Transgenerational effect of UV-B priming on photochemistry and associated metabolism in rice seedlings subjected to PEG-induced osmotic stress
Status PubMed-not-MEDLINE Jazyk angličtina Země Česko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39650764
PubMed Central
PMC11558515
DOI
10.32615/ps.2022.006
PII: PS60219
Knihovny.cz E-zdroje
- Klíčová slova
- Oryza sativa, mitochondria activity, photosynthetic machinery, priming memory, stress proteins,
- Publikační typ
- časopisecké články MeSH
Rice being the major food crop for more than half of the world population is severely affected by drought stress starting from the establishment of the seedling. We focused on the UV-B priming mediated transgenerational drought tolerance of a drought-tolerant rice variety (Vaisakh) towards polyethylene glycol (PEG) 6,000 (20%)-induced drought. Results showed that priming in F0 generation and re-priming in F1 generation with UV-B enhanced the PEG stress tolerance potential of rice seedlings with increased expression of genes encoding antioxidant enzymes and stress-related proteins offering better protection to primed plants. UV-B priming maintained oxidative homeostasis of the plant cell thus ensuring uninterrupted mitochondrial and photosynthetic activities. Cumulatively, our results suggest that the transgenerational priming memory retained in the seeds is transferred to offspring without any loss. Moreover, re-priming in F1 generation further boosted the innate tolerance potential of a tolerant variety resulting in stable cellular redox homeostasis.
Zobrazit více v PubMed
Ahmad M.A., Javed R., Adeel M. et al.: PEG 6000-stimulated drought stress improves the attributes of in vitro growth, steviol glycosides production, and antioxidant activities in Stevia rebaudiana Bertoni. – Plants 9: 1552, 2020. https://www.mdpi.com/2223-7747/9/11/1552 PubMed PMC
Aslam M., Maqbool M.A., Cengiz R.: Mechanisms of drought resistance. – In: Drought Stress in Maize (Zea mays L.). Pp. 19-36, Springer, Cham: 2015. https://link.springer.com/chapter/10.1007%2F978-3-319-25442-5_3
Asthir B.: Protective mechanisms of heat tolerance in crop plants. – J. Plant Interact. 10: 202-210, 2015. https://www.tandfonline.com/doi/full/10.1080/17429145.2015.1067726 DOI
Badawi G.H., Kawano N., Yamauchi Y. et al.: Over-expression of ascorbate peroxidase in tobacco chloroplasts enhances the tolerance to salt stress and water deficit. – Physiol. Plantarum 121: 231-238, 2004a. https://onlinelibrary.wiley.com/doi/10.1111/j.0031-9317.2004.00308.x PubMed DOI
Badawi G.H., Yamauchi Y., Shimada E. et al.: Enhanced tolerance to salt stress and water deficit by overexpressing superoxide dismutase in tobacco (Nicotiana tabacum) chloroplasts. – Plant Sci. 166: 919-928, 2004b. https://www.sciencedirect.com/science/article/pii/S0168945203005090?via%3Dihub
Bates L.S., Waldren R.P., Teare I.K.: Rapid determination of free proline for water studies. – Plant Soil 39: 205-207, 1973. https://link.springer.com/article/10.1007/BF00018060 DOI
Begcy K., Mariano E.D., Lembke C.G. et al.: Overexpression of an evolutionarily conserved drought-responsive sugarcane gene enhances salinity and drought resilience. – Ann. Bot.-London 124: 691-700, 2019. https://academic.oup.com/aob/article/124/4/691/5498180 PubMed PMC
Boguszewska-Mańkowska B., Pieczyński M., Wyrzykowska A. et al.: Divergent strategies displayed by potato (Solanum tuberosum L.) cultivars to cope with soil drought. – J. Agron. Crop Sci. 204: 13-30, 2018. https://onlinelibrary.wiley.com/doi/10.1111/jac.12245 DOI
Bradford M.M.: A rapid and sensitive method for the quantification of microgram quantities of proteins utilizing the principle of protein-dye binding. – Anal. Biochem. 72: 248-254, 1976. https://www.sciencedirect.com/science/article/pii/0003269776905273?via%3Dihub PubMed
Calabrese E.J.: Hormesis: changing view of the dose-response, a personal account of the history and current status. – Mutat. Res. 511: 181-189, 2002. https://www.sciencedirect.com/science/article/pii/S1383574202000133?via%3Dihub PubMed
Caldwell M.M.: Solar UV irradiation and the growth and development of higher plants. – In: Giese A.C. (ed.): Photophysiology: Current Topics in Photobiology and Photochemistry. Pp. 131-177. Academic Press, New York: 1971. https://www.sciencedirect.com/science/article/pii/B9780122826061500106?via%3Dihub
Chen J.X., Wang X.F.: Guide to Plant Physiological Experiments. Pp. 123-127. South China University of Technology Press, Guangzhou: 2002.
Chen K., Arora R.: Priming memory invokes seed stress-tolerance. – Environ. Exp. Bot. 94: 33-45, 2013. https://www.sciencedirect.com/science/article/pii/S009884721200069X?via%3Dihub
Crisp P.A., Ganguly D., Eichten S.R. et al.: Reconsidering plant memory: Intersections between stress recovery, RNA turnover, and epigenetics. – Sci. Adv. 2: e1501340, 2016. https://www.science.org/doi/10.1126/sciadv.1501340 PubMed DOI PMC
Dąbrowski P., Kalaji M.H., Baczewska A.H. et al.: Delayed chlorophyll a fluorescence, MR 820, and gas exchange changes in perennial ryegrass under salt stress. – J. Lumin. 183: 322-333, 2017. https://www.sciencedirect.com/science/article/pii/S0022231316312340?via%3Dihub
Dąbrowski P., Pawluśkiewicz B., Baczewska A.H. et al.: Chlorophyll a fluorescence of perennial ryegrass (Lolium perenne L.) varieties under long term exposure to shade. – Zemdirbyste 102: 305-312, 2015. http://www.zemdirbyste-agriculture.lt/1023_str39/
Doke N.: Involvement of superoxide anion generation in the hypersensitive response of potato tuber tissues to infection with an incompatible race of Phytophtora infestans and the hyphal wall components. – Physiol. Plant Pathol. 23: 345-357, 1983. https://www.sciencedirect.com/science/article/pii/004840598390019X?via%3Dihub
Fatima A., Kataria S., Agrawal A.K. et al.: Use of synchrotron phase-sensitive imaging for the investigation of magnetopriming and solar UV-exclusion impact on soybean (Glycine max) leaves. – Cells 10: 1725, 2021. https://www.mdpi.com/2073-4409/10/7/1725 PubMed PMC
Giannopolitis C.N., Ries S.K.: Superoxide dismutases: I. Occurrence in higher plants. – Plant Physiol. 59: 309-314, 1977. https://academic.oup.com/plphys/article/59/2/309/6075837 PubMed PMC
Gill S.S., Tuteja N.: Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. – Plant Physiol. Bioch. 48: 909-930, 2010. https://www.sciencedirect.com/science/article/abs/pii/S0981942810001798?via%3Dihub PubMed
Halliwell B., Gutteridge J.M.C.: Free Radicals in Biology and Medicine. Pp. 905. Oxford University Press, USA: 2015. https://oxford.universitypressscholarship.com/view/10.1093/acprof:oso/9780198717478.001.0001/acprof-9780198717478 DOI
Hasanuzzaman M., Bhuyan M.H.M.B., Parvin K. et al.: Regulation of ROS metabolism in plants under environmental stress: A review of recent experimental evidence. – Int. J. Mol. Sci. 21: 8695, 2020. https://www.mdpi.com/1422-0067/21/22/8695 PubMed PMC
Heath R.L., Packer L.: Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. – Arch. Biochem. Biophys. 125: 189-198, 1968. https://www.sciencedirect.com/science/article/abs/pii/0003986168906541?via%3Dihub PubMed
Heyneke E., Luschin-Ebengreuth N., Krajcer I. et al.: Dynamic compartment specific changes in glutathione and ascorbate levels in Arabidopsis plants exposed to different light intensities. – BMC Plant Biol. 13: 104, 2013. PubMed PMC
Hussain S., Rao M.J., Anjum M.A. et al.: Oxidative stress and antioxidant defense in plants under drought conditions. – In: Hasanuzzaman M., Hakeem K., Nahar K., Alharby H. (ed.): Plant Abiotic Stress Tolerance. Pp. 207-219. Springer, Cham: 2019. https://link.springer.com/chapter/10.1007%2F978-3-030-06118-0_9
Junglee S., Urban L., Sallanon H., Lopez-Lauri F.: Optimized assay for hydrogen peroxide determination in plant tissue using potassium iodide. – Am. J. Anal. Chem. 5: 730-736, 2014. https://www.scirp.org/journal/paperinformation.aspx?paperid=48942
Kalaji H., Nalborczyk E.: Gas exchange of barley seedlings growing under salinity stress. – Photosynthetica 25: 197-202, 1991.
Kar M., Mishra D.: Catalase, peroxidase, and polyphenol oxidase activities during rice leaf senescence. – Plant Physiol. 57: 315-319, 1976. https://academic.oup.com/plphys/article/57/2/315/6075023 PubMed PMC
Kaur G., Asthir B.: Molecular responses to drought stress in plants. – Biol. Plantarum 61: 201-209, 2017. https://bp.ueb.cas.cz/artkey/bpl-201702-0001_molecular-responses-to-drought-stress-in-plants.php
Kollöffel C.: Respiration rate and mitochondrial activity in the cotyledons of Pisum sativum during germination. – Acta Bot. Neerl. 16: 111-122, 1967.
Kuźnicki D., Meller B., Arasimowicz-Jelonek M. et al.: BABA-induced DNA methylome adjustment to intergenerational defense priming in potato to Phytophthora infestans. – Front. Plant Sci. 10: 650, 2019. https://www.frontiersin.org/articles/10.3389/fpls.2019.00650/full PubMed DOI PMC
Macovei A., Garg B., Raikwar S. et al.: Synergistic exposure of rice seeds to different doses of γ-ray and salinity stress resulted in increased antioxidant enzyme activities and gene-specific modulation of TC-NER pathway. – BioMed Res. Int. 2014: 676934, 2014. https://www.hindawi.com/journals/bmri/2014/676934/ PubMed PMC
Mancinelli A.L., Yang C.P.H., Lindquist P. et al.: Photocontrol of anthocyanin synthesis: III. The action of streptomycin on the synthesis of chlorophyll and anthocyanin. – Plant Physiol. 55: 251-257, 1975. https://academic.oup.com/plphys/article/55/2/251/6074769 PubMed PMC
Mirecki R.M., Teramura A.H.: Effects of ultraviolet-B irradiance on soybean: V. The dependence of plant sensitivity on the photosynthetic photon flux density during and after leaf expansion. – Plant Physiol. 74: 475-480, 1984. https://academic.oup.com/plphys/article/74/3/475/6079596 PubMed PMC
Nakano Y., Asada K.: Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. – Plant Cell Physiol. 22: 867-880, 1981. https://academic.oup.com/pcp/article-abstract/22/5/867/1835201?redirectedFrom=fulltext
Nayyar H., Gupta D.: Differential sensitivity of C3 and C4 plants to water deficit stress: association with oxidative stress and antioxidants. – Environ. Exp. Bot. 58: 106-113, 2006. https://www.sciencedirect.com/science/article/abs/pii/S0098847205001280?via%3Dihub
Pandey A.K., Gautam A.: Stress responsive gene regulation in relation to hydrogen sulfide in plants under abiotic stress. – Physiol. Plantarum 168: 511-525, 2020. https://onlinelibrary.wiley.com/doi/10.1111/ppl.13064 PubMed DOI
Pandey V., Shukla A.: Acclimation and tolerance strategies of rice under drought stress. – Rice Sci. 22: 147-161, 2015. https://www.sciencedirect.com/science/article/pii/S1672630815000359?via%3Dihub
Pogrzeba M., Rusinowski S., Sitko K. et al.: Relationships between soil parameters and physiological status of Miscanthus × giganteus cultivated on soil contaminated with trace elements under NPK fertilisation vs. microbial inoculation. – Environ. Pollut. 225: 163-174, 2017. https://www.sciencedirect.com/science/article/abs/pii/S026974911630940X?via%3Dihub PubMed
Pradhan B., Baral S., Patra S. et al.: Delineation of gamma irradiation (60Co) induced oxidative stress by decrypting antioxidants and biochemical responses of microalga, Chlorella sp. – Biocatal. Agric. Biotechnol. 25: 101595, 2020.
Rapacz M., Sasal M., Kalaji H.M., Kościelniak J.: Is the OJIP test a reliable indicator of winter hardiness and freezing tolerance of common wheat and triticale under variable winter environments? – PLoS ONE 10: e0134820, 2015. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0134820 PubMed PMC
Rawat N., Singla-Pareek S.L., Pareek A.: Membrane dynamics during individual and combined abiotic stresses in plants and tools to study the same. – Physiol. Plantarum 171: 653-676, 2021. https://onlinelibrary.wiley.com/doi/10.1111/ppl.13217 PubMed DOI
Reddy A.R., Chaitanya K.V., Vivekanandan M.: Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. – J. Plant Physiol. 161: 1189-1202, 2004. https://www.sciencedirect.com/science/article/abs/pii/S0176161704000422?via%3Dihub PubMed
Rossatto T., Amaral M.N., Benitez L.C. et al.: Gene expression and activity of antioxidative enzymes in rice plants, cv. BRS AG, under saline stress. – Physiol. Mol. Biol. Pla. 23: 865-875, 2017. PubMed PMC
Schmitt N., Dizengremel P.: Effect of osmotic stress on mitochondria isolated from etiolated mung bean and sorghum seedlings. – Plant Physiol. Bioch. 27: 17-26, 1989.
Seleiman M.F., Al-Suhaibani N., Ali N. et al.: Drought stress impacts on plants and different approaches to alleviate its adverse effects. – Plants 10: 259, 2021. https://www.mdpi.com/2223-7747/10/2/259 PubMed PMC
Semwal V.K., Khanna-Chopra R.: Reproductive sink enhanced drought induced senescence in wheat fertile line is associated with loss of antioxidant competence compared to its CMS line. – Physiol. Mol. Biol. Pla. 24: 591-604, 2018. https://link.springer.com/article/10.1007/s12298-018-0549-9 PubMed DOI PMC
Sen A., Challabathula D., Puthur J.T.: UV-B priming of Oryza sativa seeds augments the innate tolerance potential in a tolerant variety more effectively toward NaCl and PEG stressors. – J. Plant Growth Regul. 40: 1166-1180, 2021.
Sen A., Puthur J.T.: Seed priming-induced physiochemical and molecular events in plants coupled to abiotic stress tolerance: an overview. – In: Hossain M.A., Liu F., Burritt D.J. et al. (ed.): Priming-Mediated Stress and Cross-Stress Tolerance in Crop Plants. Pp. 303-316. Academic Press, London: 2020. https://www.sciencedirect.com/science/article/pii/B9780128178928000180?via%3Dihub
Sen A., Puthur J.T.: Halo- and UV-B priming-mediated drought tolerance and recovery in rice seedlings. – Plant Stress 2: 100011, 2021. https://www.sciencedirect.com/science/article/pii/S2667064X21000105?via%3Dihub
Sheteiwy M.S., Gong D., Gao Y. et al.: Priming with methyl jasmonate alleviates polyethylene glycol-induced osmotic stress in rice seeds by regulating the seed metabolic profile. – Environ. Exp. Bot. 153: 236-248, 2018. https://www.sciencedirect.com/science/article/abs/pii/S0098847218307688?via%3Dihub
Sohag A.A.M., Tahjib-Ul-Arif M., Brestič M. et al.: Exogenous salicylic acid and hydrogen peroxide attenuate drought stress in rice. – Plant Soil Environ. 66: 7-13, 2020. https://www.agriculturejournals.cz/web/pse.htm?type=article&id=472_2019-PSE
Srivastava A., Strasser R.J., Govindjee: Differential effects of dimethylbenzoquinone and dichlorobenzoquinone on chlorophyll fluorescence transient in spinach thylakoids. – J. Photoch. Photobio. B 31: 163-169, 1995. https://www.sciencedirect.com/science/article/abs/pii/1011134495071776?via%3Dihub
Strasser R.J., Tsimilli-Michael M., Srivastava A.: Analysis of the chlorophyll a fluorescence transient. – In: Papageorgiou G.C., Govindjee (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration. Pp. 321-362. Springer, Dordrecht: 2004. https://link.springer.com/chapter/10.1007/978-1-4020-3218-9_12 DOI
Sytar O., Zivcak M., Bruckova K. et al.: Shift in accumulation of flavonoids and phenolic acids in lettuce attributable to changes in ultraviolet radiation and temperature. – Sci. Hortic.-Amsterdam 239: 193-204, 2018.
Tóth S.Z., Nagy V., Puthur J.T. et al.: The physiological role of ascorbate as photosystem II electron donor: protection against photoinactivation in heat-stressed leaves. – Plant Physiol. 156: 382-392, 2011. https://academic.oup.com/plphys/article/156/1/382/6111473?login=true PubMed PMC
Tuba Z., Saxena D.K., Srivastava K. et al.: Chlorophyll a fluorescence measurements for validating the tolerant bryophytes for heavy metal (Pb) bio mapping. – Curr. Sci. 98: 1505-1508, 2010. https://www.researchgate.net/publication/233834481_Chlorophyll_a_fluorescence_measurements_for_validating_the_tolerant_bryophytes_for_heavy_metal_Pb_biomapping
Valenzuela-Avendaño J.P., Mota I.A.E., Uc G.L. et al.: Use of a simple method to isolate intact RNA from partially hydrated Selaginella lepidophylla plants. – Plant Mol. Biol. Rep. 23: 199-200, 2005. https://link.springer.com/article/10.1007/BF02772713 DOI
Vozhehova R., Kokovikhin S., Lykhovyd P.V. et al.: Statistical yielding models of some irrigated vegetable crops in dependence on water use and heat supply. – J. Water Land Dev. 45: 190-197, 2020. https://journals.pan.pl/dlibra/publication/133494/edition/116641/content
Wang X., Wang L., Shangguan Z.: Leaf gas exchange and fluorescence of two winter wheat varieties in response to drought stress and nitrogen supply. – PLoS ONE 11: e0165733, 2016. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0165733 PubMed PMC
Wei Y., Liu W., Hu W. et al.: The chaperone MeHsp90 recruits MeWRKY20 and MeCatalase1 to regulate drought stress resistance in cassava. – New Phytol. 226: 476-491, 2020. https://nph.onlinelibrary.wiley.com/doi/10.1111/nph.16346 PubMed DOI
Yamane K., Kawasaki M., Taniguchi M., Miyake H.: Correlation between chloroplast ultrastructure and chlorophyll fluorescence characteristics in the leaves of rice (Oryza sativa L.) grown under salinity. – Plant Prod. Sci. 11: 139-145, 2008. https://www.tandfonline.com/doi/abs/10.1626/pps.11.139 DOI
Yin D., Chen S., Chen F. et al.: Morphological and physiological responses of two chrysanthemum cultivars differing in their tolerance to waterlogging. – Environ. Exp. Bot. 67: 87-93, 2009. https://www.sciencedirect.com/science/article/abs/pii/S0098847209001312?via%3Dihub
Zhang H., Xu N., Li X., Gu S.: Overexpression of 2-Cys Prx increased salt tolerance of photosystem II (PSII) in tobacco. – Peer J. Preprints: e2500v1, 2016. https://peerj.com/preprints/2500.pdf
Zheng X.T., Yu Z.C., Tang J.W. et al.: The major photoprotective role of anthocyanins in leaves of Arabidopsis thaliana under long-term high light treatment: antioxidant or light attenuator? –Photosynth. Res. 149: 25-40, 2021. https://link.springer.com/article/10.1007/s11120-020-00761-8 PubMed DOI