Antisense oligonucleotides as a targeted therapeutic approach in model of acute myeloid leukemia

. 2024 Dec 18 ; 52 (1) : 57. [epub] 20241218

Jazyk angličtina Země Nizozemsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39692897

Grantová podpora
260 651 SVV - Specifický vysokoškolský výzkum
350322 GAUK - Grantová agentura Univerzity Karlovy
LX22NPO5102 NICR - The project National Institute for Cancer Research EXCELES

Odkazy

PubMed 39692897
DOI 10.1007/s11033-024-10172-w
PII: 10.1007/s11033-024-10172-w
Knihovny.cz E-zdroje

BACKGROUND: The genetic and epigenetic alterations observed in acute myeloid leukemia (AML) contribute to its heterogeneity, influencing disease progression response to therapy, and patient outcomes. The use of antisense oligonucleotides (ASOs) technology allows for the design of oligonucleotide inhibitors based on gene sequence information alone, enabling precise targeting of key molecular pathways or specific genes implicated in AML. METHODS AND RESULTS: Midostaurin, a FLT3 specific inhibitor and ASOs targeting particular genes, exons, or mutations was conducted using AML models. This ASOs treatment was designed to bind to exon 7 of the MBNL1 (muscleblind-like) gene. Another target was the FLT3 gene, focusing on two aspects: (a) FLT3-ITD (internal tandem duplication), to inhibit the expression of this aberrant gene form, and (b) the FLT3 in general. Treated and untreated cells were analyzed using quantitative PCR (qPCR), dot blot, and Raman spectroscopy. This study contrasts midostaurin with ASOs that inhibit FLT3 protein production or its isoforms via mRNA degradation. A trend of increased FLT3 expression was observed in midostaurin-treated cells, while ASO-treated cells showed decreased expression, though these changes were not statistically significant. CONCLUSIONS: In AML, exon 7 of MBNL1 is involved in several cellular processes and in this study, exon 7 of MBNL1 was targeted for method optimization, with the highest block of the exon 7 gene variant observed 48 h post-transfection. Midostaurin, a multitargeted kinase inhibitor, acts against the receptor tyrosine kinase FLT3, a critical molecule in AML pathogenesis. While midostaurin blocks FLT3 signaling pathways, it paradoxically increases FLT3 expression.

Zobrazit více v PubMed

Nieuwkoop T, Finger-Bou M, van der Oost J, Claassens NJ (2020) The Ongoing Quest to Crack the Genetic Code for Protein Production. Mol Cell 80(2):193–209. https://doi.org/10.1016/j.molcel.2020.09.014 PubMed DOI

Simms CL, Thomas EN, Zaher HS (2017) Ribosome-based quality control of mRNA and nascent peptides. Wiley Interdiscip Rev RNA 8(1). https://doi.org/10.1002/wrna.1366

Magenau J, Couriel DR (2013) Hematopoietic stem cell transplantation for acute myeloid leukemia: to whom, when, and how. Curr Oncol Rep 15(5):436–444. https://doi.org/10.1007/s11912-013-0340-6 PubMed DOI

Daher-Reyes G, Kim T, Novitzky-Basso I, Kim KH, Smith A et al (2021) Prognostic impact of the adverse molecular-genetic profile on long-term outcomes following allogeneic hematopoietic stem cell transplantation in acute myeloid leukemia. Bone Marrow Transpl 56(8):1908–1918. https://doi.org/10.1038/s41409-021-01255-4 DOI

Orsolic I, Carrier A, Esteller M (2023) Genetic and epigenetic defects of the RNA modification machinery in cancer. Trends Genet 39(1):74–88. https://doi.org/10.1016/j.tig.2022.10.004 PubMed DOI

Dwivedi S, Purohit P, Vasudeva A, Kumar M, Agrawal R et al (2022) Gene therapy and gene editing in healthcare. In: Barh D (ed) Biotechnology in Healthcare, 1st edn. Academic, pp 147–175. https://doi.org/10.1016/B978-0-323-89837-9.00006-1

Chan DXH, Nama S, Sundaram G, Sampath P (2014) MicroRNA Therapeutics to Target Brain Tumor Stem Cells. In: Rajasekhar VK (ed) Cancer Stem Cells, 1st edn. Wiley, pp 403–415. https://doi.org/10.1002/9781118356203.ch30

Chanput W, Mes JJ, Wichers HJ (2014) THP-1 cell line: an in vitro cell model for immune modulation approach. Int Immunopharmacol 23(1):37–45. https://doi.org/10.1016/j.intimp.2014.08.002 PubMed DOI

Liu H, Lorenzini PA, Zhang F, Xu S, Wong MSM et al (2018) Alternative splicing analysis in human monocytes and macrophages reveals MBNL1 as major regulator. Nucleic Acids Res 46(12):6069–6086. https://doi.org/10.1093/nar/gky401 PubMed DOI PMC

Jiang X, Bugno J, Hu C, Yang Y, Herold T et al (2016) Eradication of Acute Myeloid Leukemia with FLT3 Ligand-Targeted miR-150 Nanoparticles. Cancer Res 76(15):4470–4480. https://doi.org/10.1158/0008-5472.CAN-15-2949 PubMed DOI PMC

Konstantinov SM, Kostovski A, Topashka-Ancheva M, Genova M, Berger MR (2002) Cytotoxic efficacy of bendamustine in human leukemia and breast cancer cell lines. J Cancer Res Clin Oncol 128(5):271–278. https://doi.org/10.1007/s00432-002-0331-8 PubMed DOI

Skopek R, Palusińska M, Kaczor-Keller K, Pingwara R et al (2023) Choosing the Right Cell Line for Acute Myeloid Leukemia (AML) Research. Int J Mol Sci 24(6):5377. https://doi.org/10.3390/ijms24065377 PubMed DOI PMC

Shimada A, Orwick S, Fujisaki H, Campana D, Baker SD (2008) Microenvironmental Factors Determine the Sensitivity of Acute Myeloid Leukemia Cells to Tyrosine Kinase Inhibitors. Blood 112(11):1630. https://doi.org/10.1182/blood.V112.11.1630.1630 DOI

Almatani MF, Ali A, Onyemaechi S, Zhao Y, Gutierrez L et al (2021) Strategies targeting FLT3 beyond the kinase inhibitors. Pharmacol Ther 225:107844. https://doi.org/10.1016/j.pharmthera.2021.107844 PubMed DOI PMC

Gallogly MM, Lazarus HM, Cooper BW (2017) Midostaurin: a novel therapeutic agent for patients with FLT3-mutated acute myeloid leukemia and systemic mastocytosis. Ther Adv Hematol 8(9):245–261. https://doi.org/10.1177/2040620717721459 PubMed DOI PMC

Cheng J, Qu L, Wang J, Cheng L, Wang Y (2018) High expression of FLT3 is a risk factor in leukemia. Mol Med Rep 17(2):2885–2892. https://doi.org/10.3892/mmr.2017.8232 PubMed DOI

Rehman A, Akram AM, Chaudhary A, Sheikh N, Hussain Z et al (2021) RUNX1 mutation and elevated FLT3 gene expression cooperates to induce inferior prognosis in cytogenetically normal acute myeloid leukemia patients. Saudi J Biol Sci 28(9):4845–4851. https://doi.org/10.1016/j.sjbs.2021.07.012 PubMed DOI PMC

Adachi H, Hengesbach M, Yu YT, Morais P (2021) From antisense RNA to RNA modification: therapeutic potential of RNA-based technologies. Biomedicines 9(5):550. https://doi.org/10.3390/biomedicines9050550 PubMed DOI PMC

Azemtsop Matanfack G, Rüger J, Stiebing C, Schmitt M, Popp J (2020) Imaging the invisible-Bioorthogonal Raman probes for imaging of cells and tissues. J Biophotonics 13(9):e202000129. https://doi.org/10.1002/jbio.202000129 PubMed DOI

Neugebauer U, Clement JH, Bocklitz T, Krafft C, Popp J (2010) Identification and differentiation of single cells from peripheral blood by Raman spectroscopic imaging. J Biophotonics 3(8–9):579–587. https://doi.org/10.1002/jbio.201000020 PubMed DOI

Cheng X, Liang H, Li Q, Wang J, Liu J et al (2022) Raman spectroscopy differ leukemic cells from their healthy counterparts and screen biomarkers in acute leukemia. Spectrochim Acta Mol Biomol Spectrosc 15:281:121558. https://doi.org/10.1016/j.saa.2022.121558 DOI

Li W, Wang L, Luo C, Zhu Z, Ji J, Pang L et al (2020) Characteristic of Five Subpopulation Leukocytes in Single-Cell Levels Based on Partial Principal Component Analysis Coupled with Raman Spectroscopy. Appl Spectrosc 74(12):1463–1472. https://doi.org/10.1177/0003702820938069 PubMed DOI

Managò S, Mirabelli P, Napolitano M, Zito G, De Luca AC (2018) Raman detection and identification of normal and leukemic hematopoietic cells. J Biophotonics 11(5):e201700265. https://doi.org/10.1002/jbio.201700265 PubMed DOI

Jetani H, García-Cadenas I, Nerreter T, Goetz R, Sierra J et al (2018) FLT3 inhibitor treatment increases FLT3 expression that exposes FLT3-ITD + AML blasts to elimination by FLT3 CAR-T cells. Blood 132:903. https://doi.org/10.1182/blood-2018-99-118171 DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...