Substituent effects of fluorinated bambusurils on their anion transport
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
40235442
PubMed Central
PMC12001018
DOI
10.1039/d5ob00400d
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Anionophores are molecules that can transport ions across membranes. Several structural design criteria must be met for anionophores to be highly active. Fluorinated anionophores are usually more potent than their non-fluorinated analogues due to their higher lipophilicity and increased affinity for anions. Clear structure-activity relationships have been described for small and relatively simple anionophores. However, such studies are more challenging for large and macrocyclic anionophores, as their preparation is usually more complicated, limiting the number of compounds tested in anion transport studies. Here we present a series of twelve macrocyclic bambusuril anion transporters to investigate how variations in fluorinated substituents affect their transport properties. Measurements of Cl-/HCO3- antiport activities in liposomes revealed links between parameters such as lipophilicity or substituent polarity and transport activity. For some bambusurils, an unusually large effect of the presence of cholesterol in the membrane on transport activity was found. Further studies showed that for very potent anion receptors, such as the bambusurils described here, the binding selectivity towards anions becomes more important than the absolute binding affinity to anions when considering anion exchange across the membrane.
Department of Chemistry Faculty of Science Masaryk University Kamenice 5 625 00 Brno Czech Republic
RECETOX Faculty of Science Masaryk University Kamenice 5 625 00 Brno Czech Republic
Zobrazit více v PubMed
Planells-Cases R. Jentsch T. J. Chloride channelopathies. BBA, Mol. Basis Dis. 2009;1792:173–189. doi: 10.1016/j.bbadis.2009.02.002. PubMed DOI
Mantegazza M. Cestèle S. Catterall W. A. Sodium channelopathies of skeletal muscle and brain. Physiol. Rev. 2021;101:1633–1689. PubMed PMC
Chen S.-Y. Ho C.-J. Lu Y.-T. Lin C.-H. Lan M.-Y. Tsai M.-H. The Genetics of Primary Familial Brain Calcification: A Literature Review. Int. J. Mol. Sci. 2023;24:10886. PubMed PMC
Staruschenko A. Ma R. Palygin O. Dryer S. E. Ion channels and channelopathies in glomeruli. Physiol. Rev. 2023;103:787–854. PubMed PMC
Sheppard D. N. Davis A. P. Pore-forming small molecules offer a promising way to tackle cystic fibrosis. Nature. 2019;567:315–317. PubMed
Massey M. K. Reiterman M. J. Mourad J. Luckie D. B. Is CFTR an exchanger?: Regulation of HCO3-Transport and extracellular pH by CFTR. Biochem. Biophys. Rep. 2021;25:100863. PubMed PMC
Angyal D. Bijvelds M. J. C. Bruno M. J. Peppelenbosch M. P. de Jonge H. R. Bicarbonate Transport in Cystic Fibrosis and Pancreatitis. Cells. 2022;11:54. doi: 10.3390/cells11010054. PubMed DOI PMC
Li H. Valkenier H. Judd L. W. Brotherhood P. R. Hussain S. Cooper J. A. Jurček O. Sparkes H. A. Sheppard D. N. Davis A. P. Efficient, non-toxic anion transport by synthetic carriers in cells and epithelia. Nat. Chem. 2016;8:24–32. doi: 10.1038/nchem.2384. PubMed DOI
Muraglia K. A. Chorghade R. S. Kim B. R. Tang X. X. Shah V. S. Grillo A. S. Daniels P. N. Cioffi A. G. Karp P. H. Zhu L. Welsh M. J. Burke M. D. Small-molecule ion channels increase host defences in cystic fibrosis airway epithelia. Nature. 2019;567:405–408. doi: 10.1038/s41586-019-1018-5. PubMed DOI PMC
Li H. Valkenier H. Thorne A. G. Dias C. M. Cooper J. A. Kieffer M. Busschaert N. Gale P. A. Sheppard D. N. Davis A. P. Anion carriers as potential treatments for cystic fibrosis: transport in cystic fibrosis cells, and additivity to channel-targeting drugs. Chem. Sci. 2019;10:9663–9672. doi: 10.1039/C9SC04242C. PubMed DOI PMC
Gianotti A. Capurro V. Delpiano L. Mielczarek M. García-Valverde M. Carreira-Barral I. Ludovico A. Fiore M. Baroni D. Moran O. Quesada R. Caci E. Small Molecule Anion Carriers Correct Abnormal Airway Surface Liquid Properties in Cystic Fibrosis Airway Epithelia. Int. J. Mol. Sci. 2020;21:1488. doi: 10.3390/ijms21041488. PubMed DOI PMC
Quesada R. Dutzler R. Alternative chloride transport pathways as pharmacological targets for the treatment of cystic fibrosis. J. Cystic Fibrosis. 2020;19:S37–S41. doi: 10.1016/j.jcf.2019.10.020. PubMed DOI
Mondal A. Ahmad M. Mondal D. Talukdar P. Progress and prospects toward supramolecular bioactive ion transporters. Chem. Commun. 2023;59:1917–1938. doi: 10.1039/D2CC06761G. PubMed DOI
Martínez-Crespo L. Valkenier H. Transmembrane Transport of Bicarbonate by Anion Receptors. ChemPlusChem. 2022;87:e202200266. doi: 10.1002/cplu.202200266. PubMed DOI PMC
Yang J. Yu G. Sessler J. L. Shin I. Gale P. A. Huang F. Artificial transmembrane ion transporters as potential therapeutics. Chem. 2021;7:3256–3291.
Davis J. T. Gale P. A. Quesada R. Advances in anion transport and supramolecular medicinal chemistry. Chem. Soc. Rev. 2020;49:6056–6086. doi: 10.1039/C9CS00662A. PubMed DOI
Singh A. Torres-Huerta A. Meyer F. Valkenier H. Anion transporters based on halogen, chalcogen, and pnictogen bonds: towards biological applications. Chem. Sci. 2024;15:15006–15022. doi: 10.1039/D4SC04644G. PubMed DOI PMC
Brotherhood P. R. Davis A. P. Steroid-based anion receptors and transporters. Chem. Soc. Rev. 2010;39:3633–3647. doi: 10.1039/B926225N. PubMed DOI
Bąk K. M. Chabuda K. Montes H. Quesada R. Chmielewski M. J. 1,8-Diamidocarbazoles: an easily tuneable family of fluorescent anion sensors and transporters. Org. Biomol. Chem. 2018;16:5188–5196. doi: 10.1039/C8OB01031E. PubMed DOI
Masłowska-Jarzyna K. Cataldo A. Marszalik A. Ignatikova I. Butler S. J. Stachowiak R. Chmielewski M. J. Valkenier H. Dissecting transmembrane bicarbonate transport by 1,8-di(thio)amidocarbazoles. Org. Biomol. Chem. 2022;20:7658–7663. doi: 10.1039/D2OB01461K. PubMed DOI
Cooper J. A. Street S. T. G. Davis A. P. A Flexible Solution to Anion Transport: Powerful Anionophores Based on a Cyclohexane Scaffold. Angew. Chem., Int. Ed. 2014;53:5609–5613. doi: 10.1002/anie.201311071. PubMed DOI
Valkenier H. Dias C. M. Porter Goff K. L. Jurček O. Puttreddy R. Rissanen K. Davis A. P. Sterically geared tris-thioureas; transmembrane chloride transporters with unusual activity and accessibility. Chem. Commun. 2015;51:14235–14238. doi: 10.1039/C5CC05737J. PubMed DOI
Jowett L. A. Howe E. N. W. Wu X. Busschaert N. Gale P. A. New Insights into the Anion Transport Selectivity and Mechanism of Tren-based Tris-(thio)ureas. Chem. – Eur. J. 2018;24:10475–10487. doi: 10.1002/chem.201801463. PubMed DOI
Kim D. S. Sessler J. L. Calix[4]pyrroles: versatile molecular containers with ion transport, recognition, and molecular switching functions. Chem. Soc. Rev. 2015;44:532–546. doi: 10.1039/C4CS00157E. PubMed DOI
Peng S. He Q. Vargas-Zúñiga G. I. Qin L. Hwang I. Kim S. K. Heo N. J. Lee C.-H. Dutta R. Sessler J. L. Strapped calix[4]pyrroles: from syntheses to applications. Chem. Soc. Rev. 2020;49:865–907. doi: 10.1039/C9CS00528E. PubMed DOI
Singh A. Torres-Huerta A. Vanderlinden T. Renier N. Martínez-Crespo L. Tumanov N. Wouters J. Bartik K. Jabin I. Valkenier H. Calix[6]arenes with halogen bond donor groups as selective and efficient anion transporters. Chem. Commun. 2022;58:6255–6258. doi: 10.1039/D2CC00847E. PubMed DOI PMC
Abdurakhmanova E. R. Mondal D. Jędrzejewska H. Cmoch P. Danylyuk O. Chmielewski M. J. Szumna A. Supramolecular umpolung: Converting electron-rich resorcin[4]arenes into potent CH-bonding anion receptors and transporters. Chem. 2024;10:1910–1924.
Busschaert N. Bradberry S. J. Wenzel M. Haynes C. J. E. Hiscock J. R. Kirby I. L. Karagiannidis L. E. Moore S. J. Wells N. J. Herniman J. Langley G. J. Horton P. N. Light M. E. Marques I. Costa P. J. Félix V. Frey J. G. Gale P. A. Towards predictable transmembrane transport: QSAR analysis of anion binding and transport. Chem. Sci. 2013;4:3036–3045. doi: 10.1039/C3SC51023A. DOI
Knight N. J. Hernando E. Haynes C. J. E. Busschaert N. Clarke H. J. Takimoto K. García-Valverde M. Frey J. G. Quesada R. Gale P. A. QSAR analysis of substituent effects on tambjamine anion transporters. Chem. Sci. 2016;7:1600–1608. doi: 10.1039/C5SC03932K. PubMed DOI PMC
York E. McNaughton D. A. Roseblade A. Cranfield C. G. Gale P. A. Rawling T. Structure–Activity Relationship and Mechanistic Studies of Bisaryl Urea Anticancer Agents Indicate Mitochondrial Uncoupling by a Fatty Acid-Activated Mechanism. ACS Chem. Biol. 2022;17:2065–2073. doi: 10.1021/acschembio.1c00807. PubMed DOI
McNally B. A. Koulov A. V. Lambert T. N. Smith B. D. Joos J.-B. Sisson A. L. Clare J. P. Sgarlata V. Judd L. W. Magro G. Davis A. P. Structure–Activity Relationships in Cholapod Anion Carriers: Enhanced Transmembrane Chloride Transport through Substituent Tuning. Chem. – Eur. J. 2008;14:9599–9606. doi: 10.1002/chem.200801163. PubMed DOI PMC
Vargas Jentzsch A. Emery D. Mareda J. Metrangolo P. Resnati G. Matile S. Ditopic Ion Transport Systems: Anion–π Interactions and Halogen Bonds at Work. Angew. Chem., Int. Ed. 2011;50:11675–11678. doi: 10.1002/anie.201104966. PubMed DOI
Edwards S. J. Valkenier H. Busschaert N. Gale P. A. Davis A. P. High-Affinity Anion Binding by Steroidal Squaramide Receptors. Angew. Chem., Int. Ed. 2015;54:4592–4596. doi: 10.1002/anie.201411805. PubMed DOI PMC
Busschaert N. Wenzel M. Light M. E. Iglesias-Hernández P. Pérez-Tomás R. Gale P. A. Structure–Activity Relationships in Tripodal Transmembrane Anion Transporters: The Effect of Fluorination. J. Am. Chem. Soc. 2011;133:14136–14148. doi: 10.1021/ja205884y. PubMed DOI PMC
Spooner M. J. Li H. Marques I. Costa P. M. R. Wu X. Howe E. N. W. Busschaert N. Moore S. J. Light M. E. Sheppard D. N. Félix V. Gale P. A. Fluorinated synthetic anion carriers: experimental and computational insights into transmembrane chloride transport. Chem. Sci. 2019;10:1976–1985. doi: 10.1039/C8SC05155K. PubMed DOI PMC
Olivari M. Montis R. Berry S. N. Karagiannidis L. E. Coles S. J. Horton P. N. Mapp L. K. Gale P. A. Caltagirone C. Tris-ureas as transmembrane anion transporters. Dalton Trans. 2016;45:11892–11897. doi: 10.1039/C6DT02046A. PubMed DOI
Mondal D. Sathyan A. Shinde S. V. Mishra K. K. Talukdar P. Tripodal cyanurates as selective transmembrane Cl− transporters. Org. Biomol. Chem. 2018;16:8690–8694. doi: 10.1039/C8OB01345D. PubMed DOI
Lee L. M. Tsemperouli M. Poblador-Bahamonde A. I. Benz S. Sakai N. Sugihara K. Matile S. Anion Transport with Pnictogen Bonds in Direct Comparison with Chalcogen and Halogen Bonds. J. Am. Chem. Soc. 2019;141:810–814. doi: 10.1021/jacs.8b12554. PubMed DOI
Zhou B. Gabbaï F. P. Redox-controlled chalcogen-bonding at tellurium: impact on Lewis acidity and chloride anion transport properties. Chem. Sci. 2020;11:7495–7500. doi: 10.1039/D0SC02872J. PubMed DOI PMC
Howe E. N. W. Chang V.-V. T. Wu X. Fares M. Lewis W. Macreadie L. K. Gale P. A. Halide-selective, proton-coupled anion transport by phenylthiosemicarbazones. Biochim. Biophys. Acta, Biomembr. 2022;1864:183828. doi: 10.1016/j.bbamem.2021.183828. PubMed DOI
Gilchrist A. M. Wu X. Hawkins B. A. Hibbs D. E. Gale P. A. Fluorinated tetrapodal anion transporters. iScience. 2023;26:105988. doi: 10.1016/j.isci.2023.105988. PubMed DOI PMC
Hussain S. Brotherhood P. R. Judd L. W. Davis A. P. Diaxial Diureido Decalins as Compact, Efficient, and Tunable Anion Transporters. J. Am. Chem. Soc. 2011;133:1614–1617. doi: 10.1021/ja1076102. PubMed DOI
Busschaert N. Kirby I. L. Young S. Coles S. J. Horton P. N. Light M. E. Gale P. A. Squaramides as Potent Transmembrane Anion Transporters. Angew. Chem., Int. Ed. 2012;51:4426–4430. doi: 10.1002/anie.201200729. PubMed DOI
Moore S. J. Haynes C. J. E. González J. Sutton J. L. Brooks S. J. Light M. E. Herniman J. Langley G. J. Soto-Cerrato V. Pérez-Tomás R. Marques I. Costa P. J. Félix V. Gale P. A. Chloride, carboxylate and carbonate transport by ortho-phenylenediamine-based bisureas. Chem. Sci. 2013;4:103–117. doi: 10.1039/C2SC21112B. DOI
Busschaert N. Elmes R. B. P. Czech D. D. Wu X. Kirby I. L. Peck E. M. Hendzel K. D. Shaw S. K. Chan B. Smith B. D. Jolliffe K. A. Gale P. A. Thiosquaramides: pH switchable anion transporters. Chem. Sci. 2014;5:3617–3626. doi: 10.1039/C4SC01629G. PubMed DOI PMC
Hernando E. Soto-Cerrato V. Cortés-Arroyo S. Pérez-Tomás R. Quesada R. Transmembrane anion transport and cytotoxicity of synthetic tambjamine analogs. Org. Biomol. Chem. 2014;12:1771–1778. doi: 10.1039/C3OB42341G. PubMed DOI
Karagiannidis L. E. Haynes C. J. E. Holder K. J. Kirby I. L. Moore S. J. Wells N. J. Gale P. A. Highly effective yet simple transmembrane anion transporters based upon ortho-phenylenediamine bis-ureas. Chem. Commun. 2014;50:12050–12053. doi: 10.1039/C4CC05519E. PubMed DOI
Valkenier H. Judd L. W. Li H. Hussain S. Sheppard D. N. Davis A. P. Preorganized Bis-Thioureas as Powerful Anion Carriers: Chloride Transport by Single Molecules in Large Unilamellar Vesicles. J. Am. Chem. Soc. 2014;136:12507–12512. doi: 10.1021/ja507551z. PubMed DOI
Lang C. Zhang X. Luo Q. Dong Z. Xu J. Liu J. Powerful Bipodal Anion Transporters Based on Scaffolds That Contain Different Chalcogens. Eur. J. Org. Chem. 2015:6458–6465. doi: 10.1002/ejoc.201500997. DOI
Docker A. Johnson T. G. Kuhn H. Zhang Z. Langton M. J. Multistate Redox-Switchable Ion Transport Using Chalcogen-Bonding Anionophores. J. Am. Chem. Soc. 2023;145:2661–2668. doi: 10.1021/jacs.2c12892. PubMed DOI PMC
Carreira-Barral I. Mielczarek M. Alonso-Carrillo D. Capurro V. Soto-Cerrato V. Pérez Tomás R. Caci E. García-Valverde M. Quesada R. Click-tambjamines as efficient and tunable bioactive anion transporters. Chem. Commun. 2020;56:3218–3221. doi: 10.1039/D0CC00643B. PubMed DOI
Rawling T. MacDermott-Opeskin H. Roseblade A. Pazderka C. Clarke C. Bourget K. Wu X. Lewis W. Noble B. Gale P. A. O'Mara M. L. Cranfield C. Murray M. Aryl urea substituted fatty acids: a new class of protonophoric mitochondrial uncoupler that utilises a synthetic anion transporter. Chem. Sci. 2020;11:12677–12685. doi: 10.1039/D0SC02777D. PubMed DOI PMC
Wang P. Wu X. Gale P. A. Carbazole-based bis-ureas and thioureas as electroneutral anion transporters. Supramol. Chem. 2021;33:143–149. doi: 10.1080/10610278.2021.1946539. DOI
McNaughton D. A. Macreadie L. K. Gale P. A. Acridinone-based anion transporters. Org. Biomol. Chem. 2021;19:9659–9674. doi: 10.1039/D1OB01545A. PubMed DOI
Jentzsch A. V. Emery D. Mareda J. Nayak S. K. Metrangolo P. Resnati G. Sakai N. Matile S. Transmembrane anion transport mediated by halogen-bond donors. Nat. Commun. 2012;3:905. doi: 10.1038/ncomms1902. PubMed DOI
Seganish J. L. Santacroce P. V. Salimian K. J. Fettinger J. C. Zavalij P. Davis J. T. Regulating Supramolecular Function in Membranes: Calixarenes that Enable or Inhibit Transmembrane Cl− Transport. Angew. Chem., Int. Ed. 2006;45:3334–3338. doi: 10.1002/anie.200504489. PubMed DOI
Okunola O. A. Seganish J. L. Salimian K. J. Zavalij P. Y. Davis J. T. Membrane-active calixarenes: toward ‘gating’ transmembrane anion transport. Tetrahedron. 2007;63:10743–10750. doi: 10.1016/j.tet.2007.06.124. DOI
Zappacosta R. Fontana A. Credi A. Arduini A. Secchi A. Incorporation of Calix[6]Arene Macrocycles and (Pseudo)Rotaxanes in Bilayer Membranes: Towards Controllable Artificial Liposomal Channels. Asian J. Org. Chem. 2015;4:262–270. doi: 10.1002/ajoc.201402244. DOI
Grauwels G. Valkenier H. Davis A. P. Jabin I. Bartik K. Repositioning Chloride Transmembrane Transporters: Transport of Organic Ion Pairs. Angew. Chem., Int. Ed. 2019;58:6921–6925. doi: 10.1002/anie.201900818. PubMed DOI
Pilato S. Aschi M. Bazzoni M. Cester Bonati F. Cera G. Moffa S. Canale V. Ciulla M. Secchi A. Arduini A. Fontana A. Siani G. Calixarene-based artificial ionophores for chloride transport across natural liposomal bilayer: Synthesis, structure-function relationships, and computational study. Biochim. Biophys. Acta, Biomembr. 2021;1863:183667. doi: 10.1016/j.bbamem.2021.183667. PubMed DOI
Gale P. A. Tong C. C. Haynes C. J. E. Adeosun O. Gross D. E. Karnas E. Sedenberg E. M. Quesada R. Sessler J. L. Octafluorocalix[4]pyrrole: A Chloride/Bicarbonate Antiport Agent. J. Am. Chem. Soc. 2010;132:3240–3241. doi: 10.1021/ja9092693. PubMed DOI PMC
Adriaenssens L. Estarellas C. Vargas Jentzsch A. Martinez Belmonte M. Matile S. Ballester P. Quantification of Nitrate–π Interactions and Selective Transport of Nitrate Using Calix[4]pyrroles with Two Aromatic Walls. J. Am. Chem. Soc. 2013;135:8324–8330. doi: 10.1021/ja4021793. PubMed DOI
Martínez-Crespo L. Sun-Wang J. L. Ferreira P. Mirabella C. F. M. Aragay G. Ballester P. Influence of the Insertion Method of Aryl-Extended Calix[4]pyrroles into Liposomal Membranes on Their Properties as Anion Carriers. Chem. – Eur. J. 2019;25:4775–4781. doi: 10.1002/chem.201806169. PubMed DOI PMC
Cataldo A. Norvaisa K. Halgreen L. Bodman S. E. Bartik K. Butler S. J. Valkenier H. Transmembrane Transport of Inorganic Phosphate by a Strapped Calix[4]pyrrole. J. Am. Chem. Soc. 2023;145:16310–16314. doi: 10.1021/jacs.3c04631. PubMed DOI
Pamuła M. Bulatov E. Martínez-Crespo L. Kiesilä A. Naulapää J. Kalenius E. Helttunen K. Anion binding and transport with meso-alkyl substituted two-armed calix[4]pyrroles bearing urea and hydroxyl groups. Org. Biomol. Chem. 2023;21:6595–6603. doi: 10.1039/D3OB00919J. PubMed DOI
Patra A. K. Srimayee S. Halder D. Roy A. Mukherjee S. Kundu S. Hossain M. Saha R. Lee C.-H. Manna D. Saha I. Transmembrane fluoride anion transport by meso-3,5-bis(trifluoromethyl)phenyl picket calix[4]pyrrole. Chem. Commun. 2023;59:7407–7410. doi: 10.1039/D3CC02032K. PubMed DOI
Boerrigter H. Grave L. Nissink J. W. M. Chrisstoffels L. A. J. van der Maas J. H. Verboom W. de Jong F. Reinhoudt D. N. (Thio)urea Resorcinarene Cavitands. Complexation and Membrane Transport of Halide Anions. J. Org. Chem. 1998;63:4174–4180. doi: 10.1021/jo972127l. DOI
Busschaert N. Karagiannidis L. E. Wenzel M. Haynes C. J. E. Wells N. J. Young P. G. Makuc D. Plavec J. Jolliffe K. A. Gale P. A. Synthetic transporters for sulfate: a new method for the direct detection of lipid bilayer sulfate transport. Chem. Sci. 2014;5:1118–1127. doi: 10.1039/C3SC52006D. DOI
Fuertes A. Amorín M. Granja J. R. Versatile symport transporters based on cyclic peptide dimers. Chem. Commun. 2019;56:46–49. doi: 10.1039/C9CC06644F. PubMed DOI
Zhao Z. Zhang M. Tang B. Weng P. Zhang Y. Yan X. Li Z. Jiang Y.-B. Transmembrane Fluoride Transport by a Cyclic Azapeptide With Two β-Turns. Front. Chem. 2021;8:621323. doi: 10.3389/fchem.2020.621323. PubMed DOI PMC
Lisbjerg M. Valkenier H. Jessen B. M. Al-Kerdi H. Davis A. P. Pittelkow M. Biotin[6]uril Esters: Chloride-Selective Transmembrane Anion Carriers Employing C—H⋯Anion Interactions. J. Am. Chem. Soc. 2015;137:4948–4951. doi: 10.1021/jacs.5b02306. PubMed DOI
Lang C. Mohite A. Deng X. Yang F. Dong Z. Xu J. Liu J. Keinan E. Reany O. Semithiobambus[6]uril is a transmembrane anion transporter. Chem. Commun. 2017;53:7557–7560. doi: 10.1039/C7CC04026A. PubMed DOI
Khurana R. Yang F. Khurana R. Liu J. Keinan E. Reany O. semiaza -Bambusurils are anion-specific transmembrane transporters. Chem. Commun. 2022;58:3150–3153. doi: 10.1039/D2CC00144F. PubMed DOI
Reany O. Romero-Ruiz M. Khurana R. Mondal P. Keinan E. Bayley H. Stochastic Sensing of Chloride Anions Using an α-Hemolysin Pore with a semiaza-Bambusuril Adapter. Angew. Chem., Int. Ed. 2024;63:e202406719. doi: 10.1002/anie.202406719. PubMed DOI
Gilchrist A. M. McNaughton D. A. Fares M. Wu X. Hawkins B. A. Butler S. J. Hibbs D. E. Gale P. A. Tetralactam-based anion transporters. Chem. 2025;11:102329.
Valkenier H. Akrawi O. Jurček P. Sleziaková K. Lízal T. Bartik K. Šindelář V. Fluorinated Bambusurils as Highly Effective and Selective Transmembrane Cl−/HCO3− Antiporters. Chem. 2019;5:429–444.
Martínez-Crespo L. Hewitt S. H. De Simone N. A. Šindelář V. Davis A. P. Butler S. Valkenier H. Transmembrane Transport of Bicarbonate Unravelled. Chem. – Eur. J. 2021;27:7367–7375. doi: 10.1002/chem.202100491. PubMed DOI PMC
De Simone N. A. Chvojka M. Lapešová J. Martínez-Crespo L. Slávik P. Sokolov J. Butler S. J. Valkenier H. Šindelář V. Monofunctionalized Fluorinated Bambusurils and Their Conjugates for Anion Transport and Extraction. J. Org. Chem. 2022;87:9829–9838. doi: 10.1021/acs.joc.2c00870. PubMed DOI
Chvojka M. Valkenier H. Šindelář V. Synthesis of bambusurils with perfluoroalkylthiobenzyl groups as highly potent halide receptors. Org. Chem. Front. 2025;12:130–135. doi: 10.1039/D4QO01746C. DOI
Chvojka M. Madea D. Valkenier H. Šindelář V. Tuning CH Hydrogen Bond-Based Receptors toward Picomolar Anion Affinity via the Inductive Effect of Distant Substituents. Angew. Chem., Int. Ed. 2024;63:e202318261. doi: 10.1002/anie.202318261. PubMed DOI
Chvojka M. Singh A. Cataldo A. Torres-Huerta A. Konopka M. Šindelář V. Valkenier H. The Lucigenin Assay: Measuring Anion Transport in Lipid Vesicles. Analysis Sensing. 2024;4:e202300044. doi: 10.1002/anse.202300044. DOI
Torrisi J. Chvojka M. Jurček P. Zhang X. Zeng H. Šindelář V. Valkenier H. Anion Transport by Bambusuril-Bile Acid Conjugates: Drastic Effect of the Cholesterol Content. Angew. Chem. 2025;64:e202424754. doi: 10.1002/anie.202424754. PubMed DOI PMC
Johnson T. G. Sadeghi-Kelishadi A. Langton M. J. A Photo-responsive Transmembrane Anion Transporter Relay. J. Am. Chem. Soc. 2022;144:10455–10461. doi: 10.1021/jacs.2c02612. PubMed DOI PMC
Johnson T. G. Docker A. Sadeghi-Kelishadi A. Langton M. J. Halogen bonding relay and mobile anion transporters with kinetically controlled chloride selectivity. Chem. Sci. 2023;14:5006–5013. doi: 10.1039/D3SC01170D. PubMed DOI PMC
Cataldo A. Chvojka M. Park G. Šindelář V. Gabbaï F. P. Butler S. J. Valkenier H. Transmembrane transport of fluoride studied by time-resolved emission spectroscopy. Chem. Commun. 2023;59:4185–4188. doi: 10.1039/D3CC00897E. PubMed DOI PMC
Wu X. Gale P. A. Measuring anion transport selectivity: a cautionary tale. Chem. Commun. 2021;57:3979–3982. doi: 10.1039/D1CC01038G. PubMed DOI
Yang Y. Wu X. Busschaert N. Furuta H. Gale P. A. Dissecting the chloride–nitrate anion transport assay. Chem. Commun. 2017;53:9230–9233. doi: 10.1039/C7CC04912A. PubMed DOI
Havel V. Sindelar V. Anion Binding Inside a Bambus[6]uril Macrocycle in Chloroform. ChemPlusChem. 2015;80:1601–1606. doi: 10.1002/cplu.201500345. PubMed DOI
Rando C. Grewal S. Sokolov J. Kulhánek P. Šindelář V. Reversing selectivity of bambusuril macrocycles toward inorganic anions by installing spacious substituents on their portals. Chem. Sci. 2025;16:1288–1292. doi: 10.1039/D4SC07150F. PubMed DOI PMC
Gilchrist A. M. Wang P. Carreira-Barral I. Alonso-Carrillo D. Wu X. Quesada R. Gale P. A. Supramolecular methods: the 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS) transport assay. Supramol. Chem. 2021;33:325–344. doi: 10.1080/10610278.2021.1999956. DOI
Wu X. Judd L. W. Howe E. N. W. Withecombe A. M. Soto-Cerrato V. Li H. Busschaert N. Valkenier H. Pérez-Tomás R. Sheppard D. N. Jiang Y.-B. Davis A. P. Gale P. A. Nonprotonophoric Electrogenic Cl− Transport Mediated by Valinomycin-like Carriers. Chem. 2016;1:127–146.
Wu X. Wang P. Lewis W. Jiang Y.-B. Gale P. A. Measuring anion binding at biomembrane interfaces. Nat. Commun. 2022;13:4623. doi: 10.1038/s41467-022-32403-z. PubMed DOI PMC
Norvaisa K. Torres-Huerta A. Valkenier H. Synthetic transporters for oxoanions. Curr. Opin. Chem. Biol. 2024;83:102542. doi: 10.1016/j.cbpa.2024.102542. PubMed DOI
Maslowska-Jarzyna K. Rooijmans S. McNaughton D. A. Ryder W. G. York E. Tromp M. Gale P. A. Anion transport in biologically relevant lipid mixtures. Chem. Commun. 2025;61:4184–4187. doi: 10.1039/D5CC00409H. PubMed DOI