Optimizing demand response and load balancing in smart EV charging networks using AI integrated blockchain framework

. 2024 Dec 30 ; 14 (1) : 31768. [epub] 20241230

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39738259
Odkazy

PubMed 39738259
PubMed Central PMC11685539
DOI 10.1038/s41598-024-82257-2
PII: 10.1038/s41598-024-82257-2
Knihovny.cz E-zdroje

The integration of Electric Vehicles (EVs) into power grids introduces several critical challenges, such as limited scalability, inefficiencies in real-time demand management, and significant data privacy and security vulnerabilities within centralized architectures. Furthermore, the increasing demand for decentralized systems necessitates robust solutions to handle the growing volume of EVs while ensuring grid stability and optimizing energy utilization. To address these challenges, this paper presents the Demand Response and Load Balancing using Artificial intelligence (DR-LB-AI) framework. The proposed framework leverages Artificial intelligence (AI) for predictive demand forecasting and dynamic load distribution, enabling real-time optimization of EV charging infrastructure. Furthermore, Blockchain technology is employed to facilitate decentralized, secure communication, ensuring tamper-proof energy transactions while enhancing transparency and trust among stakeholders. The DR-LB-AI framework significantly enhances energy distribution efficiency, reducing grid overload during peak periods by 20%. Through advanced demand forecasting and autonomous load adjustments, the system improves grid stability and optimizes overall energy utilization. Blockchain integration further strengthens security and privacy, delivering a 97.71% improvement in data protection via its decentralized framework. Additionally, the system achieves a 98.43% scalability improvement, effectively managing the growing volume of EVs, and boosts transparency and trust by 96.24% through the use of immutable transaction records. Overall, the findings demonstrate that DR-LB-AI not only mitigates peak demand stress but also accelerates response times for Load Balancing, contributing to a more resilient, scalable, and sustainable EV charging infrastructure. These advancements are critical to the long-term viability of smart grids and the continued expansion of electric mobility.

Zobrazit více v PubMed

Shayeghi, H., Shahryari, E., Moradzadeh, M. & Pierluigi Siano A Survey on Microgrid Energy Management Considering Flexible Energy Sources Energies 12, no. 11: 2156. 10.3390/en12112156 (2019).

Sun, G. et al. V2V routing in a VANET based on the Autoregressive Integrated moving average model. IEEE Trans. Veh. Technol.68(1), 908–922. 10.1109/TVT.2018.2884525 (2019).

Sun, G. et al. Bus-Trajectory-Based Street-Centric Routing for Message Delivery in Urban Vehicular Ad Hoc Networks. IEEE Trans. Veh. Technol.67(8), 7550–7563. 10.1109/TVT.2018.2828651 (2018).

Rong, Y. et al. Du-Bus: a Realtime Bus Waiting Time Estimation System based on Multi-source Data. IEEE Trans. Intell. Transp. Syst.23(12), 24524–24539. 10.1109/TITS.2022.3210170 (2022).

Jamil, F., Iqbal, N., Imran, S., Ahmad & Kim, D. Peer-to-Peer Energy Trading Mechanism Based on Blockchain and Machine Learning for Sustainable Electrical Power Supply in Smart Grid, in IEEE Access, vol. 9, pp. 39193–39217, doi: 10.1109/ACCESS.2021.3060457 (2021).

Ma, K., Yang, J. & Liu, P. Relaying-assisted communications for demand response in Smart Grid: cost modeling, game strategies, and algorithms. IEEE J. Sel. Areas Commun.38(1), 48–60. 10.1109/JSAC.2019.2951972 (2020).

Meng, Q. et al. Enhancing distribution system stability and efficiency through multi-power supply startup optimization for new energy integration. IET Generation Transmission Distribution18(21), 3487–3500. 10.1049/gtd2.13299 (2024).

Liu, Y. & Zhao, Y. A blockchain-enabled Framework for Vehicular Data sensing: enhancing information freshness. IEEE Trans. Veh. Technol.73(11), 17416–17429. 10.1109/TVT.2024.3417689 (2024).

Feng, J., Yao, Y. & Liu, Z. Developing an optimal building strategy for electric vehicle charging stations: automaker role. Environ. Dev. Sustain.10.1007/s10668-024-05326-6 (2024).

Fu, Y., Li, C., Yu, F. R., Luan, T. H. & Zhao, P. An incentive mechanism of incorporating Supervision Game for Federated Learning in Autonomous Driving. IEEE Trans. Intell. Transp. Syst.24(12), 14800–14812. 10.1109/TITS.2023.3297996 (2023).

Ravindran, M. A. et al. A Novel Technological Review on fast charging infrastructure for Electrical vehicles: challenges, solutions, and future research directions. Alexandria Eng. J.82, Pages 260–290, ISSN 1110 – 0168. 10.1016/j.aej.2023.10.009 (2023).

Kumar, B. A. et al. A novel strategy towards efficient and reliable electric vehicle charging for the realisation of a true sustainable transportation landscape. Sci. Rep.14, 3261. 10.1038/s41598-024-53214-w (2024). PubMed PMC

Kumar, B. A. et al. Hybrid genetic algorithm-simulated annealing based electric vehicle charging station placement for optimizing distribution network resilience. Sci. Rep.14, 7637. 10.1038/s41598-024-58024-8 (2024). PubMed PMC

Sidharth Sabyasachi, A. R. et al. Reimagining E-mobility: a holistic business model for the electric vehicle charging ecosystem. Alexandria Eng. J.93, Pages 236–258, ISSN 1110 – 0168. 10.1016/j.aej.2024.03.004 (2024).

Surbhi Aggarwal, A. K., Singh, R. S., Rathore, M., Bajaj, D. & Gupta Revolutionizing load management: a novel technique to diminish the impact of electric vehicle charging stations on the electricity grid. Sustain. Energy Technol. Assess., 65, 103784, ISSN 2213 – 1388, 10.1016/j.seta.2024.103784 (2024).

Kumar, B. A. et al. Enhancing EV charging predictions: a comprehensive analysis using K-nearest neighbours and ensemble stack generalization. Multiscale Multidiscip Model. Exp. Des.10.1007/s41939-024-00457-9 (2024).

Patnam, B. S. K. & Pindoriya, N. M. Demand response in consumer-centric electricity market: Mathematical models and optimization problems. Electr. Power Syst. Res.193, 0378–7796. 10.1016/j.epsr.2020.106923 (2021).

Lin, Y. J. et al. Blockchain-based intelligent charging station management system platform. IEEE Access.10, 101936–101956 (2022).

Wang, Z. et al. AEBIS: AI-enabled Blockchain-based electric vehicle integration system for power management in smart grid platform. IEEE Access.8, 226409–226421 (2020).

Kakkar, R., Agrawal, S. & Tanwar, S. A systematic survey on demand response management schemes for electric vehicles. Renew. Sustain. Energy Rev.203, 114748 (2024).

Lin, Y. J. et al. Blockchain power trading and energy management platform. IEEE Access.10, 75932–75948 (2022).

Yahaya, A. S. et al. Blockchain-based energy trading and load balancing using contract theory and reputation in a smart community. IEEE Access.8, 222168–222186 (2020).

Li, J., Herdem, M. S., Nathwani, J. & Wen, J. Z. Methods and applications for Artificial intelligence, Big Data, Internet of things, and Blockchain in smart energy management. Energy AI. 11, 100208 (2023).

Samadi, M., Schriemer, H., Ruj, S. & Erol-Kantarci, M. Energy Blockchain for Demand Response and distributed energy resource management. In: 2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm) (pp. 425–431). (IEEE, 2021).

JAVED, M. U. & AALSALEM, M. Y. SHAFIQ, M., Blockchain-Based Energy Trading and Load Balancing Using Contract Theory and Reputation in a Smart Community.

Kakkar, R., Gupta, R., Agrawal, S., Tanwar, S., Altameem, A., Altameem, T., Raboaca,M. S. Blockchain and iot-driven optimized consensus mechanism for electric vehicle scheduling at charging stations. Sustainability 14(19), 12800. (2022).

Kumari, A., Gupta, R., Tanwar, S. & Kumar, N. Blockchain and AI amalgamation for energy cloud management: challenges, solutions, and future directions. J. Parallel Distrib. Comput.143, 148–166 (2020).

Khan, H. & Masood, T. Impact of Blockchain technology on smart grids. Energies15 (19), 7189 (2022).

Miglani, A., Kumar, N., Chamola, V. & Zeadally, S. Blockchain for Internet of Energy management: review, solutions, and challenges. Comput. Commun.151, 395–418 (2020).

Hua, W. et al. Applications of Blockchain and Artificial intelligence technologies for enabling prosumers in smart grids: a review. Renew. Sustain. Energy Rev.161, 112308 (2022).

Junaidi, N., Abdullah, M. P., Alharbi, B. & Shaaban, M. Blockchain-based management of demand response in electric energy grids: a systematic review. Energy Rep.9, 5075–5100 (2023).

Ma, R. et al. A blockchain-enabled demand management and control framework driven by deep reinforcement learning. IEEE Trans. Industr. Electron.70(1), 430–440 (2022).

Muthukrishnan, S. K. & Vijayakumar, R. Demand Side Management Using Blockchain for Peer-to-Peer (Electric Vehicle Charging Networks, 2021).

Teimoori, Z. & Yassine, A. A review on intelligent energy management systems for future electric vehicle transportation. Sustainability14(21), 14100 (2022).

Kumar, N. M. et al. Distributed energy resources and the application of AI, IoT, and Blockchain in smart grids. Energies13(21), 5739 (2020).

Khan, M. A., Saleh, A. M., Waseem, M. & Sajjad, I. A. Artificial intelligence enabled demand response: prospects and challenges in smart grid environment. Ieee Access.11, 1477–1505 (2022).

Mololoth, V. K., Saguna, S. & Åhlund, C. Blockchain and machine learning for future smart grids: a review. Energies16 (1), 528 (2023).

Kausar, F., Al-Hamouz, R. & Hussain, S. Energy Demand Forecasting for Electric Vehicles Using Blockchain-Based Federated Learning. IEEE Access.12, 41287–41298 (2024).

Bhaskar, K. B. R., Prasanth, A. & Saranya, P. An energy-efficient Blockchain approach for secure communication in IoT‐enabled electric vehicles. Int. J. Commun Syst35(11), e5189 (2022).

Ma, W. et al. New technologies for optimal scheduling of electric vehicles in renewable energy-oriented power systems: a review of deep learning, deep reinforcement learning and Blockchain technology. Energy Convers. Econ.3(6), 345–359 (2022).

Said, D., Elloumi, M. & Khoukhi, L. Cyber-attack on P2P energy transaction between connected electric vehicles: a false data injection detection-based machine learning model. IEEE Access.10, 63640–63647 (2022).

Yang, P. Electric vehicle based smart cloud model cyber security analysis using fuzzy machine learning with Blockchain technique. Comput. Electr. Eng.115, 109111 (2024).

Ahmed, A. A., Alkheir, A. A., Said, D. & Mouftah, H. T. Cooperative spectrum sensing for cognitive radio vehicular ad hoc networks: An overview and open research issues, IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), Vancouver, BC, Canada, 2016, pp. 1–4, doi: 10.1109/CCECE.2016.7726681 (2016).

Said, D. A Decentralized Electricity Trading Framework (DETF) for Connected EVs: A Blockchain and Machine Learning for Profit Margin Optimization. In: IEEE Transactions on Industrial Informatics, vol. 17, no. 10, pp. 6594–6602, Oct. doi: 10.1109/TII.2020.3045011 (2021).

Said, D. & Elloumi, M. A New False Data Injection Detection Protocol based Machine Learning for P2P Energy Transaction between CEVs. IEEE International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM), Tunis, Tunisia, 2022, pp. 1–5, doi: 10.1109/CISTEM55808.2022.10044067 (2022).

Said, D. A Survey on Information Communication Technologies in Modern demand-side management for Smart grids: challenges, solutions, and opportunities. In: IEEE Eng. Manage. Rev., 51, 1, pp. 76–107, 1 Firstquarter, 10.1109/EMR.2022.3186154 (2023).

Said, D. Intelligent Photovoltaic Power Forecasting Methods for a Sustainable Electricity Market of Smart Micro-Grid, in IEEE Communications Magazine, vol. 59, no. 7, pp. 122–128, July doi: 10.1109/MCOM.001.2001140 (2021).

Alhija, M. A., Al-Baik, O., Hussein, A. & Abdeljaber, H. Optimizing blockchain for healthcare IoT: a practical guide to navigating scalability, privacy, and efficiency trade-offs. Indonesian J. Electr. Eng. Comput. Sci.35(3), 1773–1785 (2024).

Nidal Turab, H. A., Owida, Jamal, I. & Al-Nabulsi Harnessing the power of blockchain to strengthen cybersecurity measures: a review, Indonesian Journal of Electrical Engineering and Computer Science, Vol.35, No.1, July2024, p. 593 ~ 600ISSN: 2502–4752, 10.11591/ijeecs.v35.i1.pp593-600

Ullah, N., Al-Rahmi, W. M., Alblehai, F., Fernando, Y. & Alharbi, Z. H. Rinat Zhanbayev, Ahmad Samed Al-Adwan, and Mohammed Habes. Blockchain-powered grids: Paving the way for a sustainable and efficient future. Heliyon 10, no. 10 (2024). PubMed PMC

Al-Sarayrah, N., Turab, N. & Hussien, A. A randomized blockchain consensus algorithm for enhancing security in health insurance. Indonesian J. Electr. Eng. Comput. Sci.34(2), 1304–1314 (2024).

Abu-Rumman, A. et al. Impact of Blockchain Strategy and Information sharing on Digital Operations: empirical evidence from the UAE Banking Industry. In: Cyber Security Impact on Digitalization and Business Intelligence: Big Cyber Security for Information Management: Opportunities and Challenges (475–493). (Springer International Publishing, 2024).

Michael Bryant. (n.d.). Electric vehicle charging dataset. Kaggle. Retrieved November 23. https://www.kaggle.com/datasets/michaelbryantds/electric-vehicle-charging-dataset (2024).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...