Substituent effects of fluorinated bambusurils on their anion transport

. 2025 Nov 05 ; 23 (43) : 9908-9921. [epub] 20251105

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40235442

Anionophores are molecules that can transport ions across membranes. Several structural design criteria must be met for anionophores to be highly active. Fluorinated anionophores are usually more potent than their non-fluorinated analogues due to their higher lipophilicity and increased affinity for anions. Clear structure-activity relationships have been described for small and relatively simple anionophores. However, such studies are more challenging for large and macrocyclic anionophores, as their preparation is usually more complicated, limiting the number of compounds tested in anion transport studies. Here we present a series of twelve macrocyclic bambusuril anion transporters to investigate how variations in fluorinated substituents affect their transport properties. Measurements of Cl-/HCO3- antiport activities in liposomes revealed links between parameters such as lipophilicity or substituent polarity and transport activity. For some bambusurils, an unusually large effect of the presence of cholesterol in the membrane on transport activity was found. Further studies showed that for very potent anion receptors, such as the bambusurils described here, the binding selectivity towards anions becomes more important than the absolute binding affinity to anions when considering anion exchange across the membrane.

Zobrazit více v PubMed

Planells-Cases R. Jentsch T. J. Chloride channelopathies. BBA, Mol. Basis Dis. 2009;1792:173–189. doi: 10.1016/j.bbadis.2009.02.002. PubMed DOI

Mantegazza M. Cestèle S. Catterall W. A. Sodium channelopathies of skeletal muscle and brain. Physiol. Rev. 2021;101:1633–1689. PubMed PMC

Chen S.-Y. Ho C.-J. Lu Y.-T. Lin C.-H. Lan M.-Y. Tsai M.-H. The Genetics of Primary Familial Brain Calcification: A Literature Review. Int. J. Mol. Sci. 2023;24:10886. PubMed PMC

Staruschenko A. Ma R. Palygin O. Dryer S. E. Ion channels and channelopathies in glomeruli. Physiol. Rev. 2023;103:787–854. PubMed PMC

Sheppard D. N. Davis A. P. Pore-forming small molecules offer a promising way to tackle cystic fibrosis. Nature. 2019;567:315–317. PubMed

Massey M. K. Reiterman M. J. Mourad J. Luckie D. B. Is CFTR an exchanger?: Regulation of HCO3-Transport and extracellular pH by CFTR. Biochem. Biophys. Rep. 2021;25:100863. PubMed PMC

Angyal D. Bijvelds M. J. C. Bruno M. J. Peppelenbosch M. P. de Jonge H. R. Bicarbonate Transport in Cystic Fibrosis and Pancreatitis. Cells. 2022;11:54. doi: 10.3390/cells11010054. PubMed DOI PMC

Li H. Valkenier H. Judd L. W. Brotherhood P. R. Hussain S. Cooper J. A. Jurček O. Sparkes H. A. Sheppard D. N. Davis A. P. Efficient, non-toxic anion transport by synthetic carriers in cells and epithelia. Nat. Chem. 2016;8:24–32. doi: 10.1038/nchem.2384. PubMed DOI

Muraglia K. A. Chorghade R. S. Kim B. R. Tang X. X. Shah V. S. Grillo A. S. Daniels P. N. Cioffi A. G. Karp P. H. Zhu L. Welsh M. J. Burke M. D. Small-molecule ion channels increase host defences in cystic fibrosis airway epithelia. Nature. 2019;567:405–408. doi: 10.1038/s41586-019-1018-5. PubMed DOI PMC

Li H. Valkenier H. Thorne A. G. Dias C. M. Cooper J. A. Kieffer M. Busschaert N. Gale P. A. Sheppard D. N. Davis A. P. Anion carriers as potential treatments for cystic fibrosis: transport in cystic fibrosis cells, and additivity to channel-targeting drugs. Chem. Sci. 2019;10:9663–9672. doi: 10.1039/C9SC04242C. PubMed DOI PMC

Gianotti A. Capurro V. Delpiano L. Mielczarek M. García-Valverde M. Carreira-Barral I. Ludovico A. Fiore M. Baroni D. Moran O. Quesada R. Caci E. Small Molecule Anion Carriers Correct Abnormal Airway Surface Liquid Properties in Cystic Fibrosis Airway Epithelia. Int. J. Mol. Sci. 2020;21:1488. doi: 10.3390/ijms21041488. PubMed DOI PMC

Quesada R. Dutzler R. Alternative chloride transport pathways as pharmacological targets for the treatment of cystic fibrosis. J. Cystic Fibrosis. 2020;19:S37–S41. doi: 10.1016/j.jcf.2019.10.020. PubMed DOI

Mondal A. Ahmad M. Mondal D. Talukdar P. Progress and prospects toward supramolecular bioactive ion transporters. Chem. Commun. 2023;59:1917–1938. doi: 10.1039/D2CC06761G. PubMed DOI

Martínez-Crespo L. Valkenier H. Transmembrane Transport of Bicarbonate by Anion Receptors. ChemPlusChem. 2022;87:e202200266. doi: 10.1002/cplu.202200266. PubMed DOI PMC

Yang J. Yu G. Sessler J. L. Shin I. Gale P. A. Huang F. Artificial transmembrane ion transporters as potential therapeutics. Chem. 2021;7:3256–3291.

Davis J. T. Gale P. A. Quesada R. Advances in anion transport and supramolecular medicinal chemistry. Chem. Soc. Rev. 2020;49:6056–6086. doi: 10.1039/C9CS00662A. PubMed DOI

Singh A. Torres-Huerta A. Meyer F. Valkenier H. Anion transporters based on halogen, chalcogen, and pnictogen bonds: towards biological applications. Chem. Sci. 2024;15:15006–15022. doi: 10.1039/D4SC04644G. PubMed DOI PMC

Brotherhood P. R. Davis A. P. Steroid-based anion receptors and transporters. Chem. Soc. Rev. 2010;39:3633–3647. doi: 10.1039/B926225N. PubMed DOI

Bąk K. M. Chabuda K. Montes H. Quesada R. Chmielewski M. J. 1,8-Diamidocarbazoles: an easily tuneable family of fluorescent anion sensors and transporters. Org. Biomol. Chem. 2018;16:5188–5196. doi: 10.1039/C8OB01031E. PubMed DOI

Masłowska-Jarzyna K. Cataldo A. Marszalik A. Ignatikova I. Butler S. J. Stachowiak R. Chmielewski M. J. Valkenier H. Dissecting transmembrane bicarbonate transport by 1,8-di(thio)amidocarbazoles. Org. Biomol. Chem. 2022;20:7658–7663. doi: 10.1039/D2OB01461K. PubMed DOI

Cooper J. A. Street S. T. G. Davis A. P. A Flexible Solution to Anion Transport: Powerful Anionophores Based on a Cyclohexane Scaffold. Angew. Chem., Int. Ed. 2014;53:5609–5613. doi: 10.1002/anie.201311071. PubMed DOI

Valkenier H. Dias C. M. Porter Goff K. L. Jurček O. Puttreddy R. Rissanen K. Davis A. P. Sterically geared tris-thioureas; transmembrane chloride transporters with unusual activity and accessibility. Chem. Commun. 2015;51:14235–14238. doi: 10.1039/C5CC05737J. PubMed DOI

Jowett L. A. Howe E. N. W. Wu X. Busschaert N. Gale P. A. New Insights into the Anion Transport Selectivity and Mechanism of Tren-based Tris-(thio)ureas. Chem. – Eur. J. 2018;24:10475–10487. doi: 10.1002/chem.201801463. PubMed DOI

Kim D. S. Sessler J. L. Calix[4]pyrroles: versatile molecular containers with ion transport, recognition, and molecular switching functions. Chem. Soc. Rev. 2015;44:532–546. doi: 10.1039/C4CS00157E. PubMed DOI

Peng S. He Q. Vargas-Zúñiga G. I. Qin L. Hwang I. Kim S. K. Heo N. J. Lee C.-H. Dutta R. Sessler J. L. Strapped calix[4]pyrroles: from syntheses to applications. Chem. Soc. Rev. 2020;49:865–907. doi: 10.1039/C9CS00528E. PubMed DOI

Singh A. Torres-Huerta A. Vanderlinden T. Renier N. Martínez-Crespo L. Tumanov N. Wouters J. Bartik K. Jabin I. Valkenier H. Calix[6]arenes with halogen bond donor groups as selective and efficient anion transporters. Chem. Commun. 2022;58:6255–6258. doi: 10.1039/D2CC00847E. PubMed DOI PMC

Abdurakhmanova E. R. Mondal D. Jędrzejewska H. Cmoch P. Danylyuk O. Chmielewski M. J. Szumna A. Supramolecular umpolung: Converting electron-rich resorcin[4]arenes into potent CH-bonding anion receptors and transporters. Chem. 2024;10:1910–1924.

Busschaert N. Bradberry S. J. Wenzel M. Haynes C. J. E. Hiscock J. R. Kirby I. L. Karagiannidis L. E. Moore S. J. Wells N. J. Herniman J. Langley G. J. Horton P. N. Light M. E. Marques I. Costa P. J. Félix V. Frey J. G. Gale P. A. Towards predictable transmembrane transport: QSAR analysis of anion binding and transport. Chem. Sci. 2013;4:3036–3045. doi: 10.1039/C3SC51023A. DOI

Knight N. J. Hernando E. Haynes C. J. E. Busschaert N. Clarke H. J. Takimoto K. García-Valverde M. Frey J. G. Quesada R. Gale P. A. QSAR analysis of substituent effects on tambjamine anion transporters. Chem. Sci. 2016;7:1600–1608. doi: 10.1039/C5SC03932K. PubMed DOI PMC

York E. McNaughton D. A. Roseblade A. Cranfield C. G. Gale P. A. Rawling T. Structure–Activity Relationship and Mechanistic Studies of Bisaryl Urea Anticancer Agents Indicate Mitochondrial Uncoupling by a Fatty Acid-Activated Mechanism. ACS Chem. Biol. 2022;17:2065–2073. doi: 10.1021/acschembio.1c00807. PubMed DOI

McNally B. A. Koulov A. V. Lambert T. N. Smith B. D. Joos J.-B. Sisson A. L. Clare J. P. Sgarlata V. Judd L. W. Magro G. Davis A. P. Structure–Activity Relationships in Cholapod Anion Carriers: Enhanced Transmembrane Chloride Transport through Substituent Tuning. Chem. – Eur. J. 2008;14:9599–9606. doi: 10.1002/chem.200801163. PubMed DOI PMC

Vargas Jentzsch A. Emery D. Mareda J. Metrangolo P. Resnati G. Matile S. Ditopic Ion Transport Systems: Anion–π Interactions and Halogen Bonds at Work. Angew. Chem., Int. Ed. 2011;50:11675–11678. doi: 10.1002/anie.201104966. PubMed DOI

Edwards S. J. Valkenier H. Busschaert N. Gale P. A. Davis A. P. High-Affinity Anion Binding by Steroidal Squaramide Receptors. Angew. Chem., Int. Ed. 2015;54:4592–4596. doi: 10.1002/anie.201411805. PubMed DOI PMC

Busschaert N. Wenzel M. Light M. E. Iglesias-Hernández P. Pérez-Tomás R. Gale P. A. Structure–Activity Relationships in Tripodal Transmembrane Anion Transporters: The Effect of Fluorination. J. Am. Chem. Soc. 2011;133:14136–14148. doi: 10.1021/ja205884y. PubMed DOI PMC

Spooner M. J. Li H. Marques I. Costa P. M. R. Wu X. Howe E. N. W. Busschaert N. Moore S. J. Light M. E. Sheppard D. N. Félix V. Gale P. A. Fluorinated synthetic anion carriers: experimental and computational insights into transmembrane chloride transport. Chem. Sci. 2019;10:1976–1985. doi: 10.1039/C8SC05155K. PubMed DOI PMC

Olivari M. Montis R. Berry S. N. Karagiannidis L. E. Coles S. J. Horton P. N. Mapp L. K. Gale P. A. Caltagirone C. Tris-ureas as transmembrane anion transporters. Dalton Trans. 2016;45:11892–11897. doi: 10.1039/C6DT02046A. PubMed DOI

Mondal D. Sathyan A. Shinde S. V. Mishra K. K. Talukdar P. Tripodal cyanurates as selective transmembrane Cl− transporters. Org. Biomol. Chem. 2018;16:8690–8694. doi: 10.1039/C8OB01345D. PubMed DOI

Lee L. M. Tsemperouli M. Poblador-Bahamonde A. I. Benz S. Sakai N. Sugihara K. Matile S. Anion Transport with Pnictogen Bonds in Direct Comparison with Chalcogen and Halogen Bonds. J. Am. Chem. Soc. 2019;141:810–814. doi: 10.1021/jacs.8b12554. PubMed DOI

Zhou B. Gabbaï F. P. Redox-controlled chalcogen-bonding at tellurium: impact on Lewis acidity and chloride anion transport properties. Chem. Sci. 2020;11:7495–7500. doi: 10.1039/D0SC02872J. PubMed DOI PMC

Howe E. N. W. Chang V.-V. T. Wu X. Fares M. Lewis W. Macreadie L. K. Gale P. A. Halide-selective, proton-coupled anion transport by phenylthiosemicarbazones. Biochim. Biophys. Acta, Biomembr. 2022;1864:183828. doi: 10.1016/j.bbamem.2021.183828. PubMed DOI

Gilchrist A. M. Wu X. Hawkins B. A. Hibbs D. E. Gale P. A. Fluorinated tetrapodal anion transporters. iScience. 2023;26:105988. doi: 10.1016/j.isci.2023.105988. PubMed DOI PMC

Hussain S. Brotherhood P. R. Judd L. W. Davis A. P. Diaxial Diureido Decalins as Compact, Efficient, and Tunable Anion Transporters. J. Am. Chem. Soc. 2011;133:1614–1617. doi: 10.1021/ja1076102. PubMed DOI

Busschaert N. Kirby I. L. Young S. Coles S. J. Horton P. N. Light M. E. Gale P. A. Squaramides as Potent Transmembrane Anion Transporters. Angew. Chem., Int. Ed. 2012;51:4426–4430. doi: 10.1002/anie.201200729. PubMed DOI

Moore S. J. Haynes C. J. E. González J. Sutton J. L. Brooks S. J. Light M. E. Herniman J. Langley G. J. Soto-Cerrato V. Pérez-Tomás R. Marques I. Costa P. J. Félix V. Gale P. A. Chloride, carboxylate and carbonate transport by ortho-phenylenediamine-based bisureas. Chem. Sci. 2013;4:103–117. doi: 10.1039/C2SC21112B. DOI

Busschaert N. Elmes R. B. P. Czech D. D. Wu X. Kirby I. L. Peck E. M. Hendzel K. D. Shaw S. K. Chan B. Smith B. D. Jolliffe K. A. Gale P. A. Thiosquaramides: pH switchable anion transporters. Chem. Sci. 2014;5:3617–3626. doi: 10.1039/C4SC01629G. PubMed DOI PMC

Hernando E. Soto-Cerrato V. Cortés-Arroyo S. Pérez-Tomás R. Quesada R. Transmembrane anion transport and cytotoxicity of synthetic tambjamine analogs. Org. Biomol. Chem. 2014;12:1771–1778. doi: 10.1039/C3OB42341G. PubMed DOI

Karagiannidis L. E. Haynes C. J. E. Holder K. J. Kirby I. L. Moore S. J. Wells N. J. Gale P. A. Highly effective yet simple transmembrane anion transporters based upon ortho-phenylenediamine bis-ureas. Chem. Commun. 2014;50:12050–12053. doi: 10.1039/C4CC05519E. PubMed DOI

Valkenier H. Judd L. W. Li H. Hussain S. Sheppard D. N. Davis A. P. Preorganized Bis-Thioureas as Powerful Anion Carriers: Chloride Transport by Single Molecules in Large Unilamellar Vesicles. J. Am. Chem. Soc. 2014;136:12507–12512. doi: 10.1021/ja507551z. PubMed DOI

Lang C. Zhang X. Luo Q. Dong Z. Xu J. Liu J. Powerful Bipodal Anion Transporters Based on Scaffolds That Contain Different Chalcogens. Eur. J. Org. Chem. 2015:6458–6465. doi: 10.1002/ejoc.201500997. DOI

Docker A. Johnson T. G. Kuhn H. Zhang Z. Langton M. J. Multistate Redox-Switchable Ion Transport Using Chalcogen-Bonding Anionophores. J. Am. Chem. Soc. 2023;145:2661–2668. doi: 10.1021/jacs.2c12892. PubMed DOI PMC

Carreira-Barral I. Mielczarek M. Alonso-Carrillo D. Capurro V. Soto-Cerrato V. Pérez Tomás R. Caci E. García-Valverde M. Quesada R. Click-tambjamines as efficient and tunable bioactive anion transporters. Chem. Commun. 2020;56:3218–3221. doi: 10.1039/D0CC00643B. PubMed DOI

Rawling T. MacDermott-Opeskin H. Roseblade A. Pazderka C. Clarke C. Bourget K. Wu X. Lewis W. Noble B. Gale P. A. O'Mara M. L. Cranfield C. Murray M. Aryl urea substituted fatty acids: a new class of protonophoric mitochondrial uncoupler that utilises a synthetic anion transporter. Chem. Sci. 2020;11:12677–12685. doi: 10.1039/D0SC02777D. PubMed DOI PMC

Wang P. Wu X. Gale P. A. Carbazole-based bis-ureas and thioureas as electroneutral anion transporters. Supramol. Chem. 2021;33:143–149. doi: 10.1080/10610278.2021.1946539. DOI

McNaughton D. A. Macreadie L. K. Gale P. A. Acridinone-based anion transporters. Org. Biomol. Chem. 2021;19:9659–9674. doi: 10.1039/D1OB01545A. PubMed DOI

Jentzsch A. V. Emery D. Mareda J. Nayak S. K. Metrangolo P. Resnati G. Sakai N. Matile S. Transmembrane anion transport mediated by halogen-bond donors. Nat. Commun. 2012;3:905. doi: 10.1038/ncomms1902. PubMed DOI

Seganish J. L. Santacroce P. V. Salimian K. J. Fettinger J. C. Zavalij P. Davis J. T. Regulating Supramolecular Function in Membranes: Calixarenes that Enable or Inhibit Transmembrane Cl− Transport. Angew. Chem., Int. Ed. 2006;45:3334–3338. doi: 10.1002/anie.200504489. PubMed DOI

Okunola O. A. Seganish J. L. Salimian K. J. Zavalij P. Y. Davis J. T. Membrane-active calixarenes: toward ‘gating’ transmembrane anion transport. Tetrahedron. 2007;63:10743–10750. doi: 10.1016/j.tet.2007.06.124. DOI

Zappacosta R. Fontana A. Credi A. Arduini A. Secchi A. Incorporation of Calix[6]Arene Macrocycles and (Pseudo)Rotaxanes in Bilayer Membranes: Towards Controllable Artificial Liposomal Channels. Asian J. Org. Chem. 2015;4:262–270. doi: 10.1002/ajoc.201402244. DOI

Grauwels G. Valkenier H. Davis A. P. Jabin I. Bartik K. Repositioning Chloride Transmembrane Transporters: Transport of Organic Ion Pairs. Angew. Chem., Int. Ed. 2019;58:6921–6925. doi: 10.1002/anie.201900818. PubMed DOI

Pilato S. Aschi M. Bazzoni M. Cester Bonati F. Cera G. Moffa S. Canale V. Ciulla M. Secchi A. Arduini A. Fontana A. Siani G. Calixarene-based artificial ionophores for chloride transport across natural liposomal bilayer: Synthesis, structure-function relationships, and computational study. Biochim. Biophys. Acta, Biomembr. 2021;1863:183667. doi: 10.1016/j.bbamem.2021.183667. PubMed DOI

Gale P. A. Tong C. C. Haynes C. J. E. Adeosun O. Gross D. E. Karnas E. Sedenberg E. M. Quesada R. Sessler J. L. Octafluorocalix[4]pyrrole: A Chloride/Bicarbonate Antiport Agent. J. Am. Chem. Soc. 2010;132:3240–3241. doi: 10.1021/ja9092693. PubMed DOI PMC

Adriaenssens L. Estarellas C. Vargas Jentzsch A. Martinez Belmonte M. Matile S. Ballester P. Quantification of Nitrate–π Interactions and Selective Transport of Nitrate Using Calix[4]pyrroles with Two Aromatic Walls. J. Am. Chem. Soc. 2013;135:8324–8330. doi: 10.1021/ja4021793. PubMed DOI

Martínez-Crespo L. Sun-Wang J. L. Ferreira P. Mirabella C. F. M. Aragay G. Ballester P. Influence of the Insertion Method of Aryl-Extended Calix[4]pyrroles into Liposomal Membranes on Their Properties as Anion Carriers. Chem. – Eur. J. 2019;25:4775–4781. doi: 10.1002/chem.201806169. PubMed DOI PMC

Cataldo A. Norvaisa K. Halgreen L. Bodman S. E. Bartik K. Butler S. J. Valkenier H. Transmembrane Transport of Inorganic Phosphate by a Strapped Calix[4]pyrrole. J. Am. Chem. Soc. 2023;145:16310–16314. doi: 10.1021/jacs.3c04631. PubMed DOI

Pamuła M. Bulatov E. Martínez-Crespo L. Kiesilä A. Naulapää J. Kalenius E. Helttunen K. Anion binding and transport with meso-alkyl substituted two-armed calix[4]pyrroles bearing urea and hydroxyl groups. Org. Biomol. Chem. 2023;21:6595–6603. doi: 10.1039/D3OB00919J. PubMed DOI

Patra A. K. Srimayee S. Halder D. Roy A. Mukherjee S. Kundu S. Hossain M. Saha R. Lee C.-H. Manna D. Saha I. Transmembrane fluoride anion transport by meso-3,5-bis(trifluoromethyl)phenyl picket calix[4]pyrrole. Chem. Commun. 2023;59:7407–7410. doi: 10.1039/D3CC02032K. PubMed DOI

Boerrigter H. Grave L. Nissink J. W. M. Chrisstoffels L. A. J. van der Maas J. H. Verboom W. de Jong F. Reinhoudt D. N. (Thio)urea Resorcinarene Cavitands. Complexation and Membrane Transport of Halide Anions. J. Org. Chem. 1998;63:4174–4180. doi: 10.1021/jo972127l. DOI

Busschaert N. Karagiannidis L. E. Wenzel M. Haynes C. J. E. Wells N. J. Young P. G. Makuc D. Plavec J. Jolliffe K. A. Gale P. A. Synthetic transporters for sulfate: a new method for the direct detection of lipid bilayer sulfate transport. Chem. Sci. 2014;5:1118–1127. doi: 10.1039/C3SC52006D. DOI

Fuertes A. Amorín M. Granja J. R. Versatile symport transporters based on cyclic peptide dimers. Chem. Commun. 2019;56:46–49. doi: 10.1039/C9CC06644F. PubMed DOI

Zhao Z. Zhang M. Tang B. Weng P. Zhang Y. Yan X. Li Z. Jiang Y.-B. Transmembrane Fluoride Transport by a Cyclic Azapeptide With Two β-Turns. Front. Chem. 2021;8:621323. doi: 10.3389/fchem.2020.621323. PubMed DOI PMC

Lisbjerg M. Valkenier H. Jessen B. M. Al-Kerdi H. Davis A. P. Pittelkow M. Biotin[6]uril Esters: Chloride-Selective Transmembrane Anion Carriers Employing C—H⋯Anion Interactions. J. Am. Chem. Soc. 2015;137:4948–4951. doi: 10.1021/jacs.5b02306. PubMed DOI

Lang C. Mohite A. Deng X. Yang F. Dong Z. Xu J. Liu J. Keinan E. Reany O. Semithiobambus[6]uril is a transmembrane anion transporter. Chem. Commun. 2017;53:7557–7560. doi: 10.1039/C7CC04026A. PubMed DOI

Khurana R. Yang F. Khurana R. Liu J. Keinan E. Reany O. semiaza -Bambusurils are anion-specific transmembrane transporters. Chem. Commun. 2022;58:3150–3153. doi: 10.1039/D2CC00144F. PubMed DOI

Reany O. Romero-Ruiz M. Khurana R. Mondal P. Keinan E. Bayley H. Stochastic Sensing of Chloride Anions Using an α-Hemolysin Pore with a semiaza-Bambusuril Adapter. Angew. Chem., Int. Ed. 2024;63:e202406719. doi: 10.1002/anie.202406719. PubMed DOI

Gilchrist A. M. McNaughton D. A. Fares M. Wu X. Hawkins B. A. Butler S. J. Hibbs D. E. Gale P. A. Tetralactam-based anion transporters. Chem. 2025;11:102329.

Valkenier H. Akrawi O. Jurček P. Sleziaková K. Lízal T. Bartik K. Šindelář V. Fluorinated Bambusurils as Highly Effective and Selective Transmembrane Cl−/HCO3− Antiporters. Chem. 2019;5:429–444.

Martínez-Crespo L. Hewitt S. H. De Simone N. A. Šindelář V. Davis A. P. Butler S. Valkenier H. Transmembrane Transport of Bicarbonate Unravelled. Chem. – Eur. J. 2021;27:7367–7375. doi: 10.1002/chem.202100491. PubMed DOI PMC

De Simone N. A. Chvojka M. Lapešová J. Martínez-Crespo L. Slávik P. Sokolov J. Butler S. J. Valkenier H. Šindelář V. Monofunctionalized Fluorinated Bambusurils and Their Conjugates for Anion Transport and Extraction. J. Org. Chem. 2022;87:9829–9838. doi: 10.1021/acs.joc.2c00870. PubMed DOI

Chvojka M. Valkenier H. Šindelář V. Synthesis of bambusurils with perfluoroalkylthiobenzyl groups as highly potent halide receptors. Org. Chem. Front. 2025;12:130–135. doi: 10.1039/D4QO01746C. DOI

Chvojka M. Madea D. Valkenier H. Šindelář V. Tuning CH Hydrogen Bond-Based Receptors toward Picomolar Anion Affinity via the Inductive Effect of Distant Substituents. Angew. Chem., Int. Ed. 2024;63:e202318261. doi: 10.1002/anie.202318261. PubMed DOI

Chvojka M. Singh A. Cataldo A. Torres-Huerta A. Konopka M. Šindelář V. Valkenier H. The Lucigenin Assay: Measuring Anion Transport in Lipid Vesicles. Analysis Sensing. 2024;4:e202300044. doi: 10.1002/anse.202300044. DOI

Torrisi J. Chvojka M. Jurček P. Zhang X. Zeng H. Šindelář V. Valkenier H. Anion Transport by Bambusuril-Bile Acid Conjugates: Drastic Effect of the Cholesterol Content. Angew. Chem. 2025;64:e202424754. doi: 10.1002/anie.202424754. PubMed DOI PMC

Johnson T. G. Sadeghi-Kelishadi A. Langton M. J. A Photo-responsive Transmembrane Anion Transporter Relay. J. Am. Chem. Soc. 2022;144:10455–10461. doi: 10.1021/jacs.2c02612. PubMed DOI PMC

Johnson T. G. Docker A. Sadeghi-Kelishadi A. Langton M. J. Halogen bonding relay and mobile anion transporters with kinetically controlled chloride selectivity. Chem. Sci. 2023;14:5006–5013. doi: 10.1039/D3SC01170D. PubMed DOI PMC

Cataldo A. Chvojka M. Park G. Šindelář V. Gabbaï F. P. Butler S. J. Valkenier H. Transmembrane transport of fluoride studied by time-resolved emission spectroscopy. Chem. Commun. 2023;59:4185–4188. doi: 10.1039/D3CC00897E. PubMed DOI PMC

Wu X. Gale P. A. Measuring anion transport selectivity: a cautionary tale. Chem. Commun. 2021;57:3979–3982. doi: 10.1039/D1CC01038G. PubMed DOI

Yang Y. Wu X. Busschaert N. Furuta H. Gale P. A. Dissecting the chloride–nitrate anion transport assay. Chem. Commun. 2017;53:9230–9233. doi: 10.1039/C7CC04912A. PubMed DOI

Havel V. Sindelar V. Anion Binding Inside a Bambus[6]uril Macrocycle in Chloroform. ChemPlusChem. 2015;80:1601–1606. doi: 10.1002/cplu.201500345. PubMed DOI

Rando C. Grewal S. Sokolov J. Kulhánek P. Šindelář V. Reversing selectivity of bambusuril macrocycles toward inorganic anions by installing spacious substituents on their portals. Chem. Sci. 2025;16:1288–1292. doi: 10.1039/D4SC07150F. PubMed DOI PMC

Gilchrist A. M. Wang P. Carreira-Barral I. Alonso-Carrillo D. Wu X. Quesada R. Gale P. A. Supramolecular methods: the 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS) transport assay. Supramol. Chem. 2021;33:325–344. doi: 10.1080/10610278.2021.1999956. DOI

Wu X. Judd L. W. Howe E. N. W. Withecombe A. M. Soto-Cerrato V. Li H. Busschaert N. Valkenier H. Pérez-Tomás R. Sheppard D. N. Jiang Y.-B. Davis A. P. Gale P. A. Nonprotonophoric Electrogenic Cl− Transport Mediated by Valinomycin-like Carriers. Chem. 2016;1:127–146.

Wu X. Wang P. Lewis W. Jiang Y.-B. Gale P. A. Measuring anion binding at biomembrane interfaces. Nat. Commun. 2022;13:4623. doi: 10.1038/s41467-022-32403-z. PubMed DOI PMC

Norvaisa K. Torres-Huerta A. Valkenier H. Synthetic transporters for oxoanions. Curr. Opin. Chem. Biol. 2024;83:102542. doi: 10.1016/j.cbpa.2024.102542. PubMed DOI

Maslowska-Jarzyna K. Rooijmans S. McNaughton D. A. Ryder W. G. York E. Tromp M. Gale P. A. Anion transport in biologically relevant lipid mixtures. Chem. Commun. 2025;61:4184–4187. doi: 10.1039/D5CC00409H. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...