Intestinal tissue levels of anti-TNF alpha, antibodies, and cytokines in paediatric Crohn disease
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
512120
Grant Agency of Charles University - GA UK
CZ.02.01.01/00/22_008/0004597
Ministry of Education, Youth and Sports of the Czech Republic
PubMed
39775097
PubMed Central
PMC11707019
DOI
10.1038/s41598-024-83858-7
PII: 10.1038/s41598-024-83858-7
Knihovny.cz E-zdroje
- Klíčová slova
- Biologics, Crohn disease, Inflammatory bowel disease, Paediatrics,
- MeSH
- adalimumab * terapeutické užití MeSH
- Crohnova nemoc * farmakoterapie metabolismus krev patologie MeSH
- cytokiny * metabolismus krev MeSH
- dítě MeSH
- infliximab * terapeutické užití MeSH
- lidé MeSH
- mladiství MeSH
- prospektivní studie MeSH
- střeva patologie účinky léků MeSH
- střevní sliznice metabolismus patologie MeSH
- TNF-alfa * antagonisté a inhibitory metabolismus MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adalimumab * MeSH
- cytokiny * MeSH
- infliximab * MeSH
- TNF-alfa * MeSH
The aim was to explore factors associated with intestinal tissue levels of anti-TNF alpha (anti-TNF), anti-TNF antibodies, and cytokines in pediatric patients with Crohn Disease (CD). In a prospective exploratory study of CD patients undergoing ileocecal resection or colonoscopy between 6/2020 and 1/2023, we analysed tissue levels of anti-TNF, anti-TNF antibodies, and cytokines (TNF-α, IL-17, IL-1β, IFN-γ) from intestinal biopsies. Mixed-effects regression models, adjusted for potential confounders, were used. Data from 27 CD patients (18 females, 66.7%) were analysed. Fourteen (52%) received adalimumab (ADA) and thirteen received infliximab (IFX), with a median therapy duration of 17 (IQR 4.5-41.5) months. Higher levels of free anti-TNF were found in macroscopically inflamed tissue compared to non-inflamed tissue (β = 3.42, 95% CI 1.05-6.10). No significant association was found between serum and tissue anti-TNF levels (β= -0.06, 95% CI - 0.70-0.58). Patients treated longer with anti-TNF had increased IL-17 levels (β = 0.19, 95% CI 0.05-0.33), independent of disease duration and age. IFN-γ levels were linked with both follow-up duration and anti-TNF length. Our study shows significantly higher free drug levels in inflamed tissue. Long-term anti-TNF treatment has been linked to increased IL-17 levels, suggesting a possible impact on the cytokine response pathway. We did not observe a relationship between serum and tissue anti-TNF levels.
Zobrazit více v PubMed
Kuenzig, M. E. et al. Twenty-first century trends in the global epidemiology of pediatric-onset inflammatory bowel disease: Systematic review. Gastroenterology162(4), 1147-1159.e4. 10.1053/j.gastro.2021.12.282 (2022). PubMed
Van Deventer, S. J. Tumour necrosis factor and Crohn’s disease. Gut40(4), 443–448. 10.1136/gut.40.4.443 (1997). PubMed PMC
Mitsialis, V. et al. Single-cell analyses of colon and blood reveal distinct immune cell signatures of ulcerative colitis and Crohn’s disease. Gastroenterology159(2), 591-608.e10. 10.1053/j.gastro.2020.04.074 (2020). PubMed PMC
Tran, B. N. et al. Higher order structures of adalimumab, infliximab and their complexes with TNFα revealed by electron microscopy. Protein Sci.26(12), 2392–2398. 10.1002/pro.3306 (2017). PubMed PMC
Ordás, I., Mould, D. R., Feagan, B. G. & Sandborn, W. J. Anti-TNF monoclonal antibodies in inflammatory bowel disease: Pharmacokinetics-based dosing paradigms. Clin. Pharmacol. Ther.91(4), 635–646. 10.1038/clpt.2011.328 (2012). PubMed
Levin, A. D., Wildenberg, M. E. & van den Brink, G. R. Mechanism of action of anti-TNF therapy in inflammatory bowel disease. J. Crohns Colitis.10(8), 989–997. 10.1093/ecco-jcc/jjw053 (2016). PubMed
Papamichael, K. et al. Therapeutic drug monitoring of biologics in inflammatory bowel disease: Unmet needs and future perspectives. Lancet Gastroenterol. Hepatol.7(2), 171–185. 10.1016/S2468-1253(21)00223-5 (2022). PubMed PMC
Assa, A. et al. Proactive monitoring of adalimumab trough concentration associated with increased clinical remission in children with Crohn’s disease compared with reactive monitoring. Gastroenterology157(4), 985-996.e2. 10.1053/j.gastro.2019.06.003 (2019). PubMed
Hradsky, O. et al. Sustainability of biologic treatment in paediatric patients with Crohn’s disease: Population-based registry analysis. Pediatr. Res.10.1038/s41390-023-02913-7 (2023). PubMed
Roda, G., Jharap, B., Neeraj, N. & Colombel, J. F. Loss of response to anti-TNFs: Definition, epidemiology, and management. Clin. Transl. Gastroenterol.7(1), e135. 10.1038/ctg.2015.63 (2016). PubMed PMC
Yarur, A. J. et al. The association of tissue anti-TNF drug levels with serological and endoscopic disease activity in inflammatory bowel disease: The ATLAS study. Gut65(2), 249–255. 10.1136/gutjnl-2014-308099 (2016). PubMed
Yoshihara, T. et al. Tissue drug concentrations of anti-tumor necrosis factor agents are associated with the long-term outcome of patients with Crohn’s disease. Inflamm. Bowel Dis.23(12), 2172–2179. 10.1097/MIB.0000000000001260 (2017). PubMed
Bar-Yoseph, H. et al. Differential serum-intestinal dynamics of infliximab and adalimumab in inflammatory bowel disease patients. J. Crohns Colitis.16(6), 884–892. 10.1093/ecco-jcc/jjab208 (2022). PubMed
Levine, A. et al. ESPGHAN revised porto criteria for the diagnosis of inflammatory bowel disease in children and adolescents. J. Pediatr. Gastroenterol. Nutr.58(6), 795–806. 10.1097/MPG.0000000000000239 (2014). PubMed
Ruemmele, F. M. et al. Consensus guidelines of ECCO/ESPGHAN on the medical management of pediatric Crohn’s disease. J. Crohns Colitis.8(10), 1179–1207. 10.1016/j.crohns.2014.04.005 (2014). PubMed
van Rheenen, P. F. et al. The medical management of paediatric Crohn’s disease: An ECCO-ESPGHAN guideline update. J. Crohns Colitis10.1093/ecco-jcc/jjaa161 (2020). PubMed
Hyams, J. S. et al. Development and validation of a pediatric Crohn’s disease activity index. J. Pediatr. Gastroenterol. Nutr.12(4), 439–447 (1991). PubMed
Levine, A. et al. Pediatric modification of the Montreal classification for inflammatory bowel disease: The Paris classification. Inflamm. Bowel Dis.17(6), 1314–1321. 10.1002/ibd.21493 (2011). PubMed
Dindo, D., Demartines, N. & Clavien, P. A. Classification of surgical complications: A new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann. Surg.240(2), 205–213. 10.1097/01.sla.0000133083.54934.ae (2004). PubMed PMC
Daperno, M. et al. Development and validation of a new, simplified endoscopic activity score for Crohn’s disease: The SES-CD. Gastrointest. Endosc.60(4), 505–512. 10.1016/s0016-5107(04)01878-4 (2004). PubMed
Gecse, K. et al. Sa1198 agreement among experts in the endoscopic evaluation of postoperative recurrence in Crohn’s disease using the Rutgeerts score. Gastroenterology146, SS227 (2014).
Rutgeerts, P. et al. Predictability of the postoperative course of Crohn’s disease. Gastroenterology10.1016/0016-5085(90)90613-6 (1990). PubMed
Goll, R. et al. Pharmacodynamic mechanisms behind a refractory state in inflammatory bowel disease. BMC Gastroenterol.22(1), 464. 10.1186/s12876-022-02559-5 (2022). PubMed PMC
Murch, S. H., Braegger, C. P., Walker-Smith, J. A. & MacDonald, T. T. Location of tumour necrosis factor alpha by immunohistochemistry in chronic inflammatory bowel disease. Gut34(12), 1705–1709. 10.1136/gut.34.12.1705 (1993). PubMed PMC
Billmeier, U., Dieterich, W., Neurath, M. F. & Atreya, R. Molecular mechanism of action of anti-tumor necrosis factor antibodies in inflammatory bowel diseases. World J. Gastroenterol.22(42), 9300–9313. 10.3748/wjg.v22.i42.9300 (2016). PubMed PMC
Kaymakcalan, Z. et al. Comparisons of affinities, avidities, and complement activation of adalimumab, infliximab, and etanercept in binding to soluble and membrane tumor necrosis factor. Clin. Immunol.131(2), 308–316. 10.1016/j.clim.2009.01.002 (2009). PubMed
Hu, S. et al. Comparison of the inhibition mechanisms of adalimumab and infliximab in treating tumor necrosis factor α-associated diseases from a molecular view. J. Biol. Chem.288(38), 27059–27067. 10.1074/jbc.M113.491530 (2013). PubMed PMC
Arora, T. et al. Differences in binding and effector functions between classes of TNF antagonists. Cytokine45(2), 124–131. 10.1016/j.cyto.2008.11.008 (2009). PubMed
Petito, V. et al. Direct effect of infliximab on intestinal mucosa sustains mucosal healing: Exploring new mechanisms of action. Dig. Liver Dis.48(4), 391–398. 10.1016/j.dld.2015.12.008 (2016). PubMed
Petric, Z., Goncalves, J. & Paixao, P. Under the umbrella of clinical pharmacology: Inflammatory bowel disease, infliximab and adalimumab, and a bridge to an era of biosimilars. Pharmaceutics14(9), 1766. 10.3390/pharmaceutics14091766 (2022). PubMed PMC
Buurman, D. J. et al. Quantitative comparison of the neutralizing capacity, immunogenicity and cross-reactivity of anti-TNF-α biologicals and an Infliximab-biosimilar. PLoS One13(12), e0208922. 10.1371/journal.pone.0208922 (2018). PubMed PMC
Chetwood, J. D. et al. Intravenous versus subcutaneous infliximab in inflammatory bowel disease: A systematic review and meta-analysis. J. Crohns Colitis18(9), 1440–1449. 10.1093/ecco-jcc/jjae059 (2024). PubMed
Chung, A. et al. Early infliximab clearance predicts remission in children with Crohn’s disease. Dig. Dis. Sci.68(5), 1995–2005. 10.1007/s10620-022-07783-3 (2023). PubMed
Temrikar, Z. H., Suryawanshi, S. & Meibohm, B. Pharmacokinetics and clinical pharmacology of monoclonal antibodies in pediatric patients. Paediatr. Drugs.22(2), 199–216. 10.1007/s40272-020-00382-7 (2020). PubMed PMC
Kappelman, M. D. et al. Comparative effectiveness of anti-TNF in combination with low-dose methotrexate vs anti-TNF monotherapy in pediatric Crohn’s disease: A pragmatic randomized trial. Gastroenterology165(1), 149-161.e7. 10.1053/j.gastro.2023.03.224 (2023). PubMed PMC
Colombel, J. F. et al. Infliximab, azathioprine, or combination therapy for Crohn’s disease. N. Engl. J. Med.362(15), 1383–1395. 10.1056/NEJMoa0904492 (2010). PubMed
Schultheiss, J. P. D. et al. Loss of response to anti-TNFα agents depends on treatment duration in patients with inflammatory bowel disease. Aliment Pharmacol. Ther.54(10), 1298–1308. 10.1111/apt.16605 (2021). PubMed PMC
Steenholdt, C., Bendtzen, K., Brynskov, J. & Ainsworth, M. A. Optimizing treatment with TNF inhibitors in inflammatory bowel disease by monitoring drug levels and antidrug antibodies. Inflamm. Bowel Dis.22(8), 1999–2015. 10.1097/MIB.0000000000000772 (2016). PubMed
Naschberger, E. et al. Analysis of the interferon-γ-induced secretome of intestinal endothelial cells: Putative impact on epithelial barrier dysfunction in IBD. Front. Cell Dev. Biol.14(11), 1213383. 10.3389/fcell.2023.1213383 (2023). PubMed PMC
Coccia, M. et al. IL-1β mediates chronic intestinal inflammation by promoting the accumulation of IL-17A secreting innate lymphoid cells and CD4(+) Th17 cells. J. Exp. Med.209(9), 1595–1609. 10.1084/jem.20111453 (2012). PubMed PMC
Mahida, Y. R., Wu, K. & Jewell, D. P. Enhanced production of interleukin 1-beta by mononuclear cells isolated from mucosa with active ulcerative colitis of Crohn’s disease. Gut30(6), 835–838. 10.1136/gut.30.6.835 (1989). PubMed PMC
Aggeletopoulou, I., Kalafateli, M., Tsounis, E. P. & Triantos, C. Exploring the role of IL-1β in inflammatory bowel disease pathogenesis. Front. Med. (Lausanne).22(11), 1307394. 10.3389/fmed.2024.1307394 (2024). PubMed PMC
Zhao, J. et al. Th17 cells in inflammatory bowel disease: Cytokines, plasticity, and therapies. J. Immunol. Res.22(2021), 8816041. 10.1155/2021/8816041 (2021). PubMed PMC
Chen, L. et al. The role of Th17 cells in inflammatory bowel disease and the research progress. Front. Immunol.9(13), 1055914. 10.3389/fimmu.2022.1055914 (2023). PubMed PMC
Neurath, M. F. Strategies for targeting cytokines in inflammatory bowel disease. Nat. Rev. Immunol.10.1038/s41577-024-01008-6 (2024). PubMed
Schmitt, H. et al. Expansion of IL-23 receptor bearing TNFR2+ T cells is associated with molecular resistance to anti-TNF therapy in Crohn’s disease. Gut68(5), 814–828. 10.1136/gutjnl-2017-315671 (2019). PubMed PMC
Schmitt, H., Neurath, M. F. & Atreya, R. Role of the IL23/IL17 pathway in Crohn’s disease. Front. Immunol.30(12), 622934. 10.3389/fimmu.2021.622934 (2021). PubMed PMC
Singh, S. et al. Comparative efficacy and safety of biologic therapies for moderate-to-severe Crohn’s disease: A systematic review and network meta-analysis. Lancet Gastroenterol. Hepatol.6(12), 1002–1014. 10.1016/S2468-1253(21)00312-5 (2021). PubMed PMC
Parigi, T. L., Iacucci, M. & Ghosh, S. Blockade of IL-23: What is in the Pipeline?. J. Crohns Colitis10.1093/ecco-jcc/jjab185 (2022). PubMed PMC
Targan, S. R. et al. A randomized, double-blind, placebo-controlled phase 2 study of brodalumab in patients with moderate-to-severe Crohn’s disease. Am. J. Gastroenterol.111(11), 1599–1607. 10.1038/ajg.2016.298 (2016). PubMed
Hueber, W. et al. Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn’s disease: Unexpected results of a randomised, double-blind placebo-controlled trial. Gut61(12), 1693–1700. 10.1136/gutjnl-2011-301668 (2012). PubMed PMC
Atreya, R. & Neurath, M. F. IL-23 blockade in anti-TNF refractory IBD: From mechanisms to clinical reality. J. Crohns Colitis10.1093/ecco-jcc/jjac007 (2022). PubMed PMC