• This record comes from PubMed

IDH Status in Brain Gliomas Can Be Predicted by the Spherical Mean MRI Technique

. 2025 Jan 08 ; 46 (1) : 121-128. [epub] 20250108

Language English Country United States Media electronic

Document type Journal Article

BACKGROUND AND PURPOSE: Diffuse gliomas, a heterogeneous group of primary brain tumors, have traditionally been stratified by histology, but recent insights into their molecular features, especially the IDH mutation status, have fundamentally changed their classification and prognosis. Current diagnostic methods, still predominantly relying on invasive biopsy, necessitate the exploration of noninvasive imaging alternatives for glioma characterization. MATERIALS AND METHODS: In this prospective study, we investigated the utility of the spherical mean technique (SMT) in predicting the IDH status and histologic grade of adult-type diffuse gliomas. Patients with histologically confirmed adult-type diffuse glioma underwent a multiparametric MRI examination using a 3T system, which included a multishell diffusion sequence. Advanced diffusion parameters were obtained using SMT, diffusional kurtosis imaging, and ADC modeling. The diagnostic performance of studied parameters was evaluated by plotting receiver operating characteristic curves with associated area under curve, specificity, and sensitivity values. RESULTS: A total of 80 patients with a mean age of 48 (SD, 16) years were included in the study. SMT metrics, particularly microscopic fractional anisotropy (μFA), intraneurite voxel fraction, and μFA to the third power (μFA3), demonstrated strong diagnostic performance (all AUC = 0.905, 95% CI, 0.835-0.976; P < .001) in determining IDH status and compared favorably with diffusional kurtosis imaging and ADC models. These parameters also showed a strong predictive capability for tumor grade, with intraneurite voxel fraction and μFA achieving the highest diagnostic accuracy (AUC = 0.937, 95% CI, 0.880-0.993; P < .001). Control analyses on normal-appearing brain tissue confirmed the specificity of these metrics for tumor tissue. CONCLUSIONS: Our study highlights the potential of SMT for noninvasive characterization of adult-type diffuse gliomas, with a potential to predict IDH status and tumor grade more accurately than traditional ADC metrics. SMT offers a promising addition to the current diagnostic toolkit, enabling more precise preoperative assessments and contributing to personalized treatment planning.

Erratum In

PubMed

See more in PubMed

Di Carlo DT, Duffau H, Cagnazzo F, et al. . IDH wild-type WHO grade II diffuse low-grade gliomas; a heterogeneous family with different outcomes: systematic review and meta-analysis. Neurosurg Rev 2020;43:383–95 10.1007/s10143-018-0996-3 PubMed DOI

Louis DN, Perry A, Reifenberger G, et al. . The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol 2016;131:803–20 10.1007/s00401-016-1545-1 PubMed DOI

Uetani H, Azuma M, Khant ZA, et al. . Importance of age and noncontrast-enhancing tumor as biomarkers for isocitrate dehydrogenase-mutant glioblastoma: a multicenter study. J Comput Assist Tomogr 2023;47:659–65 10.1097/RCT.0000000000001456 PubMed DOI PMC

Jensen JH, Helpern JA, Ramani A, et al. . Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med 2005;53:1432–40 10.1002/mrm.20508 PubMed DOI

Le Bihan D. Molecular diffusion nuclear magnetic resonance imaging. Magn Reson Q 1991;7:1–30 PubMed

Darbar A, Waqas M, Enam SF, et al. . Use of preoperative apparent diffusion coefficients to predict brain tumor grade. Cureus 2018;10:e2284 10.7759/cureus.2284 PubMed DOI PMC

Zulfiqar M, Yousem DM, Lai H. ADC values and prognosis of malignant astrocytomas: does lower ADC predict a worse prognosis independent of grade of tumor? A meta-analysis. AJR Am J Roentgenol 2013;200:624–29 10.2214/AJR.12.8679 PubMed DOI

Eidel O, Neumann JO, Burth S, et al. . Automatic analysis of cellularity in glioblastoma and correlation with ADC using trajectory analysis and automatic nuclei counting. PLoS One 2016;11:e0160250 10.1371/journal.pone.0160250 PubMed DOI PMC

Gauvain KM, McKinstry RC, Mukherjee P, et al. . Evaluating pediatric brain tumor cellularity with diffusion-tensor imaging. AJR Am J Roentgenol 2001;177:449–54 10.2214/ajr.177.2.1770449 PubMed DOI

Abdalla G, Dixon L, Sanverdi E, et al. . The diagnostic role of diffusional kurtosis imaging in glioma grading and differentiation of gliomas from other intra-axial brain tumours: a systematic review with critical appraisal and meta-analysis. Neuroradiology 2020;62:791–802 10.1007/s00234-020-02425-9 PubMed DOI PMC

Szczepankiewicz F, Lasič S, van Westen D, et al. . Quantification of microscopic diffusion anisotropy disentangles effects of orientation dispersion from microstructure: applications in healthy volunteers and in brain tumors. Neuroimage 2015;104:241–52 10.1016/j.neuroimage.2014.09.057 PubMed DOI PMC

Smith SM, Nichols TE, Vidaurre D, et al. . A positive-negative mode of population covariation links brain connectivity, demographics and behavior. Nat Neurosci 2015;18:1565–67 10.1038/nn.4125 PubMed DOI PMC

Hagmann P, Grant PE, Fair DA. MR connectomics: a conceptual framework for studying the developing brain. Front Syst Neurosci 2012;6:43 10.3389/fnsys.2012.00043 PubMed DOI PMC

Kaden E, Kelm ND, Carson RP, et al. . Multi-compartment microscopic diffusion imaging. Neuroimage 2016;139:346–59 10.1016/j.neuroimage.2016.06.002 PubMed DOI PMC

Kaden E, Kruggel F, Alexander DC. Quantitative mapping of the per-axon diffusion coefficients in brain white matter. Magn Reson Med 2016;75:1752–63 10.1002/mrm.25734 PubMed DOI PMC

By S, Xu J, Box BA, et al. . Multi‐compartmental diffusion characterization of the human cervical spinal cord in vivo using the spherical mean technique. NMR Biomed 2018;31:e3894 10.1002/nbm.3894 PubMed DOI PMC

Tournier JD, Smith R, Raffelt D, et al. . MRtrix3: a fast, flexible and open software framework for medical image processing and visualisation. Neuroimage 2019;202:116137 10.1016/j.neuroimage.2019.116137 PubMed DOI

Veraart J, Novikov DS, Christiaens D, et al. . Denoising of diffusion MRI using random matrix theory. Neuroimage 2016;142:394–406 10.1016/j.neuroimage.2016.08.016 PubMed DOI PMC

Kellner E, Dhital B, Kiselev VG, et al. . Gibbs-ringing artifact removal based on local subvoxel-shifts. Magn Reson Med 2016;76:1574–81 10.1002/mrm.26054 PubMed DOI

Andersson JL, Sotiropoulos SN. An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. Neuroimage 2016;125:1063–78 10.1016/j.neuroimage.2015.10.019 PubMed DOI PMC

Andersson JL, Skare S, Ashburner J. How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. Neuroimage 2003;20:870–88 10.1016/S1053-8119(03)00336-7 PubMed DOI

Tustison NJ, Avants BB, Cook PA, et al. . N4ITK: improved N3 bias correction. IEEE Trans Med Imaging 2010;29:1310–20 10.1109/TMI.2010.2046908 PubMed DOI PMC

Wang X, Zhou C, Wang L, et al. . Motor cortex gliomas induces microstructural changes of large fiber tracts revealed by TBSS. Sci Rep 2020;10:16900–08 10.1038/s41598-020-73746-1 PubMed DOI PMC

Marino S, Menna G, Di Bonaventura R, et al. . The extracellular matrix in glioblastomas: a glance at its structural modifications in shaping the tumoral microenvironment: a systematic review. Cancers (Basel) 2023;15:1879 10.3390/cancers15061879 PubMed DOI PMC

Henriques RN, Jespersen SN, Shemesh N. Microscopic anisotropy misestimation in spherical-mean single diffusion encoding MRI. Magn Reson Med 2019;81:3245–61 10.1002/mrm.27606 PubMed DOI PMC

Wang QP, Lei DQ, Yuan Y, et al. . Accuracy of ADC derived from DWI for differentiating high-grade from low-grade gliomas: systematic review and meta-analysis. Medicine (Baltimore) 2020;99:e19254 10.1097/MD.0000000000019254 PubMed DOI PMC

Fadnavis S, Batson J, Garyfallidis E. 2020 Patch2Self: Denoising Diffusion MRI with Self-Supervised Learning. In: Larochelle H, Ranzato M, Hadsell R, Balcan MF, Lin H, eds, Advances in Neural Information Processing Systems; vol. 33: 16293–303. Curran Associates, Inc

Michailovich O, Rathi Y, Dolui S. Spatially regularized compressed sensing for high angular resolution diffusion imaging. IEEE Trans Med Imaging 2011;30:1100–15 10.1109/TMI.2011.2142189 PubMed DOI PMC

Mancini L, Casagranda S, Gautier G, et al. . CEST MRI provides amide/amine surrogate biomarkers for treatment-naïve glioma sub-typing. Eur J Nucl Med Mol Imaging 2022;49:2377–91 10.1007/s00259-022-05676-1 PubMed DOI PMC

Eichinger P, Alberts E, Delbridge C, et al. . Diffusion tensor image features predict IDH genotype in newly diagnosed WHO grade II/III gliomas. Sci Rep 2017;7:13396 10.1038/s41598-017-13679-4 PubMed DOI PMC

Sakai Y, Yang C, Kihira S, et al. . MRI radiomic features to predict IDH1 mutation status in gliomas: a machine learning approach using gradient tree boosting. Int J Mol Sci 2020;21:8004 10.3390/ijms21218004 PubMed DOI PMC

Zhang H, Schneider T, Wheeler-Kingshott CA, et al. . NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage 2012;61:1000–16 10.1016/j.neuroimage.2012.03.072 PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...