. Biol. 12: 1046-1052, 2016. https://www.nature.com/articles/nchembio.2192 PubMed PMC