Anion Transport by Bambusuril-Bile Acid Conjugates: Drastic Effect of the Cholesterol Content
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
23-05271S
Grantová Agentura České Republiky
LM2023069
RECETOX Přírodovědecké Fakulty Masarykovy Univerzity
857560
Horizon 2020
Fonds De La Recherche Scientifique - FNRS
COST Action CA22131
European Cooperation in Science and Technology
LM2023069
Ministerstvo Školství, Mládeže a Tělovýchovy
LM2018127
Ministerstvo Školství, Mládeže a Tělovýchovy
LM2023052
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
39791967
PubMed Central
PMC11848992
DOI
10.1002/anie.202424754
Knihovny.cz E-zdroje
- Klíčová slova
- Anion Channels, Anion transport, Bambusurils, Macrocycles, Supramolecular Chemistry,
- MeSH
- anionty * chemie MeSH
- cholesterol * chemie metabolismus MeSH
- iontový transport MeSH
- lipidové dvojvrstvy chemie metabolismus MeSH
- liposomy chemie metabolismus MeSH
- molekulární struktura MeSH
- žlučové kyseliny a soli * chemie metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- anionty * MeSH
- cholesterol * MeSH
- lipidové dvojvrstvy MeSH
- liposomy MeSH
- žlučové kyseliny a soli * MeSH
Artificial anion transporters offer a potential way to treat deficiencies in cellular anion transport of genetic origins. In contrast to the large variety of mobile anion carriers and self-assembled anion channels reported, unimolecular anion channels are less investigated. Herein, we present a unique example of a unimolecular anion channel based on a bambusuril (BU) macrocycle, a well-established anion receptor. The BU structure was expanded by appending various bile acid residues allowing a single molecule to span the membrane. Chloride transport mediated by BUs through lipid bilayers was investigated in liposomes and these studies revealed a surprisingly high dependence of the anion transport activity on the cholesterol content in the liposomal membrane.
College of Chemistry Fuzhou University Fuzhou Fujian 350116 China
Department of Chemistry Faculty of Science Masaryk University Kamenice 5 625 00 Brno Czech Republic
RECETOX Faculty of Science Masaryk University Kamenice 5 625 00 Brno Czech Republic
Zobrazit více v PubMed
Ashcroft F. M., Ion Channels Dis., (Ed.: Ashcroft F. M.), Academic Press, San Diego, 2000, pp. 185–198.
Jentsch T. J., Stein V., Weinreich F., Zdebik A. A., Physiol. Rev. 2002, 82, 503–568. PubMed
Gadsby D. C., Nat. Rev. Mol. Cell Biol. 2009, 10, 344–352. PubMed PMC
Dworakowska B., Dolowy K., Acta Biochim. Pol. 2000, 47, 685–703. PubMed
Hille B., Ionic Channels of Excitable Membranes, 2001.
Planells-Cases R., Jentsch T. J., BBA - Mol. Basis Dis. 2009, 1792, 173–189. PubMed
Harraz O. F., Delpire E., Physiol. Rev. 2024, 104, 23–31. PubMed
Gale P. A., Davis J. T., Quesada R., Chem. Soc. Rev. 2017, 46, 2497–2519. PubMed
Li H., Valkenier H., Thorne A. G., Dias C. M., Cooper J. A., Kieffer M., Busschaert N., Gale P. A., Sheppard D. N., Davis A. P., Chem. Sci. 2019, 10, 9663–9672. PubMed PMC
Fiore M., Cossu C., Capurro V., Picco C., Ludovico A., Mielczarek M., Carreira-Barral I., Caci E., Baroni D., Quesada R., Moran O., Br. J. Pharmacol. 2019, 176, 1764–1779. PubMed PMC
Valkenier H., Akrawi O., Jurček P., Sleziaková K., Lízal T., Bartik K., Šindelář V., Chem 2019, 5, 429–444.
di Gregorio M. C., Cautela J., Galantini L., Int. J. Mol. Sci. 2021, 22, 1780. PubMed PMC
Valkenier H., Davis A. P., Acc. Chem. Res. 2013, 46, 2898–2909. PubMed
Zhao Y., Cho H., Widanapathirana L., Zhang S., Acc. Chem. Res. 2013, 46, 2763–2772. PubMed
Behera H., Madhavan N., J. Am. Chem. Soc. 2017, 139, 12919–12922. PubMed
Sahoo S., Dey A., Tecilla P., De P., J. Polym. Sci. 2023, 61, 2901–2908.
McNally B. A., Koulov A. V., Lambert T. N., Smith B. D., Joos J.-B., Sisson A. L., Clare J. P., Sgarlata V., Judd L. W., Magro G., Davis A. P., Chem. – Eur. J. 2008, 14, 9599–9606. PubMed PMC
Brotherhood P. R., Davis A. P., Chem. Soc. Rev. 2010, 39, 3633–3647. PubMed
Valkenier H., Judd L. W., Li H., Hussain S., Sheppard D. N., Davis A. P., J. Am. Chem. Soc. 2014, 136, 12507–12512. PubMed
Janout V., Zhang L., Staina I. V., Di Giorgio C., Regen S. L., J. Am. Chem. Soc. 2001, 123, 5401–5406. PubMed
Janout V., Jing B., Staina I. V., Regen S. L., J. Am. Chem. Soc. 2003, 125, 4436–4437. PubMed
Chen W.-H., Janout V., Kondo M., Mosoian A., Mosoyan G., Petrov R. R., Klotman M. E., Regen S. L., Bioconjug. Chem. 2009, 20, 1711–1715. PubMed PMC
Zhou J., Lu Y.-M., Deng L.-Q., Zhou Z.-Z., Chen W.-H., Bioorg. Med. Chem. Lett. 2013, 23, 3145–3148. PubMed
Kempf J., Schmitzer A., RSC Adv. 2016, 6, 42713–42719.
Li Z., Chen Y., Yuan D.-Q., Chen W.-H., Org. Biomol. Chem. 2017, 15, 2831–2840. PubMed
Li Z., Yu X.-H., Chen Y., Yuan D.-Q., Chen W.-H., J. Org. Chem. 2017, 82, 13368–13375. PubMed
Ye R., Ren C., Shen J., Li N., Chen F., Roy A., Zeng H., J. Am. Chem. Soc. 2019, 141, 9788–9792. PubMed
Ren C., Chen F., Ye R., Ong Y. S., Lu H., Lee S. S., Ying J. Y., Zeng H., Angew. Chem. 2019, 131, 8118–8122. PubMed
De Riccardis F., Izzo I., Montesarchio D., Tecilla P., Acc. Chem. Res. 2013, 46, 2781–2790. PubMed
Zhou J., Lu Y.-M., Deng L.-Q., Zhou Z.-Z., Chen W.-H., Bioorg. Med. Chem. Lett. 2013, 23, 3145–3148. PubMed
Malla J. A., Roy A., Talukdar P., Org. Lett. 2018, 20, 5991–5994. PubMed
Sharma R., Vijay A., Mukherjee A., Talukdar P., Org. Biomol. Chem. 2022, 20, 2054–2058. PubMed
Shen J., Gu Y., Ke L., Zhang Q., Cao Y., Lin Y., Wu Z., Wu C., Mu Y., Wu Y.-L., Ren C., Zeng H., Nat. Commun. 2022, 13, 5985. PubMed PMC
Yoshino N., Satake A., Kobuke Y., Angew. Chem. Int. Ed. 2001, 40, 457–459. PubMed
Maulucci N., Riccardis F. D., Botta C. B., Casapullo A., Cressina E., Fregonese M., Tecilla P., Izzo I., Chem. Commun. 2005, 1354–1356. PubMed
Izzo I., Maulucci N., Martone C., Casapullo A., Fanfoni L., Tecilla P., De Riccardis F., Tetrahedron 2006, 62, 5385–5391.
Izzo I., Licen S., Maulucci N., Autore G., Marzocco S., Tecilla P., Riccardis F. D., Chem. Commun. 2008, 2986–2988. PubMed
Havel V., Sindelar V., ChemPlusChem 2015, 80, 1601–1606. PubMed
Havel V., Babiak M., Sindelar V., Chem. – Eur. J. 2017, 23, 8963–8968. PubMed
Lang C., Mohite A., Deng X., Yang F., Dong Z., Xu J., Liu J., Keinan E., Reany O., Chem. Commun. 2017, 53, 7557–7560. PubMed
Khurana R., Yang F., Khurana R., Liu J., Keinan E., Reany O., Chem. Commun. 2022, 58, 3150–3153. PubMed
De Simone N. A., Chvojka M., Lapešová J., Martínez-Crespo L., Slávik P., Sokolov J., Butler S. J., Valkenier H., Šindelář V., J. Org. Chem. 2022, 87, 9829–9838. PubMed
Martínez-Crespo L., Hewitt S. H., De Simone N. A., Šindelář V., Davis A. P., Butler S., Valkenier H., Chem. – Eur. J. 2021, 27, 7367–7375. PubMed PMC
Madhavan N., Robert E. C., Gin M. S., Angew. Chem. Int. Ed. 2005, 44, 7584–7587. PubMed
Madhavan N., Gin M. S., ChemBioChem 2007, 8, 1834–1840. PubMed
Chen L., Si W., Zhang L., Tang G., Li Z.-T., Hou J.-L., J. Am. Chem. Soc. 2013, 135, 2152–2155. PubMed
Saha P., Madhavan N., Org. Lett. 2020, 22, 5104–5108. PubMed
Huang W.-L., Wang X.-D., Ao Y.-F., Wang Q.-Q., Wang D.-X., J. Am. Chem. Soc. 2020, 142, 13273–13277. PubMed
Huang W.-L., Wang X.-D., Ao Y.-F., Wang Q.-Q., Wang D.-X., Angew. Chem. Int. Ed. 2023, 62, e202302198. PubMed
Havel V., Sadilová T., Šindelář V., ACS Omega 2018, 3, 4657–4663. PubMed PMC
Lafosse M., Cartier E., Solmont K., Rivollier J., Azazna D., Thuéry P., Boulard Y., Gontier A., Charbonnier J.-B., Kuhnast B., Heck M.-P., Org. Lett. 2020, 22, 3099–3103. PubMed
Slávik P., Torrisi J., Jurček P., Sokolov J., Šindelář V., J. Org. Chem. 2023, 88, 11514–11522. PubMed PMC
Chvojka M., Singh A., Cataldo A., Torres-Huerta A., Konopka M., Šindelář V., Valkenier H., Anal. Sens. 2024, 4, e202300044.
Chen W.-H., Shao X.-B., Regen S. L., J. Am. Chem. Soc. 2005, 127, 12727–12735. PubMed
Valkenier H., Dias C. M., Porter Goff K. L., Jurček O., Puttreddy R., Rissanen K., Davis A. P., Chem. Commun. 2015, 51, 14235–14238. PubMed
Dias C. M., Valkenier H., Davis A. P., Chem. – Eur. J. 2018, 24, 6262–6268. PubMed PMC
Grauwels G., Valkenier H., Davis A. P., Jabin I., Bartik K., Angew. Chem. Int. Ed. 2019, 58, 6921–6925. PubMed
Abdurakhmanova E. R., Mondal D., Jędrzejewska H., Cmoch P., Danylyuk O., Chmielewski M. J., Szumna A., Chem 2024, 10, 1910–1924.
Lisbjerg M., Valkenier H., Jessen B. M., Al-Kerdi H., Davis A. P., Pittelkow M., J. Am. Chem. Soc. 2015, 137, 4948–4951. PubMed
In some cases, an increase in transport rates was observed with increasing cholesterol content, see references 104–108.
Biswas O., Akhtar N., Vashi Y., Saha A., Kumar V., Pal S., Kumar S., Manna D., ACS Appl. Bio Mater. 2020, 3, 935–944. PubMed
Johnson T. G., Sadeghi-Kelishadi A., Langton M. J., J. Am. Chem. Soc. 2022, 144, 10455–10461. PubMed PMC
Fisher M. G., Gale P. A., Hiscock J. R., Hursthouse M. B., Light M. E., Schmidtchen F. P., Tong C. C., Chem. Commun. 2009, 3017–3019. PubMed
Gale P. A., Garric J., Light M. E., McNally B. A., Smith B. D., Chem. Commun. 2007, 1736–1738. PubMed PMC
Busschaert N., Gale P. A., Haynes C. J. E., Light M. E., Moore S. J., Tong C. C., Davis J. T., Harrell J. W. A., Chem. Commun. 2010, 46, 6252–6254. PubMed
Andrews N. J., Haynes C. J. E., Light M. E., Moore S. J., Tong C. C., Davis J. T., W. A. Harrell Jr , Gale P. A., Chem. Sci. 2011, 2, 256–260.
Haynes C. J. E., Moore S. J., Hiscock J. R., Marques I., Costa P. J., Félix V., Gale P. A., Chem. Sci. 2012, 3, 1436–1444.
Busschaert N., Kirby I. L., Young S., Coles S. J., Horton P. N., Light M. E., Gale P. A., Angew. Chem. Int. Ed. 2012, 51, 4426–4430. PubMed
Haynes C. J. E., Berry S. N., Garric J., Herniman J., Hiscock J. R., Kirby I. L., Light M. E., Perkes G., Gale P. A., Chem. Commun. 2013, 49, 246–248. PubMed
Vidal M., Schmitzer A., Chem. – Eur. J. 2014, 20, 9998–10004. PubMed
Olivari M., Montis R., Karagiannidis L. E., Horton P. N., Mapp L. K., Coles S. J., Light M. E., Gale P. A., Caltagirone C., Dalton Trans. 2015, 44, 2138–2149. PubMed
Gravel J., Schmitzer A. R., Supramol. Chem. 2015, 27, 364–371.
Lang C., Zhang X., Luo Q., Dong Z., Xu J., Liu J., Eur. J. Org. Chem. 2015, 2015, 6458–6465.
Park E. B., Jeong K.-S., Chem. Commun. 2015, 51, 9197–9200. PubMed
Clarke H. J., Van Rossom W., Horton P. N., Light M. E., Gale P. A., Supramol. Chem. 2016, 28, 10–17.
Peng C.-C., Li Z., Deng L.-Q., Ke Z.-F., Chen W.-H., Bioorg. Med. Chem. Lett. 2016, 26, 2442–2445. PubMed
Jowett L. A., Howe E. N. W., Soto-Cerrato V., Van Rossom W., Pérez-Tomás R., Gale P. A., Sci. Rep. 2017, 7, 9397. PubMed PMC
Yu X.-H., Peng C.-C., Sun X.-X., Chen W.-H., Eur. J. Med. Chem. 2018, 152, 115–125. PubMed
Das S., Biswas O., Akhtar N., Patel A., Manna D., Org. Biomol. Chem. 2020, 18, 9246–9252. PubMed
Akhtar N., Biswas O., Manna D., Org. Biomol. Chem. 2021, 19, 7446–7459. PubMed
Sharma R., Sarkar S., Chattopadhayay S., Mondal J., Talukdar P., Angew. Chem. Int. Ed. 2024, 63, e202319919. PubMed
Moore S. J., Haynes C. J. E., González J., Sutton J. L., Brooks S. J., Light M. E., Herniman J., Langley G. J., Soto-Cerrato V., Pérez-Tomás R., Marques I., Costa P. J., Félix V., Gale P. A., Chem. Sci. 2013, 4, 103–117.
Busschaert N., Karagiannidis L. E., Wenzel M., Haynes C. J. E., Wells N. J., Young P. G., Makuc D., Plavec J., Jolliffe K. A., Gale P. A., Chem. Sci. 2014, 5, 1118–1127.
Li Z., Deng L.-Q., Chen J.-X., Zhou C.-Q., Chen W.-H., Org. Biomol. Chem. 2015, 13, 11761–11769. PubMed
Olivari M., Montis R., Berry S. N., Karagiannidis L. E., Coles S. J., Horton P. N., Mapp L. K., Gale P. A., Caltagirone C., Dalton Trans. 2016, 45, 11892–11897. PubMed
Yano M., Tong C. C., Light M. E., Schmidtchen F. P., Gale P. A., Org. Biomol. Chem. 2010, 8, 4356–4363. PubMed
Chen S., Zhang S., Bao C., Wang C., Lin Q., Zhu L., Chem. Commun. 2016, 52, 13132–13135. PubMed
Ren C., Zeng F., Shen J., Chen F., Roy A., Zhou S., Ren H., Zeng H., J. Am. Chem. Soc. 2018, 140, 8817–8826. PubMed
Roy A., Joshi H., Ye R., Shen J., Chen F., Aksimentiev A., Zeng H., Angew. Chem. Int. Ed. 2020, 59, 4806–4813. PubMed PMC
Busschaert N., Elmes R. B. P., Czech D. D., Wu X., Kirby I. L., Peck E. M., Hendzel K. D., Shaw S. K., Chan B., Smith B. D., Jolliffe K. A., Gale P. A., Chem. Sci. 2014, 5, 3617–3626. PubMed PMC
Busschaert N., Wenzel M., Light M. E., Iglesias-Hernández P., Pérez-Tomás R., Gale P. A., J. Am. Chem. Soc. 2011, 133, 14136–14148. PubMed PMC
Róg T., Pasenkiewicz-Gierula M., Vattulainen I., Karttunen M., Biochim. Biophys. Acta BBA - Biomembr. 2009, 1788, 97–121. PubMed
Frallicciardi J., Melcr J., Siginou P., Marrink S. J., Poolman B., Nat. Commun. 2022, 13, 1605. PubMed PMC
Regen S. L., JACS Au 2022, 2, 84–91. PubMed PMC
Pore V. S., Aher N. G., Kumar M., Shukla P. K., Tetrahedron 2006, 62, 11178–11186.
Aguilar-Ortíz E., Lévaray N., Vonlanthen M., Morales-Espinoza E. G., Rojas-Aguirre Y., Zhu X. X., Rivera E., Dyes Pigments 2016, 132, 110–120.
Cha Y., Zhu T., Sha Y., Lin H., Hwang J., Seraydarian M., Craig S. L., Tang C., J. Am. Chem. Soc. 2021, 143, 11871–11878. PubMed
Dolle F., Hetru C., Rousseau B., Sobrio F., Blais C., Lafont R., Descamp M., Luu B., Tetrahedron 1993, 49, 2485–2498.
Khripach V. A., Zhabinskii V. N., Antonchick A. V., Antonchick A. P., Russ. J. Bioorganic Chem. 2006, 32, 586–594.
Li C., Peters A. S., Meredith E. L., Allman G. W., Savage P. B., J. Am. Chem. Soc. 1998, 120, 2961–2962.
D'Amore C., Di Leva F. S., Sepe V., Renga B., Del Gaudio C., D'Auria M. V., Zampella A., Fiorucci S., Limongelli V., J. Med. Chem. 2014, 57, 937–954. PubMed
Averin A. D., Ranyuk E. R., Lukashev N. V., Buryak A. K., Beletskaya I. P., Russ. J. Org. Chem. 2009, 45, 78–86.
Latyshev G. V., Baranov M. S., Kazantsev A. V., Averin A. D., Lukashev N. V., Beletskaya I. P., Synthesis 2009, 2009, 2605–2615.
Cho H., Zhao Y., Chem. Commun. 2011, 47, 8970–8972. PubMed
Spooner M. J., Gale P. A., Chem. Commun. 2015, 51, 4883–4886. PubMed
Berry S. N., Soto-Cerrato V., Howe E. N. W., Clarke H. J., Mistry I., Tavassoli A., Chang Y.-T., Pérez-Tomás R., Gale P. A., Chem. Sci. 2016, 7, 5069–5077. PubMed PMC
Cranwell P. B., Hiscock J. R., Haynes C. J. E., Light M. E., Wells N. J., Gale P. A., Chem. Commun. 2013, 49, 874–876. PubMed
Cho H., Widanapathirana L., Zhao Y., J. Am. Chem. Soc. 2011, 133, 141–147. PubMed
Substituent effects of fluorinated bambusurils on their anion transport