Rhizobacterial volatile organic compounds: Implications for agricultural ecosystems' nutrient cycling and soil health
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
39660212
PubMed Central
PMC11629272
DOI
10.1016/j.heliyon.2024.e40522
PII: S2405-8440(24)16553-X
Knihovny.cz E-zdroje
- Klíčová slova
- Agricultural sustainability, Nutrient cycling, Plant-microbe interactions, Rhizobacterial VOCs, Soil health,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Plant growth-promoting rhizobacteria (PGPR) have emerged as key players in sustainable agriculture due to their ability to enhance plant growth, nutrient uptake, and disease resistance. A significant aspect of PGPR is the emission of volatile organic compounds (VOCs), which serve as signaling molecules that influence various physiological processes in plants. This review article explores the complex interactions between rhizobacterial VOCs and soil health, focusing particularly on their role in nutrient cycling within agricultural ecosystems. By investigating the mechanism of production and release of VOCs by rhizobacteria, along with impacts on soil properties and microbial communities. We aim to highlight the potential of rhizobacterial volatile organic compounds (VOCs) for sustainable agricultural management. Additionally, we discuss the role of rhizobacterial VOCs in promoting root growth, nutrient uptake, and enhancing nutrient cycling processes. By providing insights into these mechanisms, this review offers tailored strategies for exploring the potential of rhizobacterial VOCs to optimize nutrient availability, enhance soil fertility, and address environmental challenges in agriculture. Exploring the potential of rhizobacterial VOCs presents an opportunity to establish sustainable and resilient agricultural systems that significantly enhance global food security and promote environmental stewardship.
College of Bioscience and Biotechnology Shenyang Agricultural University Shenyang 110866 China
College of Land and Environment Shenyang Agricultural University Shenyang 110866 China
Zobrazit více v PubMed
Backer R., Rokem J.S., Ilangumaran G., Lamont J., Praslickova D., Ricci E., Subramanian S., Smith D.L. Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front. Plant Sci. 2018;9:1473. doi: 10.3389/fpls.2018.01473. PubMed DOI PMC
Zaidi A., Khan M.S., Ahemad M., Oves M. Plant growth promotion by phosphate solubilizing bacteria. Acta Microbiol. Immunol. Hung. 2009;56:263–284. doi: 10.1556/AMicr.56.2009.3.6. PubMed DOI
Khan A.L., Waqas M., Kang S.-M., Al-Harrasi A., Hussain J., Al-Rawahi A., Al-Khiziri S., Ullah I., Ali L., Jung H.-Y., Lee I.-J. Bacterial endophyte Sphingomonas sp. LK11 produces gibberellins and IAA and promotes tomato plant growth. J. Microbiol. 2014;52:689–695. doi: 10.1007/s12275-014-4002-7. PubMed DOI
Ryu C.-M., Farag M.A., Hu C.-H., Reddy M.S., Wei H.-X., Paré P.W., Kloepper J.W. Bacterial volatiles promote growth in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 2003;100:4927–4932. doi: 10.1073/pnas.0730845100. PubMed DOI PMC
Effmert U., Kalderás J., Warnke R., Piechulla B. Volatile mediated interactions between bacteria and fungi in the soil. J. Chem. Ecol. 2012;38:665–703. doi: 10.1007/s10886-012-0135-5. PubMed DOI
Zhang H., Kim M.-S., Krishnamachari V., Payton P., Sun Y., Grimson M., Farag M.A., Ryu C.-M., Allen R., Melo I.S., Paré P.W. Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis. Planta. 2007;226:839–851. doi: 10.1007/s00425-007-0530-2. PubMed DOI
Gomi K., Matsuoka M. Gibberellin signalling pathway. Curr. Opin. Plant Biol. 2003;6:489–493. doi: 10.1016/s1369-5266(03)00079-7. PubMed DOI
Yamaguchi S. Gibberellin metabolism and its regulation. Annu. Rev. Plant Biol. 2008;59:225–251. doi: 10.1146/annurev.arplant.59.032607.092804. PubMed DOI
Ridenour W.M., Callaway R.M. The relative importance of allelopathy in interference: the effects of an invasive weed on a native bunchgrass. Oecologia. 2001;126:444–450. doi: 10.1007/s004420000533. PubMed DOI
Xu Y., Chen X., Ding L., Kong C.H. Allelopathy and allelochemicals in grasslands and forests. Forests. 2023;14 doi: 10.3390/f14030562. DOI
Akiyama K., Matsuzaki K.-I., Hayashi H. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature. 2005;435:824–827. doi: 10.1038/nature03608. PubMed DOI
Heil M., Karban R. Explaining evolution of plant communication by airborne signals. Trends Ecol. Evol. 2010;25:137–144. doi: 10.1016/j.tree.2009.09.010. PubMed DOI
Altieri M.A., Nicholls C.I., Henao A., Lana M.A. Agroecology and the design of climate change-resilient farming systems. Agron. Sustain. Dev. 2015;35:869–890. doi: 10.1007/s13593-015-0285-2. DOI
Vaishnav A., Kumari S., Jain S., Varma A., Tuteja N., Choudhary D.K. PGPR-mediated expression of salt tolerance gene in soybean through volatiles under sodium nitroprusside: PGPR-mediated amelioration of soybean under salt stress. J. Basic Microbiol. 2016;56:1274–1288. doi: 10.1002/jobm.201600188. PubMed DOI
Wang C., Zhao J., Feng Y., Shang M., Bo X., Gao Z., Chen F., Chu Q. Optimizing tillage method and irrigation schedule for greenhouse gas mitigation, yield improvement, and water conservation in wheat–maize cropping systems. Agric. Water Manag. 2021;248 doi: 10.1016/j.agwat.2021.106762. DOI
Niinemets U., Kännaste A., Copolovici L. Quantitative patterns between plant volatile emissions induced by biotic stresses and the degree of damage. Front. Plant Sci. 2013;4:262. doi: 10.3389/fpls.2013.00262. PubMed DOI PMC
Prakash R., Subramani R., Berde C.V., Chandrasekhar T., Prathyusha A.M., Kariali E., Bramhachari P.V. InUnderstanding the Microbiome Interactions in Agriculture and the Environment. Springer Nature; Singapore; Singapore: 2022. Rhizobacteriome: plant growth-promoting traits and its functional mechanism in plant growth, development, and defenses.
Volkogon V.V., Potapenko L.V., Volkogon M.V. Vertical migration of nutrients and water-soluble organic matter in the soil profile under pre-sowing seed treatment with plant growth promoting rhizobacteria. Front. Sustain. Food Syst. 2023;6
Schulz-Bohm K., Zweers H., de Boer W., Garbeva P. A fragrant neighborhood: volatile mediated bacterial interactions in soil. Front. Microbiol. 2015;6:1212. doi: 10.3389/fmicb.2015.01212. PubMed DOI PMC
Wang L., Wang N., Guo D., Shang Z., Zhang Y., Liu S., Wang Y. Rhizobacteria helps to explain the enhanced efficiency of phytoextraction strengthened by Streptomyces pactum. J. Environ. Sci. (China) 2023;125:73–81. doi: 10.1016/j.jes.2022.01.022. PubMed DOI
Yuan J., Zhao M., Li R., Huang Q., Raza W., Rensing C., Shen Q. Microbial volatile compounds alter the soil microbial community. Environ. Sci. Pollut. Res. Int. 2017;24:22485–22493. doi: 10.1007/s11356-017-9839-y. PubMed DOI
Kaiser R. Flowers and fungi use scents to mimic each other. Science. 2006;311:806–807. doi: 10.1126/science.1119499. PubMed DOI
Misztal P.K. Measuring rapid changes in plant volatiles at different spatial levels. Deciphering chemical language of plant communication. 2016:95–114.
Wihlborg R., Pippitt D., Marsili R. Headspace sorptive extraction and GC-TOFMS for the identification of volatile fungal metabolites. J. Microbiol. Methods. 2008;75:244–250. doi: 10.1016/j.mimet.2008.06.011. PubMed DOI
Dandurishvili N., Toklikishvili N., Ovadis M., Eliashvili P., Giorgobiani N., Keshelava R., Tediashvili M., Vainstein A., Khmel I., Szegedi E., Chernin L. Broad-range antagonistic rhizobacteria Pseudomonas fluorescens and Serratia plymuthica suppress Agrobacterium crown gall tumours on tomato plants: biocontrol of Agrobacterium by bacterial antagonists. J. Appl. Microbiol. 2011;110:341–352. doi: 10.1111/j.1365-2672.2010.04891.x. PubMed DOI
Pieterse C.M.J., Zamioudis C., Berendsen R.L., Weller D.M., Van Wees S.C.M., Bakker P.A.H.M. Induced systemic resistance by beneficial microbes. Annu. Rev. Phytopathol. 2014;52:347–375. doi: 10.1146/annurev-phyto-082712-102340. PubMed DOI
Hardoim P.R., van Overbeek L.S., van Elsas J.D. Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol. 2008;16:463–471. doi: 10.1016/j.tim.2008.07.008. PubMed DOI
Berendsen R.L., Pieterse C.M.J., Bakker P.A.H.M. The rhizosphere microbiome and plant health. Trends Plant Sci. 2012;17:478–486. doi: 10.1016/j.tplants.2012.04.001. PubMed DOI
Bhadrecha P., Singh S., Dwibedi V. “A plant's major strength in rhizosphere”: the plant growth promoting rhizobacteria. Arch. Microbiol. 2023;205:165. doi: 10.1007/s00203-023-03502-2. PubMed DOI
Berg G. Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl. Microbiol. Biotechnol. 2009;84:11–18. doi: 10.1007/s00253-009-2092-7. PubMed DOI
Yamada Y., Kuzuyama T., Komatsu M., Shin-Ya K., Omura S., Cane D.E., Ikeda H. Terpene synthases are widely distributed in bacteria. Proc. Natl. Acad. Sci. U.S.A. 2015;112:857–862. doi: 10.1073/pnas.1422108112. PubMed DOI PMC
Mármol I., Sánchez-de-Diego C., Jiménez-Moreno N., Ancín-Azpilicueta C., Rodríguez-Yoldi M. Therapeutic applications of Rose hips from different Rosa species. Int. J. Mol. Sci. 2017;18:1137. doi: 10.3390/ijms18061137. PubMed DOI PMC
Massalha H., Korenblum E., Malitsky S., Shapiro O.H., Aharoni A. Live imaging of root–bacteria interactions in a microfluidics setup. Proc. Natl. Acad. Sci. U.S.A. 2017;114:4549–4554. doi: 10.1073/pnas.1618584114. PubMed DOI PMC
Kai M., Haustein M., Molina F., Petri A., Scholz B., Piechulla B. Bacterial volatiles and their action potential. Appl. Microbiol. Biotechnol. 2009;81:1001–1012. doi: 10.1007/s00253-008-1760-3. PubMed DOI
Vespermann A., Kai M., Piechulla B. Rhizobacterial volatiles affect the growth of fungi and Arabidopsis thaliana. Appl. Environ. Microbiol. 2007;73:5639–5641. doi: 10.1128/AEM.01078-07. PubMed DOI PMC
Bitas V., Kim H.-S., Bennett J.W., Kang S. Sniffing on microbes: diverse roles of microbial volatile organic compounds in plant health. Mol. Plant Microbe Interact. 2013;26:835–843. doi: 10.1094/MPMI-10-12-0249-CR. PubMed DOI
Weisskopf L., Schulz S., Garbeva P. Microbial volatile organic compounds in intra-kingdom and inter-kingdom interactions. Nat. Rev. Microbiol. 2021;19:391–404. doi: 10.1038/s41579-020-00508-1. PubMed DOI
Schulz-Bohm K., Martín-Sánchez L., Garbeva P. Microbial volatiles: small molecules with an important role in intra-and inter-kingdom interactions. Front. Microbiol. 2017;8 doi: 10.3389/fmicb.2017.02484. PubMed DOI PMC
Kai M., Piechulla B. Plant growth promotion due to rhizobacterial volatiles-an effect of CO2? FEBS (Fed. Eur. Biochem. Soc.) Lett. 2009;583:3473–3477. doi: 10.1016/j.febslet.2009.09.053. PubMed DOI
Nagrale D.T., Gawande S.P., Shah V., Verma P., Hiremani N.S., Prabhulinga T., Gokte-Narkhedkar N., Waghmare V.N. Correction: biocontrol potential of volatile organic compounds (VOCs) produced by cotton endophytic rhizobacteria against Macrophomina phaseolina. Eur. J. Plant Pathol. 2022;163 doi: 10.1007/s10658-022-02503-z. 511–511. DOI
Campos V.P., de Pinho R.S.C., Freire E.S. Volatiles produced by interacting microorganisms potentially useful for the control of plant pathogens, Ciênc. Agrotecnologia. 2010;34:525–535. doi: 10.1590/s1413-70542010000300001. DOI
Raza W., Wei Z., Jousset A., Shen Q., Friman V.-P. Extended plant metarhizobiome: understanding volatile organic compound signaling in plant-microbe metapopulation networks. mSystems. 2021;6 doi: 10.1128/mSystems.00849-21. PubMed DOI PMC
Schenkel D., Maciá-Vicente J.G., Bissell A., Splivallo R. Fungi indirectly affect plant root architecture by modulating soil volatile organic compounds. Front. Microbiol. 2018;9:1847. doi: 10.3389/fmicb.2018.01847. PubMed DOI PMC
Enespa C.P. Volatiles and Food Security: Role of Volatiles in Agro-Ecosystems. 2017. Microbial volatiles as chemical weapons against pathogenic fungi; pp. 227–254.
Hw C. Microbial volatile organic compounds: generation pathways and mass spectrometric detection. China Biotechnol. 2008;28:124–133.
Bardgett R.D., van der Putten W.H. Belowground biodiversity and ecosystem functioning. Nature. 2014;515:505–511. doi: 10.1038/nature13855. PubMed DOI
Weller D.M., Raaijmakers J.M., Gardener B.B.M., Thomashow L.S. Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu. Rev. Phytopathol. 2002;40:309–348. doi: 10.1146/annurev.phyto.40.030402.110010. PubMed DOI
Bais H.P., Fall R., Vivanco J.M. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol. 2004;134:307–319. doi: 10.1104/pp.103.028712. PubMed DOI PMC
Bérdy J. Thoughts and facts about antibiotics: where we are now and where we are heading. J. Antibiot. (Tokyo) 2012;65:441. doi: 10.1038/ja.2012.54. PubMed DOI
Contreras-Cornejo H.A., Macías-Rodríguez L., Cortés-Penagos C., López-Bucio J. Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiol. 2009;149:1579–1592. doi: 10.1104/pp.108.130369. PubMed DOI PMC
Smith S.E., Read D.J. Academic Press; 2010. Mycorrhizal Symbiosis.
Conrad R. Microbial ecology of methane production and oxidation in rice soils. Soil Biol. Biochem. 2007;39:859–870.
Nicol G.W., Schleper C. Ammonia-oxidising Crenarchaeota: important players in the nitrogen cycle? Trends Microbiol. 2006;14:207–212. doi: 10.1016/j.tim.2006.03.004. PubMed DOI
Adams R.I., Miletto M., Taylor J.W., Bruns T.D. Erratum: dispersal in microbes: fungi in indoor air are dominated by outdoor air and show dispersal limitation at short distances. ISME J. 2013;7 doi: 10.1038/ismej.2013.84. 1460–1460. PubMed DOI PMC
Checcucci A., Azzarello E., Bazzicalupo M., Galardini M., Lagomarsino A., Mancuso S., Marti L., Marzano M.C., Mocali S., Squartini A., Zanardo M., Mengoni A. Mixed nodule infection in Sinorhizobium meliloti-Medicago sativa symbiosis suggest the presence of cheating behavior. Front. Plant Sci. 2016;7:835. doi: 10.3389/fpls.2016.00835. PubMed DOI PMC
Elbert W., Weber B., Burrows S., Steinkamp J., Büdel B., Andreae M.O., Pöschl U. Contribution of cryptogamic covers to the global cycles of carbon and nitrogen. Nat. Geosci. 2012;5:459–462. doi: 10.1038/ngeo1486. DOI
Mendes R., Garbeva P., Raaijmakers J.M. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev. 2013;37:634–663. doi: 10.1111/1574-6976.12028. PubMed DOI
Parlin A.A., Kondo M., Watanabe N., Nakamura K., Wang J., Sakamoto Y., Komai T. Role of water in unexpectedly large changes in emission flux of volatile organic compounds in soils under dynamic temperature conditions. Sci. Rep. 2022;12:4418. doi: 10.1038/s41598-022-08270-5. PubMed DOI PMC
Oades J.M. Soil organic matter and structural stability: mechanisms and implications for management. Plant Soil. 1984;76:319–337. doi: 10.1007/bf02205590. DOI
Musielok Ł., Stolarczyk M., Rudnik A., Buczek K. InEGU General Assembly Conference Abstracts. 2023. The role of soil-forming processes and changes in land cover in the storage and stabilization of soil organic carbon-preliminary results from the Carpathians (Southern Poland)
Cooper H., Lark M., Sjogersten S., Mooney S. InEGU General Assembly Conference Abstracts. 2023. The role of zero-tillage in mitigating climate change in tropical soils.
Tian G., Chiu C.-Y., Oladeji O., Johnston T., Morgan B., Cox A., Granato T., Zhang H., Podczerwinski E. JumpStart of soil organic matter with highly stabilized organic amendment: implication for climate-smart agriculture. Environmental Challenges. 2023;12 doi: 10.1016/j.envc.2023.100726. DOI
Insam H., Seewald M.S.A. Volatile organic compounds (VOCs) in soils. Biol. Fertil. Soils. 2010;46:199–213. doi: 10.1007/s00374-010-0442-3. DOI
Wenke K., Kai M., Piechulla B. Belowground volatiles facilitate interactions between plant roots and soil organisms. Planta. 2010;231:499–506. doi: 10.1007/s00425-009-1076-2. PubMed DOI
Schulz-Bohm K., Gerards S., Hundscheid M., Melenhorst J., de Boer W., Garbeva P. Calling from distance: attraction of soil bacteria by plant root volatiles. ISME J. 2018;12:1252–1262. doi: 10.1038/s41396-017-0035-3. PubMed DOI PMC
Delory B.M., Delaplace P., Fauconnier M.-L., du Jardin P. Root-emitted volatile organic compounds: can they mediate belowground plant-plant interactions? Plant Soil. 2016;402:1–26. doi: 10.1007/s11104-016-2823-3. DOI
Ditengou F.A., Müller A., Rosenkranz M., Felten J., Lasok H., van Doorn M.M., Legué V., Palme K., Schnitzler J.-P., Polle A. Volatile signalling by sesquiterpenes from ectomycorrhizal fungi reprogrammes root architecture. Nat. Commun. 2015;6:6279. doi: 10.1038/ncomms7279. PubMed DOI PMC
Peñuelas J., Asensio D., Tholl D., Wenke K., Rosenkranz M., Piechulla B., Schnitzler J. Biogenic vol atile emissions from the soil. Plant Cell Environ. 2014;37:1866–1891. PubMed
Meldau D.G., Meldau S., Hoang L.H., Underberg S., Wünsche H., Baldwin I.T. Dimethyl disulfide produced by the naturally associated bacterium bacillus sp B55 promotes Nicotiana attenuata growth by enhancing sulfur nutrition. Plant Cell. 2013;25:2731–2747. doi: 10.1105/tpc.113.114744. PubMed DOI PMC
Cordovez V., Carrion V.J., Etalo D.W., Mumm R., Zhu H., van Wezel G.P., Raaijmakers J.M. Diversity and functions of volatile organic compounds produced by Streptomyces from a disease-suppressive soil. Front. Microbiol. 2015;6:1081. doi: 10.3389/fmicb.2015.01081. PubMed DOI PMC
Schmidt R., Cordovez V., de Boer W., Raaijmakers J., Garbeva P. Volatile affairs in microbial interactions. ISME J. 2015;9:2329–2335. doi: 10.1038/ismej.2015.42. PubMed DOI PMC
Adeleke R., Nwangburuka C., Oboirien B. Origins, roles and fate of organic acids in soils: a review. South Afr. J. Bot. 2017;108:393–406. doi: 10.1016/j.sajb.2016.09.002. DOI
Garbeva P., Hordijk C., Gerards S., de Boer W. Volatile-mediated interactions between phylogenetically different soil bacteria. Front. Microbiol. 2014;5:289. doi: 10.3389/fmicb.2014.00289. PubMed DOI PMC
Drogue B., Sanguin H., Borland S., Prigent-Combaret C., Wisniewski-Dyé F. Genome wide profiling of Azospirillum lipoferum 4B gene expression during interaction with rice roots. FEMS Microbiol. Ecol. 2014;87:543–555. doi: 10.1111/1574-6941.12244. PubMed DOI
Ryu C.-M., Farag M.A., Hu C.-H., Reddy M.S., Kloepper J.W., Paré P.W. Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol. 2004;134:1017–1026. doi: 10.1104/pp.103.026583. PubMed DOI PMC
Ahemad M., Kibret M. Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J. King Saud Univ. Sci. 2014;26:1–20. doi: 10.1016/j.jksus.2013.05.001. DOI
Naveed M., Mitter B., Reichenauer T.G., Wieczorek K., Sessitsch A. Increased drought stress resilience of maize through endophytic colonization by Burkholderia phytofirmans PsJN and Enterobacter sp. FD17. Environ. Exp. Bot. 2014;97:30–39. doi: 10.1016/j.envexpbot.2013.09.014. DOI
Chowdhury S.P., Hartmann A., Gao X., Borriss R. Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42-a review. Front. Microbiol. 2015;6 doi: 10.3389/fmicb.2015.00780. PubMed DOI PMC
Siddiqui I.A., Shaukat S.S., Sheikh I.H., Khan A. Role of cyanide production by Pseudomonas fluorescens CHA0 in the suppression of root-knot nematode, Meloidogyne javanica in tomato. World J. Microbiol. Biotechnol. 2006;22:641–650. doi: 10.1007/s11274-005-9084-2. DOI
Oldroyd G.E.D., Murray J.D., Poole P.S., Downie J.A. The rules of engagement in the legume-rhizobial symbiosis. Annu. Rev. Genet. 2011;45:119–144. doi: 10.1146/annurev-genet-110410-132549. PubMed DOI
García-Salamanca A., Molina-Henares M.A., van Dillewijn P., Solano J., Pizarro-Tobías P., Roca A., Duque E., Ramos J.L. Bacterial diversity in the rhizosphere of maize and the surrounding carbonate-rich bulk soil: biodiversity in adjacent niches. Microb. Biotechnol. 2013;6:36–44. doi: 10.1111/j.1751-7915.2012.00358.x. PubMed DOI PMC
Schrey S.D., Schellhammer M., Ecke M., Hampp R., Tarkka M.T. Mycorrhiza helper bacterium Streptomyces AcH 505 induces differential gene expression in the ectomycorrhizal fungus Amanita muscaria. New Phytol. 2005;168:205–216. doi: 10.1111/j.1469-8137.2005.01518.x. PubMed DOI
Shoresh M., Harman G.E., Mastouri F. Induced systemic resistance and plant responses to fungal biocontrol agents. Annu. Rev. Phytopathol. 2010;48:21–43. doi: 10.1146/annurev-phyto-073009-114450. PubMed DOI
Druzhinina I.S., Seidl-Seiboth V., Herrera-Estrella A., Horwitz B.A., Kenerley C.M., Monte E., Mukherjee P.K., Zeilinger S., Grigoriev I.V., Kubicek C.P. Trichoderma: the genomics of opportunistic success. Nat. Rev. Microbiol. 2011;9:749–759. doi: 10.1038/nrmicro2637. PubMed DOI
Johnson N.C., Wilson G.W.T., Bowker M.A., Wilson J.A., Miller R.M. Resource limitation is a driver of local adaptation in mycorrhizal symbioses. Proc. Natl. Acad. Sci. U.S.A. 2010;107:2093–2098. doi: 10.1073/pnas.0906710107. PubMed DOI PMC
Steenhoudt O., Vanderleyden J. Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol. Rev. 2000;24:487–506. doi: 10.1016/s0168-6445(00)00036-x. PubMed DOI
Bashan Y., Holguin G., de-Bashan L.E. Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997-2003) Can. J. Microbiol. 2004;50:521–577. doi: 10.1139/w04-035. PubMed DOI
Sy A., Giraud E., Jourand P., Garcia N., Willems A., de Lajudie P., Prin Y., Neyra M., Gillis M., Boivin-Masson C., Dreyfus B. Methylotrophic Methylobacterium bacteria nodulate and fix nitrogen in symbiosis with legumes. J. Bacteriol. 2001;183:214–220. doi: 10.1128/JB.183.1.214-220.2001. PubMed DOI PMC
Knief C., Ramette A., Frances L., Alonso-Blanco C., Vorholt J.A. Site and plant species are important determinants of the Methylobacterium community composition in the plant phyllosphere. ISME J. 2010;4:719–728. doi: 10.1038/ismej.2010.9. PubMed DOI
Berezina O.V., Zakharova N.V., Brandt A., Yarotsky S.V., Schwarz W.H., Zverlov V.V. Reconstructing the clostridial n-butanol metabolic pathway in Lactobacillus brevis. Appl. Microbiol. Biotechnol. 2010;87:635–646. doi: 10.1007/s00253-010-2480-z. PubMed DOI
Estrada-De Los Santos P., Bustillos-Cristales R., Caballero-Mellado J. Burkholderia, a genus rich in plant-associated nitrogen fixers with wide environmental and geographic distribution. Appl. Environ. Microbiol. 2001;67:2790–2798. doi: 10.1128/AEM.67.6.2790-2798.2001. PubMed DOI PMC
Gyaneshwar P., James E.K., Reddy P.M., Ladha J.K. Herbaspirillum colonization increases growth and nitrogen accumulation in aluminium-tolerant rice varieties. New Phytol. 2002;154:131–145. doi: 10.1046/j.1469-8137.2002.00371.x. DOI
Cavalcante V.A., Dobereiner J. A new acid-tolerant nitrogen-fixing bacterium associated with sugarcane. Plant Soil. 1988;108:23–31. doi: 10.1007/bf02370096. DOI
Bashan Y., de-Bashan L.E. Advances in Agronomy. Elsevier; 2010. How the plant growth-promoting bacterium Azospirillum promotes plant growth—a critical assessment; pp. 77–136. DOI
Nölling J., Breton G., Omelchenko M.V., Makarova K.S., Zeng Q., Gibson R., Lee H.M., Dubois J., Qiu D., Hitti J., Wolf Y.I., Tatusov R.L., Sabathe F., Doucette-Stamm L., Soucaille P., Daly M.J., Bennett G.N., Koonin E.V., Smith D.R. Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum. J. Bacteriol. 2001;183:4823–4838. doi: 10.1128/JB.183.16.4823-4838.2001. PubMed DOI PMC
Dürre P. Biobutanol: an attractive biofuel. Biotechnol. J. 2007;2:1525–1534. doi: 10.1002/biot.200700168. PubMed DOI
Bitas V., McCartney N., Li N., Demers J., Kim J.-E., Kim H.-S., Brown K.M., Kang S. Fusarium oxysporum volatiles enhance plant growth via affecting auxin transport and signaling. Front. Microbiol. 2015;6:1248. doi: 10.3389/fmicb.2015.01248. PubMed DOI PMC
Mhlongo M.I., Piater L.A., Dubery I.A. Profiling of volatile organic compounds from four plant growth-promoting rhizobacteria by SPME-GC-MS: a metabolomics study. Metabolites. 2022;12:763. doi: 10.3390/metabo12080763. PubMed DOI PMC
Ribeiro L.S., de Souza M.L., Lira J.M.S., Schwan R.F., Batista L.R., Silva C.F. Volatile compounds for biotechnological applications produced during competitive interactions between yeasts and fungi. J. Basic Microbiol. 2023;63:658–667. doi: 10.1002/jobm.202200409. PubMed DOI
Razo-Belman R., Ozuna C. Volatile organic compounds: a review of their current applications as pest biocontrol and disease management. Horticulturae. 2023;9 doi: 10.3390/horticulturae9040441. DOI
Le T.T., Jun S.E., Kim G.T. Current perspectives on the effects of plant growth-promoting Rhizobacteria. J. Life Sci. 2019;29:1281–1293. doi: 10.5352/JLS.2019.29.11.1281. DOI
Rasmann S., Köllner T.G., Degenhardt J., Hiltpold I., Toepfer S., Kuhlmann U., Gershenzon J., Turlings T.C.J. Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature. 2005;434:732–737. doi: 10.1038/nature03451. PubMed DOI
Bailly A., Weisskopf L. The modulating effect of bacterial volatiles on plant growth: current knowledge and future challenges: current knowledge and future challenges. Plant Signal. Behav. 2012;7:79–85. doi: 10.4161/psb.7.1.18418. PubMed DOI PMC
Bhattacharyya P.N., Jha D.K. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J. Microbiol. Biotechnol. 2012;28:1327–1350. doi: 10.1007/s11274-011-0979-9. PubMed DOI
Schulz-Bohm K., Geisen S., Wubs E.J., Song C., De Boer W., Garbeva P. The prey's scent-volatile organic compound mediated interactions between soil bacteria and their protist predators. ISME J. 2017;11:817–820. PubMed PMC
Canale A., Geri S., Benelli G. Associative learning for host-induced fruit volatiles in Psyttalia concolor (Hymenoptera: braconidae), a koinobiont parasitoid of tephritid flies. Bull. Entomol. Res. 2014;104:774–780. doi: 10.1017/S0007485314000625. PubMed DOI
de Rijk M., Cegarra Sánchez V., Smid H.M., Engel B., Vet L.E.M., Poelman E.H. Associative learning of host presence in non-host environments influences parasitoid foraging: associative learning in parasitoid foraging. Ecol. Entomol. 2018;43:318–325. doi: 10.1111/een.12504. DOI
Lazcano C., Domínguez J. The use of vermicompost in sustainable agriculture: impact on plant growth and soil fertility. Soil Nutrients. 2011;10
Hung R., Lee S., Bennett J.W. Fungal volatile organic compounds and their role in ecosystems. Appl. Microbiol. Biotechnol. 2015;99:3395–3405. doi: 10.1007/s00253-015-6494-4. PubMed DOI
Weston L.A. Utilization of allelopathy for weed management in agroecosystems. Agron. J. 1996;88:860–866. doi: 10.2134/agronj1996.00021962003600060004x. DOI
Arimura G.-I., Ozawa R., Nishioka T., Boland W., Koch T., Kühnemann F., Takabayashi J. Herbivore-induced volatiles induce the emission of ethylene in neighboring lima bean plants. Plant J. 2002;29:87–98. doi: 10.1046/j.1365-313x.2002.01198.x. PubMed DOI
Dicke M., Baldwin I.T. The evolutionary context for herbivore-induced plant volatiles: beyond the “cry for help,”. Trends Plant Sci. 2010;15:167–175. doi: 10.1016/j.tplants.2009.12.002. PubMed DOI
Kai M., Effmert U., Berg G., Piechulla B. Volatiles of bacterial antagonists inhibit mycelial growth of the plant pathogen Rhizoctonia solani. Arch. Microbiol. 2007;187:351–360. doi: 10.1007/s00203-006-0199-0. PubMed DOI
Sharifi R., Ryu C.-M. Sniffing bacterial volatile compounds for healthier plants. Curr. Opin. Plant Biol. 2018;44:88–97. doi: 10.1016/j.pbi.2018.03.004. PubMed DOI
Sharkey T.D., Loreto F. Water stress, temperature, and light effects on the capacity for isoprene emission and photosynthesis of kudzu leaves. Oecologia. 1993;95:328–333. doi: 10.1007/bf00320984. PubMed DOI
Velikova V., Pinelli P., Pasqualini S., Reale L., Ferranti F., Loreto F. Isoprene decreases the concentration of nitric oxide in leaves exposed to elevated ozone: rapid report. New Phytol. 2005;166:419–425. doi: 10.1111/j.1469-8137.2005.01409.x. PubMed DOI
Krzesłowska M. The cell wall in plant cell response to trace metals: polysaccharide remodeling and its role in defense strategy. Acta Physiol. Plant. 2011;33:35–51. doi: 10.1007/s11738-010-0581-z. DOI
Ha-Tran D.M., Nguyen T.T.M., Hung S.-H., Huang E., Huang C.-C. Roles of plant growth-promoting rhizobacteria (PGPR) in stimulating salinity stress defense in plants: a review. Int. J. Mol. Sci. 2021;22:3154. doi: 10.3390/ijms22063154. PubMed DOI PMC
Kottb M., Gigolashvili T., Großkinsky D.K., Piechulla B. Trichoderma volatiles effecting Arabidopsis: from inhibition to protection against phytopathogenic fungi. Front. Microbiol. 2015;6:995. doi: 10.3389/fmicb.2015.00995. PubMed DOI PMC
Vaishnav A., Kumari S., Jain S., Varma A., Choudhary D.K. Putative bacterial volatile-mediated growth in soybean (Glycine max L. Merrill) and expression of induced proteins under salt stress. J. Appl. Microbiol. 2015;119:539–551. doi: 10.1111/jam.12866. PubMed DOI
Raza W., Ling N., Liu D., Wei Z., Huang Q., Shen Q. Volatile organic compounds produced by Pseudomonas fluorescens WR-1 restrict the growth and virulence traits of Ralstonia solanacearum. Microbiol. Res. 2016;192:103–113. doi: 10.1016/j.micres.2016.05.014. PubMed DOI
Vejan P., Abdullah R., Khadiran T., Ismail S., Nasrulhaq Boyce A. Role of plant growth promoting rhizobacteria in agricultural sustainability-A review. Molecules. 2016;21:573. doi: 10.3390/molecules21050573. PubMed DOI PMC
Kanchiswamy C.N., Malnoy M., Maffei M.E. Chemical diversity of microbial volatiles and their potential for plant growth and productivity. Front. Plant Sci. 2015;6:151. doi: 10.3389/fpls.2015.00151. PubMed DOI PMC
Ryu C.-M., Farag M.A., Pare P.W., Kloepper J.W. Invisible signals from the underground: bacterial volatiles elicit plant growth promotion and induce systemic resistance. Plant Pathol. J. 2005;21:7–12. doi: 10.5423/ppj.2005.21.1.007. DOI
Gouda S., Kerry R.G., Das G., Paramithiotis S., Shin H.-S., Patra J.K. Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiol. Res. 2018;206:131–140. doi: 10.1016/j.micres.2017.08.016. PubMed DOI
Gray E.J., Smith D.L. Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol. Biochem. 2005;37:395–412. doi: 10.1016/j.soilbio.2004.08.030. DOI
Kang D., Kirienko D.R., Webster P., Fisher A.L., Kirienko N.V. Pyoverdine, a siderophore from Pseudomonas aeruginosa, translocates into C. elegans, removes iron, and activates a distinct host response. Virulence. 2018;9:804–817. doi: 10.1080/21505594.2018.1449508. PubMed DOI PMC
Mashabela M.D., Piater L.A., Dubery I.A., Tugizimana F., Mhlongo M.I. Rhizosphere tripartite interactions and PGPR-mediated metabolic reprogramming towards ISR and plant priming: a metabolomics review. Biology. 2022;11:346. doi: 10.3390/biology11030346. PubMed DOI PMC
Tyc O., Song C., Dickschat J.S., Vos M., Garbeva P. The ecological role of volatile and soluble secondary metabolites produced by soil bacteria. Trends Microbiol. 2017;25:280–292. doi: 10.1016/j.tim.2016.12.002. PubMed DOI
Dimkpa C.O., Zeng J., McLean J.E., Britt D.W., Zhan J., Anderson A.J. Production of indole-3-acetic acid via the indole-3-acetamide pathway in the plant-beneficial bacterium Pseudomonas chlororaphis O6 is inhibited by ZnO nanoparticles but enhanced by CuO nanoparticles. Appl. Environ. Microbiol. 2012;78:1404–1410. doi: 10.1128/AEM.07424-11. PubMed DOI PMC
Smith K.P., Handelsman J., Goodman R.M. Genetic basis in plants for interactions with disease-suppressive bacteria. Proc. Natl. Acad. Sci. U.S.A. 1999;96:4786–4790. doi: 10.1073/pnas.96.9.4786. PubMed DOI PMC
Kai M., Effmert U., Piechulla B. Bacterial-plant-interactions: approaches to unravel the biological function of bacterial volatiles in the rhizosphere. Front. Microbiol. 2016;7:108. doi: 10.3389/fmicb.2016.00108. PubMed DOI PMC
Chung J.-H., Song G.C., Ryu C.-M. Sweet scents from good bacteria: case studies on bacterial volatile compounds for plant growth and immunity. Plant Mol. Biol. 2016;90:677–687. doi: 10.1007/s11103-015-0344-8. PubMed DOI
Mhlongo M.I., Piater L.A., Madala N.E., Labuschagne N., Dubery I.A. The chemistry of plant-microbe interactions in the rhizosphere and the potential for metabolomics to reveal signaling related to defense priming and induced systemic resistance. Front. Plant Sci. 2018;9:112. doi: 10.3389/fpls.2018.00112. PubMed DOI PMC
Tahir A.-K.J. Enhancing plant resistance to biotic stresses through rhizobacteria for sustainable agriculture. Not. Bot. Horti Agrobot. Cluj-Napoca. 2024;52 doi: 10.15835/nbha52213650. DOI
Rafique N., Khalil S., Cardinale M., Rasheed A., Fengliang Z.H., Abideen Z. A comprehensive evaluation of the potential of plant growth-promoting rhizobacteria for applications in agriculture in stressed environments. Pedosphere. 2024 doi: 10.1016/j.pedsph.2024.02.005. DOI
Mondal M., Biswas J.K., Roychowdhury T. Biotechnology of Emerging Microbes. Elsevier; 2024. Rhizobacteria that boost plant growth while lowering abiotic stress—a profitable solution; pp. 45–59. DOI
Chakraborty S., Hooi A., Mahapatra S. InMicrobiome Drivers of Ecosystem Function. Academic Press; 2024. Amelioration of biotic stress by using rhizobacteria: sustainable Crop Production. DOI
Vairavan C., Kamble B.M., Durgude A.G., Ingle S.R., Pugazenthi K. Hyperspectral imaging of soil and crop: a review, review. Journal of Experimental Agriculture International. 2024;46:48–61. doi: 10.9734/jeai/2024/v46i12290. DOI
Jiao Z. The application of remote sensing techniques in ecological environment monitoring, highlights in science. Eng. Technol. 2024;81:449–455. doi: 10.54097/7dqegz64. DOI
Wang L., Cheng Y., Parekh G., Naidu R. Real-time monitoring and predictive analysis of VOC flux variations in soil vapor: integrating PID sensing with machine learning for enhanced vapor intrusion forecasts. Sci. Total Environ. 2024;924 doi: 10.1016/j.scitotenv.2024.171616. PubMed DOI