The Daunomycin: Biosynthesis, Actions, and the Search for New Solutions to Enhance Production
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
xxxxxx
University of South Bohemia in České Budějovice
PubMed
39770841
PubMed Central
PMC11676270
DOI
10.3390/microorganisms12122639
PII: microorganisms12122639
Knihovny.cz E-zdroje
- Klíčová slova
- Streptomyces, anthracyclines, autotoxicity, daunomycin, efflux, enhancement, oil-based medium,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Daunorubicin (DNR) is an anthracycline antibiotic originating from soil-dwelling actinobacteria extensively used to treat malignant tumors. Over the decades, extensive attempts were made to enhance the production of anthracyclines by introducing genetic modifications and mutations in combination with media optimization, but the target production levels remain comparatively low. Developing an appropriate culture medium to maximize the yield of DNR and preventing autotoxicity for the producing organism remains a challenge. Our prospective review sheds light on a method involving perturbation that enhances the precursors to regulate the type II PKS pathway, enhancing cells' capacity to increase secondary metabolite production. The suggested method also entails the preparation of culture media for the cultivation of Streptomyces sp. and enhanced yield of DNR, as well as making it inactive with iron or its reduced forms following efflux from the producer. The iron or iron-DNR complex is encapsulated by oleic acid or lipid micelle layers in the culture media, finally resulting in the generated inactive DNR and the DNR-iron-oil complex. This idea has the potential to protect the producer organism from autotoxicity and prevent the inhibition of metabolite production. The approach of substituting sugar with oil in culture media has a dual role wherein it promotes Streptomyces growth by utilizing lipids as an energy source and encapsulating the generated DNR-iron complex in the medium. In this review, we discussed aspects like anthracycline producers, biosynthesis pathways, and gene regulation; side effects of DNR; mechanisms for autotoxicity evasion; and culture media components for the enhancement of DNR production in Streptomyces sp. We anticipate that our work will help researchers working with secondary metabolites production and decipher a methodology that would enhance DNR yield and facilitate the extraction of the resulting DNR by lowering costs in large-scale fermentation.
Zobrazit více v PubMed
Dinis P., Tirkkonen H., Wandi B.N., Siitonen V., Niemi J., Grocholski T., Metsä-Ketelä M. Evolution-Inspired Engineering of Anthracycline Methyltransferases. PNAS Nexus. 2023;2:pgad009. doi: 10.1093/pnasnexus/pgad009. PubMed DOI PMC
Shapiro C.L., Recht A. Side Effects of Adjuvant Treatment of Breast Cancer. N. Engl. J. Med. 2001;344:1997–2008. doi: 10.1056/NEJM200106283442607. PubMed DOI
Weiss R.B. The Anthracyclines: Will We Ever Find a Better Doxorubicin? Semin. Oncol. 1992;19:670–686. PubMed
Murabito A., Russo M., Ghigo A. Mitochondrial Intoxication. Elsevier; Amsterdam, The Netherlands: 2023. Mitochondrial Intoxication by Anthracyclines; pp. 299–321. DOI
Minotti G., Menna P., Salvatorelli E., Cairo G., Gianni L. Anthracyclines: Molecular Advances and Pharmacologie Developments in Antitumor Activity and Cardiotoxicity. Pharmacol. Rev. 2004;56:185–229. doi: 10.1124/pr.56.2.6. PubMed DOI
McGowan J.v., Chung R., Maulik A., Piotrowska I., Walker J.M., Yellon D.M. Anthracycline Chemotherapy and Cardiotoxicity. Cardiovasc. Drugs Ther. 2017;31:63–75. doi: 10.1007/s10557-016-6711-0. PubMed DOI PMC
Brockmann H., Brockmann H., Jr. Rhodomycine, VIII; Antibiotica Aus Actinomyceten, L. δ-Rhodomycinon. Chem. Ber. 1963;96:1771–1778. doi: 10.1002/cber.19630960705. DOI
Metsä-Ketelä M., Niemi J., Mäntsälä P., Schneider G. Anthracycline Biosynthesis: Genes, Enzymes and Mechanisms. In: Krohn K., editor. Anthracycline Chemistry and Biology I: Biological Occurence and Biosynthesis, Synthesis and Chemistry. Springer; Berlin/Heidelberg, Germany: 2008. pp. 101–140.
Fujiwara A., Hoshino T., Westley J.W. Anthracycline Antibiotics. Crit. Rev. Biotechnol. 1985;3:133–157. doi: 10.3109/07388558509150782. DOI
Hortobágyi G.N. Anthracyclines in the Treatment of Cancer. Drugs. 1997;54:1–7. doi: 10.2165/00003495-199700544-00003. PubMed DOI
Arcamone F., Franceschi G., Orezzi P., Cassinelli G., Barbieri W., Mondelli R. Daunomycin. I. The Structure of Daunomycinone. J. Am. Chem. Soc. 1964;86:5334–5335. doi: 10.1021/ja01077a059. DOI
Bayles C.E., Hale D.E., Konieczny A., Anderson V.D., Richardson C.R., Brown K.V., Nguyen J.T., Hecht J., Schwartz N., Kharel M.K., et al. Upcycling the Anthracyclines: New Mechanisms of Action, Toxicology, and Pharmacology. Toxicol. Appl. Pharmacol. 2023;459:116362. doi: 10.1016/j.taap.2022.116362. PubMed DOI PMC
Drevin G., Briet M., Bazzoli C., Gyan E., Schmidt A., Dombret H., Orvain C., Giltat A., Recher C., Ifrah N., et al. Daunorubicin and Its Active Metabolite Pharmacokinetic Profiles in Acute Myeloid Leukaemia Patients: A Pharmacokinetic Ancillary Study of the BIG-1 Trial. Pharmaceutics. 2022;14:792. doi: 10.3390/pharmaceutics14040792. PubMed DOI PMC
Aubel-Sadron G., Londos-Gagliardi D. Daunorubicin and Doxorubicin, Anthracycline Antibiotics, a Physicochemical and Biological Review. Biochimie. 1984;66:333–352. doi: 10.1016/0300-9084(84)90018-X. PubMed DOI
van der Zanden S.Y., Qiao X., Neefjes J. New Insights into the Activities and Toxicities of the Old Anticancer Drug Doxorubicin. FEBS J. 2021;288:6095–6111. doi: 10.1111/febs.15583. PubMed DOI PMC
Arcamone F. Antitumor Anthracyclines: Recent Developments. Med. Res. Rev. 1984;4:153–188. doi: 10.1002/med.2610040203. PubMed DOI
Ainger L.E., Bushore J., Johnson W.W., Ito J. Daunomycin: A Cardiotoxic Agent. J. Natl. Med. Assoc. 1971;63:261–267. PubMed PMC
Bossa R., Galatulas I., Mantovani E. Cardio-Toxicity of Daunomycin and Adriamycin. Neoplasma. 1977;24:405–409. PubMed
Von Hoff D.D., Rozencweig M., Layard M., Slavik M., Muggia F.M. Daunomycin-Induced Cardiotoxicity in Children and Adults: A Review of 110 Cases. Am. J. Med. 1977;62:200–208. doi: 10.1016/0002-9343(77)90315-1. PubMed DOI
Hegazy M., Ghaleb S., Das B.B. Diagnosis and Management of Cancer Treatment-Related Cardiac Dysfunction and Heart Failure in Children. Children. 2023;10:149. doi: 10.3390/children10010149. PubMed DOI PMC
Swain S.M., Whaley F.S., Ewer M.S. Congestive Heart Failure in Patients Treated with Doxorubicin. Cancer. 2003;97:2869–2879. doi: 10.1002/cncr.11407. PubMed DOI
Kciuk M., Gielecińska A., Mujwar S., Kołat D., Kałuzińska-Kołat Ż., Celik I., Kontek R. Doxorubicin—An Agent with Multiple Mechanisms of Anticancer Activity. Cells. 2023;12:659. doi: 10.3390/cells12040659. PubMed DOI PMC
Behranvand N., Nasri F., Zolfaghari Emameh R., Khani P., Hosseini A., Garssen J., Falak R. Chemotherapy: A Double-Edged Sword in Cancer Treatment. Cancer Immunol. Immunother. 2022;71:507–526. doi: 10.1007/s00262-021-03013-3. PubMed DOI PMC
Sui X., Chen R., Wang Z., Huang Z., Kong N., Zhang M., Han W., Lou F., Yang J., Zhang Q., et al. Autophagy and Chemotherapy Resistance: A Promising Therapeutic Target for Cancer Treatment. Cell Death Dis. 2013;4:e838. doi: 10.1038/cddis.2013.350. PubMed DOI PMC
Xiao M., Cai J., Cai L., Jia J., Xie L., Zhu Y., Huang B., Jin D., Wang Z. Let-7e Sensitizes Epithelial Ovarian Cancer to Cisplatin through Repressing DNA Double Strand Break Repair. J. Ovarian Res. 2017;10:24. doi: 10.1186/s13048-017-0321-8. PubMed DOI PMC
Demaria M., O’Leary M.N., Chang J., Shao L., Liu S., Alimirah F., Koenig K., Le C., Mitin N., Deal A.M., et al. Cellular Senescence Promotes Adverse Effects of Chemotherapy and Cancer Relapse. Cancer Discov. 2017;7:165–176. doi: 10.1158/2159-8290.CD-16-0241. PubMed DOI PMC
Bagnyukova T., Serebriiskii I.G., Zhou Y., Hopper-Borge E.A., Golemis E.A., Astsaturov I. Chemotherapy and Signaling: How Can Targeted Therapies Supercharge Cytotoxic Agents? Cancer Biol. Ther. 2010;10:839–853. doi: 10.4161/cbt.10.9.13738. PubMed DOI PMC
Niraula N.P., Kim S.H., Sohng J.K., Kim E.S. Biotechnological Doxorubicin Production: Pathway and Regulation Engineering of Strains for Enhanced Production. Appl. Microbiol. Biotechnol. 2010;87:1187–1194. doi: 10.1007/s00253-010-2675-3. PubMed DOI
Sarkar G., Suthindhiran K. Diversity and Biotechnological Potential of Marine Actinomycetes from India. Indian. J. Microbiol. 2022;62:475–493. doi: 10.1007/s12088-022-01024-x. PubMed DOI PMC
Fenical W., Jensen P.R. Developing a New Resource for Drug Discovery: Marine Actinomycete Bacteria. Nat. Chem. Biol. 2006;2:666–673. doi: 10.1038/nchembio841. PubMed DOI
Zhu H., Sandiford S.K., van Wezel G.P. Triggers and Cues That Activate Antibiotic Production by Actinomycetes. J. Ind. Microbiol. Biotechnol. 2014;41:371–386. doi: 10.1007/s10295-013-1309-z. PubMed DOI
Hulst M.B., Grocholski T., Neefjes J.J.C., van Wezel G.P., Metsä-Ketelä M. Anthracyclines: Biosynthesis, Engineering and Clinical Applications. Nat. Prod. Rep. 2022;39:814–841. doi: 10.1039/D1NP00059D. PubMed DOI
Elshahawi S.I., Shaaban K.A., Kharel M.K., Thorson J.S. A Comprehensive Review of Glycosylated Bacterial Natural Products. Chem. Soc. Rev. 2015;44:7591–7697. doi: 10.1039/C4CS00426D. PubMed DOI PMC
Li M., Zhang Z. The SnogI Gene Is Necessary for the Proper Functioning of the Nogalamycin Biosynthesis Pathway. Indian J. Microbiol. 2021;61:467–474. doi: 10.1007/s12088-021-00941-7. PubMed DOI PMC
Kandula S.K., Terli R. Production, Purification and Characterization of an Antimicrobial Compound from Marine Streptomyces coeruleorubidus BTSS-301. J. Pharm. Res. 2013;7:397–403. doi: 10.1016/j.jopr.2013.04.047. DOI
Bundale S., Begde D., Nashikkar N., Kadam T., Upadhyay A. Optimization of Culture Conditions for Production of Bioactive Metabolites by Streptomyces spp. Isolated from Soil. Adv. Microbiol. 2015;5:441–451. doi: 10.4236/aim.2015.56045. DOI
Ohnuki T., Imanaka T., Aiba S. Self-Cloning in Streptomyces Griseus of an Str Gene Cluster for Streptomycin Biosynthesis and Streptomycin Resistance. J. Bacteriol. 1985;164:85–94. doi: 10.1128/jb.164.1.85-94.1985. PubMed DOI PMC
Grimm A., Madduri K., Ali A., Hutchinson C.R. Characterization of the Streptomyces peucetius ATCC 29050 Genes Encoding Doxorubicin Polyketide Synthase. Gene. 1994;151:1–10. doi: 10.1016/0378-1119(94)90625-4. PubMed DOI
Dickens M.L., Ye J., Strohl W.R. Analysis of Clustered Genes Encoding Both Early and Late Steps in Daunomycin Biosynthesis by Streptomyces Sp. Strain C5. J. Bacteriol. 1995;177:536–543. doi: 10.1128/jb.177.3.536-543.1995. PubMed DOI PMC
Parajuli N., Basnet D.B., Chan Lee H., Sohng J.K., Liou K. Genome Analyses of Streptomyces peucetius ATCC 27952 for the Identification and Comparison of Cytochrome P450 Complement with Other Streptomyces. Arch. Biochem. Biophys. 2004;425:233–241. doi: 10.1016/j.abb.2004.03.011. PubMed DOI
Hutchinson C.R. Biosynthetic Studies of Daunorubicin and Tetracenomycin C. Chem. Rev. 1997;97:2525–2536. doi: 10.1021/cr960022x. PubMed DOI
Shrestha B., Pokhrel A.R., Darsandhari S., Parajuli P., Sohng J.K., Pandey R.P. Engineering Streptomyces peucetius for Doxorubicin and Daunorubicin Biosynthesis. In: Arora D., Sharma C., Jaglan S., Lichtfouse E., editors. Pharmaceuticals from Microbes: The Bioengineering Perspective. Springer International Publishing; Cham, Switzerland: 2019. pp. 191–209. DOI
Wohlert S.-E., Lomovskaya N., Kulowski K., Fonstein L., Occi J.L., Gewain K.M., MacNeil D.J., Hutchinson C.R. Insights about the Biosynthesis of the Avermectin Deoxysugar Oleandrose through Heterologous Expression of Streptomyces Avermitilis Deoxysugar Genes in Streptomyces Lividans. Chem. Biol. 2001;8:681–700. doi: 10.1016/S1074-5521(01)00043-6. PubMed DOI
Madduri K., Hutchinson C.R. Functional Characterization and Transcriptional Analysis of the DnrR1 Locus, Which Controls Daunorubicin Biosynthesis in Streptomyces Peucetius. J. Bacteriol. 1995;177:1208–1215. doi: 10.1128/jb.177.5.1208-1215.1995. PubMed DOI PMC
Gallo M.A., Wardlt J., Hutchinson C.R. The DnrM Gene in Streptomyces peucetius Contains a Naturally Occurring Frameshift Mutation That Is Suppressed by Another Locus Outside of the Daunorubicin-Production Gene Cluster. Microbiology. 1996;142:269–275. doi: 10.1099/13500872-142-2-269. PubMed DOI
Otten S.L., Gallo M.A., Madduri K., Liu X., Hutchinson C.R. Cloning and Characterization of the Streptomyces peucetius DnmZUV Genes Encoding Three Enzymes Required for Biosynthesis of the Daunorubicin Precursor Thymidine Diphospho-L-Daunosamine. J. Bacteriol. 1997;179:4446–4450. doi: 10.1128/jb.179.13.4446-4450.1997. PubMed DOI PMC
Furuya K., Richard Hutchinson C. The DrrC Protein of Streptomyces peucetius, a UvrA-like Protein, Is a DNA-Binding Protein Whose Gene Is Induced by Daunorubicin. FEMS Microbiol. Lett. 1998;168:243–249. doi: 10.1111/j.1574-6968.1998.tb13280.x. PubMed DOI
Dickens M.L., Priestley N.D., Strohl W.R. In Vivo and in Vitro Bioconversion of Epsilon-Rhodomycinone Glycoside to Doxorubicin: Functions of DauP, DauK, and DoxA. J. Bacteriol. 1997;179:2641–2650. doi: 10.1128/jb.179.8.2641-2650.1997. PubMed DOI PMC
Walczak R.J., Dickens M.L., Priestley N.D., Strohl W.R. Purification, Properties, and Characterization of Recombinant Streptomyces sp. Strain C5 DoxA, a Cytochrome P-450 Catalyzing Multiple Steps in Doxorubicin Biosynthesis. J. Bacteriol. 1999;181:298–304. doi: 10.1128/JB.181.1.298-304.1999. PubMed DOI PMC
Vasanthakumar A., Kattusamy K., Prasad R. Regulation of Daunorubicin Biosynthesis in Streptomyces peucetius–Feed Forward and Feedback Transcriptional Control. J. Basic. Microbiol. 2013;53:636–644. doi: 10.1002/jobm.201200302. PubMed DOI
Yuan T., Yin C., Zhu C., Zhu B., Hu Y. Improvement of Antibiotic Productivity by Knock-out of DauW in Streptomyces Coeruleobidus. Microbiol. Res. 2011;166:539–547. doi: 10.1016/j.micres.2010.10.006. PubMed DOI
Guilfoile P.G., Hutchinson C.R. A Bacterial Analog of the Mdr Gene of Mammalian Tumor Cells Is Present in Streptomyces peucetius, the Producer of Daunorubicin and Doxorubicin. Proc. Natl. Acad. Sci. USA. 1991;88:8553–8557. doi: 10.1073/pnas.88.19.8553. PubMed DOI PMC
Kaur P. Expression and Characterization of DrrA and DrrB Proteins of Streptomyces peucetius in Escherichia coli: DrrA Is an ATP Binding Protein. J. Bacteriol. 1997;179:569–575. doi: 10.1128/jb.179.3.569-575.1997. PubMed DOI PMC
Kaur P., Rao D.K., Gandlur S.M. Biochemical Characterization of Domains in the Membrane Subunit DrrB That Interact with the ABC Subunit DrrA: Identification of a Conserved Motif. Biochemistry. 2005;44:2661–2670. doi: 10.1021/bi048959c. PubMed DOI
Li W., Sharma M., Kaur P. The DrrAB Efflux System of Streptomyces peucetius Is a Multidrug Transporter of Broad Substrate Specificity*. J. Biol. Chem. 2014;289:12633–12646. doi: 10.1074/jbc.M113.536136. PubMed DOI PMC
Srinivasan P., Palani S.N., Prasad R. Daunorubicin Efflux in Streptomyces peucetius Modulates Biosynthesis by Feedback Regulation. FEMS Microbiol. Lett. 2010;305:18–27. doi: 10.1111/j.1574-6968.2010.01905.x. PubMed DOI
Mattioli R., Ilari A., Colotti B., Mosca L., Fazi F., Colotti G. Doxorubicin and Other Anthracyclines in Cancers: Activity, Chemoresistance and Its Overcoming. Mol. Asp. Med. 2023;93:101205. doi: 10.1016/j.mam.2023.101205. PubMed DOI
Comings D.E., Drets M.E. Mechanisms of Chromosome Banding. Chromosoma. 1976;56:199–211. doi: 10.1007/BF00293185. PubMed DOI
Chaires J.B., Herrera J.E., Waring M.J. Preferential Binding of Daunomycin to 5’TACG and 5’TAGC Sequences Revealed by Footprinting Titration Experiments. Biochemistry. 1990;29:6145–6153. doi: 10.1021/bi00478a006. PubMed DOI
Nunn C.M., Van Meervelt L., Zhang S., Moore M.H., Kennard O. DNA-Drug Interactions: The Crystal Structures of d(TGTACA) and d(TGATCA) Complexed with Daunomycin. J. Mol. Biol. 1991;222:167–177. doi: 10.1016/0022-2836(91)90203-I. PubMed DOI
Ashley N., Poulton J. Mitochondrial DNA Is a Direct Target of Anti-Cancer Anthracycline Drugs. Biochem. Biophys. Res. Commun. 2009;378:450–455. doi: 10.1016/j.bbrc.2008.11.059. PubMed DOI
Gupta P., Zlatanova J., Tomschik M. Nucleosome Assembly Depends on the Torsion in the DNA Molecule: A Magnetic Tweezers Study. Biophys. J. 2009;97:3150–3157. doi: 10.1016/j.bpj.2009.09.032. PubMed DOI PMC
Martins-Teixeira M.B., Carvalho I. Antitumour Anthracyclines: Progress and Perspectives. ChemMedChem. 2020;15:933–948. doi: 10.1002/cmdc.202000131. PubMed DOI
Pang B., de Jong J., Qiao X., Wessels L.F.A., Neefjes J. Chemical Profiling of the Genome with Anti-Cancer Drugs Defines Target Specificities. Nat. Chem. Biol. 2015;11:472–480. doi: 10.1038/nchembio.1811. PubMed DOI
Nitiss J.L. DNA Topoisomerase II and Its Growing Repertoire of Biological Functions. Nat. Rev. Cancer. 2009;9:327–337. doi: 10.1038/nrc2608. PubMed DOI PMC
Zhang S., Liu X., Bawa-Khalfe T., Lu L.-S., Lyu Y.L., Liu L.F., Yeh E.T.H. Identification of the Molecular Basis of Doxorubicin-Induced Cardiotoxicity. Nat. Med. 2012;18:1639–1642. doi: 10.1038/nm.2919. PubMed DOI
Lyu Y.L., Kerrigan J.E., Lin C.-P., Azarova A.M., Tsai Y.-C., Ban Y., Liu L.F. Topoisomerase IIβ–Mediated DNA Double-Strand Breaks: Implications in Doxorubicin Cardiotoxicity and Prevention by Dexrazoxane. Cancer Res. 2007;67:8839–8846. doi: 10.1158/0008-5472.CAN-07-1649. PubMed DOI
Kato S., Burke P.J., Koch T.H., Bierbaum V.M. Formaldehyde in Human Cancer Cells: Detection by Preconcentration-Chemical Ionization Mass Spectrometry. Anal. Chem. 2001;73:2992–2997. doi: 10.1021/ac001498q. PubMed DOI
Cullinane C., Phillips D.R. In Vitro Transcription Analysis of DNA Adducts Induced by Cyanomorpholinoadriamycin. Biochemistry. 1992;31:9513–9519. doi: 10.1021/bi00155a001. PubMed DOI
Forrest R.A., Swift L.P., Rephaeli A., Nudelman A., Kimura K.-I., Phillips D.R., Cutts S.M. Activation of DNA Damage Response Pathways as a Consequence of Anthracycline-DNA Adduct Formation. Biochem. Pharmacol. 2012;83:1602–1612. doi: 10.1016/j.bcp.2012.02.026. PubMed DOI
Bilardi R.A., Kimura K.-I., Phillips D.R., Cutts S.M. Processing of Anthracycline-DNA Adducts via DNA Replication and Interstrand Crosslink Repair Pathways. Biochem. Pharmacol. 2012;83:1241–1250. doi: 10.1016/j.bcp.2012.01.029. PubMed DOI
Spencer D.M.S., Bilardi R.A., Koch T.H., Post G.C., Nafie J.W., Kimura K.-I., Cutts S.M., Phillips D.R. DNA Repair in Response to Anthracycline–DNA Adducts: A Role for Both Homologous Recombination and Nucleotide Excision Repair. Mutat. Res./Fundam. Mol. Mech. Mutagen. 2008;638:110–121. doi: 10.1016/j.mrfmmm.2007.09.005. PubMed DOI
Barthel B.L., Mooz E.L., Wiener L.E., Koch G.G., Koch T.H. Correlation of in Situ Oxazolidine Formation with Highly Synergistic Cytotoxicity and DNA Cross-Linking in Cancer Cells from Combinations of Doxorubicin and Formaldehyde. J. Med. Chem. 2016;59:2205–2221. doi: 10.1021/acs.jmedchem.5b01956. PubMed DOI
Swift L.P., Rephaeli A., Nudelman A., Phillips D.R., Cutts S.M. Doxorubicin-DNA Adducts Induce a Non-Topoisomerase II–Mediated Form of Cell Death. Cancer Res. 2006;66:4863–4871. doi: 10.1158/0008-5472.CAN-05-3410. PubMed DOI
Grenier M.A., Lipshultz S.E. Epidemiology of Anthracycline Cardiotoxicity in Children and Adults. Semin. Oncol. 1998;25:72–85. PubMed
Weingart S.N., Zhang L., Sweeney M., Hassett M. Chemotherapy Medication Errors. Lancet Oncol. 2018;19:e191–e199. doi: 10.1016/S1470-2045(18)30094-9. PubMed DOI
Henriksen P.A. Anthracycline Cardiotoxicity: An Update on Mechanisms, Monitoring and Prevention. Heart. 2018;104:971. doi: 10.1136/heartjnl-2017-312103. PubMed DOI
Su É., Villard C., Manneville J.-B. Mitochondria: At the Crossroads between Mechanobiology and Cell Metabolism. Biol. Cell. 2023;115:e2300010. doi: 10.1111/boc.202300010. PubMed DOI
Xie S., Sun Y., Zhao X., Xiao Y., Zhou F., Lin L., Wang W., Lin B., Wang Z., Fang Z., et al. An Update of the Molecular Mechanisms Underlying Anthracycline Induced Cardiotoxicity. Front. Pharmacol. 2024;15:1406247. doi: 10.3389/fphar.2024.1406247. PubMed DOI PMC
Sala V., Della Sala A., Hirsch E., Ghigo A. Signaling Pathways Underlying Anthracycline Cardiotoxicity. Antioxid. Redox Signal. 2020;32:1098–1114. doi: 10.1089/ars.2020.8019. PubMed DOI
Henninger C., Fritz G. Statins in Anthracycline-Induced Cardiotoxicity: Rac and Rho, and the Heartbreakers. Cell Death Dis. 2018;8:e2564. doi: 10.1038/cddis.2016.418. PubMed DOI PMC
Meng L., Lin H., Zhang J., Lin N., Sun Z., Gao F., Luo H., Ni T., Luo W., Chi J., et al. Doxorubicin Induces Cardiomyocyte Pyroptosis via the TINCR-Mediated Posttranscriptional Stabilization of NLR Family Pyrin Domain Containing 3. J. Mol. Cell Cardiol. 2019;136:15–26. doi: 10.1016/j.yjmcc.2019.08.009. PubMed DOI
Zhang T., Zhang Y., Cui M., Jin L., Wang Y., Lv F., Liu Y., Zheng W., Shang H., Zhang J., et al. CaMKII Is a RIP3 Substrate Mediating Ischemia- and Oxidative Stress–Induced Myocardial Necroptosis. Nat. Med. 2016;22:175–182. doi: 10.1038/nm.4017. PubMed DOI
Bansal N., Adams M.J., Ganatra S., Colan S.D., Aggarwal S., Steiner R., Amdani S., Lipshultz E.R., Lipshultz S.E. Strategies to Prevent Anthracycline-Induced Cardiotoxicity in Cancer Survivors. Cardio-Oncololgy. 2019;5:18. doi: 10.1186/s40959-019-0054-5. PubMed DOI PMC
Myers C.E., Gianni L., Simone C.B., Klecker R., Greene R. Oxidative Destruction of Erythrocyte Ghost Membranes Catalyzed by the Doxorubicin-Iron Complex. Biochemistry. 1982;21:1707–1713. doi: 10.1021/bi00537a001. PubMed DOI
Xu X., Persson H.L., Richardson D.R. Molecular Pharmacology of the Interaction of Anthracyclines with Iron. Mol. Pharmacol. 2005;68:261. doi: 10.1124/mol.105.013383. PubMed DOI
Bertorello N., Luksch R., Bisogno G., Haupt R., Spallarossa P., Cenna R., Fagioli F. Cardiotoxicity in Children with Cancer Treated with Anthracyclines: A Position Statement on Dexrazoxane. Pediatr. Blood Cancer. 2023;70:e30515. doi: 10.1002/pbc.30515. PubMed DOI
Szponar J., Niziński P., Dudka J., Kasprzak-Drozd K., Oniszczuk A. Natural Products for Preventing and Managing Anthracycline-Induced Cardiotoxicity: A Comprehensive Review. Cells. 2024;13:1151. doi: 10.3390/cells13131151. PubMed DOI PMC
Fang X., Wang H., Han D., Xie E., Yang X., Wei J., Gu S., Gao F., Zhu N., Yin X., et al. Ferroptosis as a Target for Protection against Cardiomyopathy. Proc. Natl. Acad. Sci. USA. 2019;116:2672–2680. doi: 10.1073/pnas.1821022116. PubMed DOI PMC
Menon A.V., Kim J. Iron Promotes Cardiac Doxorubicin Retention and Toxicity Through Downregulation of the Mitochondrial Exporter ABCB8. Front. Pharmacol. 2022;13:817951. doi: 10.3389/fphar.2022.817951. PubMed DOI PMC
Berthiaume J.M., Wallace K.B. Adriamycin-Induced Oxidative Mitochondrial Cardiotoxicity. Cell Biol. Toxicol. 2007;23:15–25. doi: 10.1007/s10565-006-0140-y. PubMed DOI
Doroshow J.H. Mechanisms of Anthracycline-Enhanced Reactive Oxygen Metabolism in Tumor Cells. Oxid. Med. Cell Longev. 2019;2019:9474823. doi: 10.1155/2019/9474823. PubMed DOI PMC
Pourahmad J., Salimi A., Seydi E. Role of Oxygen Free Radicals in Cancer Development and Treatment. In: Ahmad R., editor. Free Radicals and Diseases. IntechOpen; Rijeka, Croatia: 2016. Chapter 17.
Goormaghtigh E., Huart P., Praet M., Brasseur R., Ruysschaert J.-M. Structure of the Adriamycin-Cardiolipin Complex: Role in Mitochondrial Toxicity. Biophys. Chem. 1990;35:247–257. doi: 10.1016/0301-4622(90)80012-V. PubMed DOI
Tacar O., Sriamornsak P., Dass C.R. Doxorubicin: An Update on Anticancer Molecular Action, Toxicity and Novel Drug Delivery Systems. J. Pharm. Pharmacol. 2013;65:157–170. doi: 10.1111/j.2042-7158.2012.01567.x. PubMed DOI
Lv X., Yu X., Wang Y., Wang F., Li H., Wang Y., Lu D., Qi R., Wang H. Berberine Inhibits Doxorubicin-Triggered Cardiomyocyte Apoptosis via Attenuating Mitochondrial Dysfunction and Increasing Bcl-2 Expression. PLoS ONE. 2012;7:e47351. doi: 10.1371/journal.pone.0047351. PubMed DOI PMC
Bellance N., Furt F., Melser S., Lalou C., Thoraval D., Maneta-Peyret L., Lacombe D., Moreau P., Rossignol R. Doxorubicin Inhibits Phosphatidylserine Decarboxylase and Modifies Mitochondrial Membrane Composition in Hela Cells. Int. J. Mol. Sci. 2020;21:1317. doi: 10.3390/ijms21041317. PubMed DOI PMC
Hopwood D.A. How Do Antibiotic-Producing Bacteria Ensure Their Self-Resistance before Antibiotic Biosynthesis Incapacitates Them? Mol. Microbiol. 2007;63:937–940. doi: 10.1111/j.1365-2958.2006.05584.x. PubMed DOI
Julian D., Dorothy D. Origins and Evolution of Antibiotic Resistance. Microbiol. Mol. Biol. Rev. 2010;74:417–433. doi: 10.1128/mmbr.00016-10. PubMed DOI PMC
Mak S., Xu Y., Nodwell J.R. The Expression of Antibiotic Resistance Genes in Antibiotic-Producing Bacteria. Mol. Microbiol. 2014;93:391–402. doi: 10.1111/mmi.12689. PubMed DOI
Lomovskaya N., Hong S.K., Kim S.U., Fonstein L., Furuya K., Hutchinson R.C. The Streptomyces peucetius DrrC Gene Encodes a UvrA-like Protein Involved in Daunorubicin Resistance and Production. J. Bacteriol. 1996;178:3238–3245. doi: 10.1128/jb.178.11.3238-3245.1996. PubMed DOI PMC
Webber M.A., Piddock L.J. V The Importance of Efflux Pumps in Bacterial Antibiotic Resistance. J. Antimicrob. Chemother. 2003;51:9–11. doi: 10.1093/jac/dkg050. PubMed DOI
Bazzi W., Abou Fayad A.G., Nasser A., Haraoui L.-P., Dewachi O., Abou-Sitta G., Nguyen V.-K., Abara A., Karah N., Landecker H., et al. Heavy Metal Toxicity in Armed Conflicts Potentiates AMR in A. Baumannii by Selecting for Antibiotic and Heavy Metal Co-Resistance Mechanisms. Front. Microbiol. 2020;11:68. doi: 10.3389/fmicb.2020.00068. PubMed DOI PMC
Piddock L.J.V. Clinically Relevant Chromosomally Encoded Multidrug Resistance Efflux Pumps in Bacteria. Clin. Microbiol. Rev. 2006;19:382–402. doi: 10.1128/CMR.19.2.382-402.2006. PubMed DOI PMC
Du D., Wang-Kan X., Neuberger A., van Veen H.W., Pos K.M., Piddock L.J.V., Luisi B.F. Multidrug Efflux Pumps: Structure, Function and Regulation. Nat. Rev. Microbiol. 2018;16:523–539. doi: 10.1038/s41579-018-0048-6. PubMed DOI
Gaurav A., Bakht P., Saini M., Pandey S., Pathania R. Role of Bacterial Efflux Pumps in Antibiotic Resistance, Virulence, and Strategies to Discover Novel Efflux Pump Inhibitors. Microbiology. 2023;169:001333. doi: 10.1099/mic.0.001333. PubMed DOI PMC
Abdi S.N., Ghotaslou R., Ganbarov K., Mobed A., Tanomand A., Yousefi M., Asgharzadeh M., Kafil H.S. Acinetobacter baumannii Efflux Pumps and Antibiotic Resistance. Infect. Drug Resist. 2020;13:423–434. doi: 10.2147/IDR.S228089. PubMed DOI PMC
Zack K.M., Sorenson T., Joshi S.G. Types and Mechanisms of Efflux Pump Systems and the Potential of Efflux Pump Inhibitors in the Restoration of Antimicrobial Susceptibility, with a Special Reference to Acinetobacter baumannii. Pathogens. 2024;13:197. doi: 10.3390/pathogens13030197. PubMed DOI PMC
Thomas C., Tampé R. Annual Review of Biochemistry Structural and Mechanistic Principles of ABC Transporters. Annu. Rev. Biochem. 2024;89:605–636. doi: 10.1146/annurev-biochem-011520-105201. PubMed DOI
Jacek L., Konings W.N., Driessen A.J.M. Distribution and Physiology of ABC-Type Transporters Contributing to Multidrug Resistance in Bacteria. Microbiol. Mol. Biol. Rev. 2007;71:463–476. doi: 10.1128/mmbr.00001-07. PubMed DOI PMC
Kaur P., Russell J. Biochemical Coupling between the DrrA and DrrB Proteins of the Doxorubicin Efflux Pump of Streptomyces peucetius. J. Biol. Chem. 1998;273:17933–17939. doi: 10.1074/jbc.273.28.17933. PubMed DOI
Méndez C., Salas J.A. The Role of ABC Transporters in Antibiotic-Producing Organisms: Drug Secretion and Resistance Mechanisms. Res. Microbiol. 2001;152:341–350. doi: 10.1016/S0923-2508(01)01205-0. PubMed DOI
Li W., Rao D.K., Kaur P. Dual Role of the Metalloprotease FtsH in Biogenesis of the DrrAB Drug Transporter. J. Biol. Chem. 2013;288:11854–11864. doi: 10.1074/jbc.M112.441915. PubMed DOI PMC
Dong J., Ning J., Tian Y., Li H., Chen H., Guan W. The Involvement of Multiple ABC Transporters in Daunorubicin Efflux in Streptomyces coeruleorubidus. Microb. Biotechnol. 2024;17:e70023. doi: 10.1111/1751-7915.70023. PubMed DOI PMC
Scotti C., Hutchinson C.R. Enhanced Antibiotic Production by Manipulation of the Streptomyces peucetius DnrH and DnmT Genes Involved in Doxorubicin (Adriamycin) Biosynthesis. J. Bacteriol. 1996;178:7316–7321. doi: 10.1128/jb.178.24.7316-7321.1996. PubMed DOI PMC
Westman E.L., Canova M.J., Radhi I.J., Koteva K., Kireeva I., Waglechner N., Wright G.D. Bacterial Inactivation of the Anticancer Drug Doxorubicin. Chem. Biol. 2012;19:1255–1264. doi: 10.1016/j.chembiol.2012.08.011. PubMed DOI
Ma Y., North B.J., Shu J. Regulation of Topoisomerase II Stability and Activity by Ubiquitination and SUMOylation: Clinical Implications for Cancer Chemotherapy. Mol. Biol. Rep. 2021;48:6589–6601. doi: 10.1007/s11033-021-06665-7. PubMed DOI PMC
Zweier J.L., Gianni L., Muindi J., Myers C.E. Differences in O2 Reduction by the Iron Complexes of Adriamycin and Daunomycin: The Importance of the Sidechain Hydroxyl Group. Biochim. Biophys. Acta Gen. General. Subj. 1986;884:326–336. doi: 10.1016/0304-4165(86)90181-9. PubMed DOI
Fiallo M., Laigle A., Garnier-Suillerot A., Amirand C., Ballini J.-P., Chinsky L., Duquesne M., Jolles B., Sureau F., Turpin P.-Y., et al. Interactions of Iron-Anthracycline Complexes with Living Cells: A Microspectrofluorometric Study. Biochim. Biophys. Acta Mol. Cell Res. 1993;1177:236–244. doi: 10.1016/0167-4889(93)90119-A. PubMed DOI
Fiallo M.M.L., Garnier-Suillerot A. Metal Anthracycline Complexes as a New Class of Anthracycline Derivatives. Palladium(II)-Adriamycin and Palladium(II)-Daunorubicin Complexes: Physicochemical Characteristics and Antitumor Activity. Biochemistry. 1986;25:924–930. doi: 10.1021/bi00352a028. PubMed DOI
Gosálvez M., Blanco M.F., Vivero C., Vallés F. Quelamycin, a New Derivative of Adriamycin with Several Possible Therapeutic Advantages. Eur. J. Cancer. 1978;14:1185–1190. doi: 10.1016/0014-2964(78)90224-4. PubMed DOI
Beraldo H., Garnier-Suillerot A., Tosi L., Lavelle F. Iron(III)-Adriamycin and Iron(III)-Daunorubicin Complexes: Physicochemical Characteristics, Interaction with DNA, and Antitumor Activity. Biochemistry. 1985;24:284–289. doi: 10.1021/bi00323a007. PubMed DOI
Cortés-Funes H., Brugarolas A., Gosálvez M. Quelamycin: A Summary of Phase I Clinical Trials. In: Mathé G., Muggia F.M., editors. Cancer Chemo- and Immunopharmacology: 1. Chemopharmacology. Springer; Berlin/Heidelberg, Germany: 1980. pp. 200–206. PubMed
Alves A.C., Nunes C., Lima J., Reis S. Daunorubicin and Doxorubicin Molecular Interplay with 2D Membrane Models. Colloids Surf. B Biointerfaces. 2017;160:610–618. doi: 10.1016/j.colsurfb.2017.09.058. PubMed DOI
Matyszewska D. The Influence of Charge and Lipophilicity of Daunorubicin and Idarubicin on Their Penetration of Model Biological Membranes–Langmuir Monolayer and Electrochemical Studies. Biochim. Biophys. Acta Biomembr. 2020;1862:183104. doi: 10.1016/j.bbamem.2019.183104. PubMed DOI
Ribeiro J.A., Silva F., Pereira C.M. Electrochemical Study of the Anticancer Drug Daunorubicin at a Water/Oil Interface: Drug Lipophilicity and Quantification. Anal. Chem. 2013;85:1582–1590. doi: 10.1021/ac3028245. PubMed DOI
Gabizon A., Peretz T., Sulkes A., Amselem S., Ben-Yosef R., Ben-Baruch N., Catane R., Biran S., Barenholz Y. Systemic Administration of Doxorubicin-Containing Liposomes in Cancer Patients: A Phase I Study. Eur. J. Cancer Clin. Oncol. 1989;25:1795–1803. doi: 10.1016/0277-5379(89)90350-7. PubMed DOI
Amselem S., Cohen R., Druckmann S., Gabizon A., Goren D., Abra R.M., Huang A., New R., Barenholz Y. Preparation and Characterization of Liposomal Doxorubicin for Human Use. J. Liposome Res. 1992;2:93–123. doi: 10.3109/08982109209039903. DOI
Gabizon A., Meshorer A., Barenholz Y. Comparative Long-Term Study of the Toxicities of Free and Liposome-Associated Doxorubicin in Mice After Intravenous Administration. JNCI J. Natl. Cancer Inst. 1986;77:459–469. doi: 10.1093/jnci/77.2.459. PubMed DOI
Juliano R.L., Stamp D. Pharmacokinetics of Liposome-Encapsulated Anti-Tumor Drugs: Studies with Vinblastine, Actinomycin D, Cytosine Arabinoside, and Daunomycin. Biochem. Pharmacol. 1978;27:21–27. doi: 10.1016/0006-2952(78)90252-6. PubMed DOI
Mussi S.V., Sawant R., Perche F., Oliveira M.C., Azevedo R.B., Ferreira L.A.M., Torchilin V.P. Novel Nanostructured Lipid Carrier Co-Loaded with Doxorubicin and Docosahexaenoic Acid Demonstrates Enhanced in Vitro Activity and Overcomes Drug Resistance in MCF-7/Adr Cells. Pharm. Res. 2014;31:1882–1892. doi: 10.1007/s11095-013-1290-2. PubMed DOI
Rodrigues da Silva G.H., de Moura L.D., de Carvalho F.V., Geronimo G., Mendonça T.C., de Lima F.F., de Paula E. Antineoplastics Encapsulated in Nanostructured Lipid Carriers. Molecules. 2021;26:6929. doi: 10.3390/molecules26226929. PubMed DOI PMC
Rokem J.S., Lantz A.E., Nielsen J. Systems Biology of Antibiotic Production by Microorganisms. Nat. Prod. Rep. 2007;24:1262–1287. doi: 10.1039/b617765b. PubMed DOI
Sánchez S., Chávez A., Forero A., García-Huante Y., Romero A., Sánchez M., Rocha D., Sánchez B., Ávalos M., Guzmán-Trampe S. Carbon Source Regulation of Antibiotic Production. J. Antibiot. 2010;63:442–459. doi: 10.1038/ja.2010.78. PubMed DOI
Bilyk O., Luzhetskyy A. Metabolic Engineering of Natural Product Biosynthesis in Actinobacteria. Curr. Opin. Biotechnol. 2016;42:98–107. doi: 10.1016/j.copbio.2016.03.008. PubMed DOI
Bentley S.D., Chater K.F., Cerdeño-Tárraga A.-M., Challis G.L., Thomson N.R., James K.D., Harris D.E., Quail M.A., Kieser H., Harper D. Complete Genome Sequence of the Model Actinomycete Streptomyces coelicolor A3(2) Nature. 2002;417:141–147. doi: 10.1038/417141a. PubMed DOI
Ruiz B., Chávez A., Forero A., García-Huante Y., Romero A., Sánchez M., Rocha D., Sánchez B., Rodríguez-Sanoja R., Sánchez S. Production of Microbial Secondary Metabolites: Regulation by the Carbon Source. Crit. Rev. Microbiol. 2010;36:146–167. doi: 10.3109/10408410903489576. PubMed DOI
Hodgson D.A. Advances in Microbial Physiology. Volume 42. Academic Press; Cambridge, MA, USA: 2000. Primary Metabolism and Its Control in Streptomycetes: A Most Unusual Group of Bacteria; pp. 47–238. PubMed
Romero-Rodríguez A., Rocha D., Ruiz-Villafán B., Guzmán-Trampe S., Maldonado-Carmona N., Vázquez-Hernández M., Zelarayán A., Rodríguez-Sanoja R., Sánchez S. Carbon Catabolite Regulation in Streptomyces: New Insights and Lessons Learned. World J. Microbiol. Biotechnol. 2017;33:162. doi: 10.1007/s11274-017-2328-0. PubMed DOI
Escalante L., Ramos I., Imriskova I., Langley E., Sanchez S. Glucose Repression of Anthracycline Formation in Streptomyces peucetius Var. Caesius. Appl. Microbiol. Biotechnol. 1999;52:572–578. doi: 10.1007/s002530051562. DOI
Wang X., Tian X., Wu Y., Shen X., Yang S., Chen S. Enhanced Doxorubicin Production by Streptomyces peucetius Using a Combination of Classical Strain Mutation and Medium Optimization. Prep. Biochem. Biotechnol. 2018;48:514–521. doi: 10.1080/10826068.2018.1466156. PubMed DOI
Tiffert Y., Franz-Wachtel M., Fladerer C., Nordheim A., Reuther J., Wohlleben W., Mast Y. Proteomic Analysis of the GlnR-Mediated Response to Nitrogen Limitation in Streptomyces coelicolor M145. Appl. Microbiol. Biotechnol. 2011;89:1149–1159. doi: 10.1007/s00253-011-3086-9. PubMed DOI
Krysenko S. Impact of Nitrogen-Containing Compounds on Secondary Metabolism in Streptomyces spp.—A Source of Metabolic Engineering Strategies. SynBio. 2023;1:204–225. doi: 10.3390/synbio1030015. DOI
Kiviharju K., Leisola M., Eerikäinen T. Optimization of Streptomyces peucetius Var. Caesius N47 Cultivation and ε-Rhodomycinone Production Using Experimental Designs and Response Surface Methods. J. Ind. Microbiol. Biotechnol. 2004;31:475–481. doi: 10.1007/s10295-004-0172-3. PubMed DOI
Méndez C., Salas J.A. Engineering Glycosylation in Bioactive Compounds by Combinatorial Biosynthesis. In: Wohlleben W., Spellig T., Müller-Tiemann B., editors. Biocombinatorial Approaches for Drug Finding. Springer; Berlin/Heidelberg, Germany: 2005. pp. 127–146. PubMed DOI
Nielsen J. The Role of Metabolic Engineering in the Production of Secondary Metabolites. Curr. Opin. Microbiol. 1998;1:330–336. doi: 10.1016/S1369-5274(98)80037-4. PubMed DOI
Tanaka Y., Izawa M., Hiraga Y., Misaki Y., Watanabe T., Ochi K. Metabolic Perturbation to Enhance Polyketide and Nonribosomal Peptide Antibiotic Production Using Triclosan and Ribosome-Targeting Drugs. Appl. Microbiol. Biotechnol. 2017;101:4417–4431. doi: 10.1007/s00253-017-8216-6. PubMed DOI
Olano C., Lombó F., Méndez C., Salas J.A. Improving Production of Bioactive Secondary Metabolites in Actinomycetes by Metabolic Engineering. Metab. Eng. 2008;10:281–292. doi: 10.1016/j.ymben.2008.07.001. PubMed DOI
Craney A., Ozimok C., Pimentel-Elardo S.M., Capretta A., Nodwell J.R. Chemical Perturbation of Secondary Metabolism Demonstrates Important Links to Primary Metabolism. Chem. Biol. 2012;19:1020–1027. doi: 10.1016/j.chembiol.2012.06.013. PubMed DOI
Yukinori T., Ken K., Yutaka H., Kiriko M., Rie K., Kozo O. Activation and Products of the Cryptic Secondary Metabolite Biosynthetic Gene Clusters by Rifampin Resistance (RpoB) Mutations in Actinomycetes. J. Bacteriol. 2013;195:2959–2970. doi: 10.1128/jb.00147-13. PubMed DOI PMC
Norimasa T., Takeshi H., Jun X., Haifeng H., Noboru O., Kozo O. Innovative Approach for Improvement of an Antibiotic-Overproducing Industrial Strain of Streptomyces Albus. Appl. Environ. Microbiol. 2003;69:6412–6417. doi: 10.1128/AEM.69.11.6412-6417.2003. PubMed DOI PMC
Singh J., Dutta T., Kim K.-H., Rawat M., Samddar P., Kumar P. ‘Green’ Synthesis of Metals and Their Oxide Nanoparticles: Applications for Environmental Remediation. J. Nanobiotechnology. 2018;16:84. doi: 10.1186/s12951-018-0408-4. PubMed DOI PMC
Pudhuvai B., Koul B., Das R., Shah M.P. Nano-Fertilizers (NFs) for Resurgence in Nutrient Use Efficiency (NUE): A Sustainable Agricultural Strategy. Curr. Pollut. Rep. 2024;11:1. doi: 10.1007/s40726-024-00331-9. DOI
Graf E., Eaton J.W. Antioxidant Functions of Phytic Acid. Free Radic. Biol. Med. 1990;8:61–69. doi: 10.1016/0891-5849(90)90146-A. PubMed DOI
Gupta R.K., Gangoliya S.S., Singh N.K. Reduction of Phytic Acid and Enhancement of Bioavailable Micronutrients in Food Grains. J. Food Sci. Technol. 2015;52:676–684. doi: 10.1007/s13197-013-0978-y. PubMed DOI PMC
Hurrell R.F., Juillerat M.A., Reddy M.B., Lynch S.R., Dassenko S.A., Cook J.D. Soy Protein, Phytate, and Iron Absorption in Humans. Am. J. Clin. Nutr. 1992;56:573–578. doi: 10.1093/ajcn/56.3.573. PubMed DOI
Hamedi J., Malekzadeh F., Saghafi-nia A.E. Enhancing of Erythromycin Production by Saccharopolyspora erythraea with Common and Uncommon Oils. J. Ind. Microbiol. Biotechnol. 2004;31:447–456. doi: 10.1007/s10295-004-0166-1. PubMed DOI
Efthimiou G., Thumser A.E., Avignone-Rossa C.A. A Novel Finding That Streptomyces clavuligerus Can Produce the Antibiotic Clavulanic Acid Using Olive Oil as a Sole Carbon Source. J. Appl. Microbiol. 2008;105:2058–2064. doi: 10.1111/j.1365-2672.2008.03975.x. PubMed DOI
Wang J., Liu H., Huang D., Jin L., Wang C., Wen J. Comparative Proteomic and Metabolomic Analysis of Streptomyces tsukubaensis Reveals the Metabolic Mechanism of FK506 Overproduction by Feeding Soybean Oil. Appl. Microbiol. Biotechnol. 2017;101:2447–2465. doi: 10.1007/s00253-017-8136-5. PubMed DOI
Li H., Wei J., Dong J., Li Y., Li Y., Chen Y., Guan W. Enhanced Triacylglycerol Metabolism Contributes to Efficient Oil Utilization and High-Level Production of Salinomycin in Streptomyces albus ZD11. Appl. Environ. Microbiol. 2020;86:e00763-20. doi: 10.1128/AEM.00763-20. PubMed DOI PMC
Eiki H., Gushima H., Saito T., Ishida H., Oka Y., Osono T. Product Inhibition and Its Removal on Josamycin Fermentation by Streptomyces narbonensis Var. josamyceticus. J. Ferment. Technol. 1988;66:559–565. doi: 10.1016/0385-6380(88)90089-1. DOI
Young T., Li Y., Efthimiou G. Olive Pomace Oil Can Be Used as an Alternative Carbon Source for Clavulanic Acid Production by Streptomyces clavuligerus. Waste Biomass Valorization. 2020;11:3965–3970. doi: 10.1007/s12649-019-00719-5. DOI
Seke M., Petrovic D., Labudovic Borovic M., Borisev I., Novakovic M., Rakocevic Z., Djordjevic A. Fullerenol/Iron Nanocomposite Diminishes Doxorubicin-Induced Toxicity. J. Nanoparticle Res. 2019;21:239. doi: 10.1007/s11051-019-4681-4. DOI
Calendi E., Di Marco A., Reggiani M., Scarpinato B., Valentini L. On Physico-Chemical Interactions between Daunomycin and Nucleic Acids. Biochim. Biophys. Acta Nucleic Acids Protein Synth. 1965;103:25–49. doi: 10.1016/0005-2787(65)90539-3. PubMed DOI
Cheng Y., Yang R., Lyu M., Wang S., Liu X., Wen Y., Song Y., Li J., Chen Z. IdeR, a DtxR Family Iron Response Regulator, Controls Iron Homeostasis, Morphological Differentiation, Secondary Metabolism, and the Oxidative Stress Response in Streptomyces avermitilis. Appl. Environ. Microbiol. 2018;84:e01503-18. doi: 10.1128/AEM.01503-18. PubMed DOI PMC
Samuni A., Chong P.L.-G., Barenholz Y., Thompson T.E. Physical and Chemical Modifications of Adriamycin:Iron Complex by Phospholipid Bilayers1. Cancer Res. 1986;46:594–599. PubMed