Transmembrane Transport of Bicarbonate Unravelled*
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
EP/S032339/1
EPSRC
802727
European Union's Horizon 2020
European Research Council (ERC)
Fonds De La Recherche Scientifique - FNRS
204500/Z/16/Z
Wellcome Trust - United Kingdom
No. 20-13922S
Grantová Agentura České Republiky
EP/S032339/1
Engineering and Physical Sciences Research Council
Wellcome Trust - United Kingdom
ULB
Fonds de la Recherche Scientifique - FNRS
802727
European Research Council - International
20-13922S
Czech Science Foundation
PubMed
33932059
PubMed Central
PMC8251953
DOI
10.1002/chem.202100491
Knihovny.cz E-zdroje
- Klíčová slova
- bicarbonate, fluorescent probes, ion transport, membranes, supramolecular chemistry,
- MeSH
- biologický transport MeSH
- hydrogenuhličitany * MeSH
- iontový transport MeSH
- kinetika MeSH
- koncentrace vodíkových iontů MeSH
- lipidové dvojvrstvy * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- hydrogenuhličitany * MeSH
- lipidové dvojvrstvy * MeSH
Anion receptors can be used to transport ions across lipid bilayers, which has potential for therapeutic applications. Synthetic bicarbonate transporters are of particular interest, as defects in transmembrane transport of bicarbonate are associated with various diseases. However, no convenient method exists to directly observe bicarbonate transport and study the mechanisms involved. Here, an assay is presented that allows the kinetics of bicarbonate transport into liposomes to be monitored directly and with great sensitivity. The assay utilises an encapsulated europium(III) complex, which exhibits a large increase in emission intensity upon binding bicarbonate. Mechanisms involving CO2 diffusion and the dissipation of a pH gradient are shown to be able to lead to an increase in bicarbonate concentration within liposomes, without transport of the anion occurring at all. By distinguishing these alternative mechanisms from actual bicarbonate transport, this assay will inform the future development of bicarbonate transporters.
Loughborough University Department of Chemistry Epinal Way Loughborough LE11 3TU UK
University of Bristol School of Chemistry Cantock's Close Bristol BS8 1TS UK
Zobrazit více v PubMed
Tresguerres M., Buck J., Levin L. R., Pfluegers Arch. Eur. J. Physiol. 2010, 460, 953–964. PubMed PMC
Gorbatenko A., Olesen C. W., Boedtkjer E. P., Pedersen S. F. P., Front. Physiol. 2014, 5, 130. PubMed PMC
Cordat E., Casey J. R., Biochem. J. 2009, 417, 423–439. PubMed
Gianotti A., Capurro V., Delpiano L., Mielczarek M., García-Valverde M., Carreira-Barral I., Ludovico A., Fiore M., Baroni D., Moran O., Quesada R., Caci E., Int. J. Mol. Sci. 2020, 21, 1488. PubMed PMC
Muraglia K. A., Chorghade R. S., Kim B. R., Tang X. X., Shah V. S., Grillo A. S., Daniels P. N., Cioffi A. G., Karp P. H., Zhu L., Welsh M. J., Burke M. D., Nature 2019, 567, 405–408. PubMed PMC
Davis A. P., Sheppard D. N., Smith B. D., Chem. Soc. Rev. 2007, 36, 348–357. PubMed PMC
Alfonso I., Quesada R., Chem. Sci. 2013, 4, 3009–3019.
Valkenier H., Davis A. P., Acc. Chem. Res. 2013, 46, 2898–2909. PubMed
Vargas Jentzsch A., Hennig A., Mareda J., Matile S., Acc. Chem. Res. 2013, 46, 2791–2800. PubMed
Davis J. T., Gale P. A., Quesada R., Chem. Soc. Rev. 2020, 49, 6056–6086. PubMed
Sakai N., Matile S., J. Phys. Org. Chem. 2006, 19, 452–460.
Davis J. T., Gale P. A., Okunola O. A., Prados P., Iglesias-Sánchez J. C., Torroba T., Quesada R., Nat. Chem. 2009, 1, 138–144. PubMed
Busschaert N., Gale P. A., Haynes C. J. E., Light M. E., Moore S. J., Tong C. C., Davis J. T., William J., Harrell A., Chem. Commun. 2010, 46, 6252–6254. PubMed
Andrews N. J., Haynes C. J. E., Light M. E., Moore S. J., Tong C. C., Davis J. T., Harrell W. A. Jr, Gale P. A., Chem. Sci. 2011, 2, 256–260.
Hernando E., Soto-Cerrato V., Cortés-Arroyo S., Pérez-Tomás R., Quesada R., Org. Biomol. Chem. 2014, 12, 1771–1778. PubMed
Cossu C., Fiore M., Baroni D., Capurro V., Caci E., Garcia-Valverde M., Quesada R., Moran O., Front. Pharmacol. 2018, 9, 852. PubMed PMC
Olivari M., Montis R., Berry S. N., Karagiannidis L. E., Coles S. J., Horton P. N., Mapp L. K., Gale P. A., Caltagirone C., Dalton Trans. 2016, 45, 11892–11897. PubMed
Hussain S., Brotherhood P. R., Judd L. W., Davis A. P., J. Am. Chem. Soc. 2011, 133, 1614–1617. PubMed
Harrell W. A. Jr, Bergmeyer M. L., Zavalij P. Y., Davis J. T., Chem. Commun. 2010, 46, 3950–3952. PubMed
Valkenier H., Akrawi O., Jurček P., Sleziaková K., Lízal T., Bartik K., Šindelář V., Chem 2019, 5, 429–444.
Liu P.-Y., Li S.-T., Shen F.-F., Ko W.-H., Yao X.-Q., Yang D., Chem. Commun. 2016, 52, 7380–7383. PubMed
While standard NMR instrument configurations do not permit to monitor the kinetics of H13CO3 − transport, ref [5] shows that it is not impossible.
Jowett L. A., Howe E. N. W., Wu X., Busschaert N., Gale P. A., Chem. Eur. J. 2018, 24, 10475–10487. PubMed
Barba-Bon A., Pan Y.-C., Biedermann F., Guo D.-S., Nau W. M., Hennig A., J. Am. Chem. Soc. 2019, 141, 20137–20145. PubMed
Bąk K. M., van Kolck B., Maslowska-Jarzyna K., Papadopoulou P., Kros A., Chmielewski M. J., Chem. Commun. 2020, 56, 4910–4913. PubMed
Renier N., Reinaud O., Jabin I., Valkenier H., Chem. Commun. 2020, 56, 8206–8209. PubMed
Butler S. J., Chem. Commun. 2015, 51, 10879–10882. PubMed
Valkenier H., Judd L. W., Li H., Hussain S., Sheppard D. N., Davis A. P., J. Am. Chem. Soc. 2014, 136, 12507–12512. PubMed
Bodman S. E., Butler S. J., Chem. Sci. 2021,12, 2716–2734. PubMed PMC
Ho C., Sturtevant J. M., J. Biol. Chem. 1963, 238, 3499–3501. PubMed
Soli A. L., Byrne R. H., Mar. Chem. 2002, 78, 65–73.
Endeward V., Arias-Hidalgo M., Al-Samir S., Gros G., Membranes 2017, 7, 61. PubMed PMC
Sandeaux R., Sandeaux J., Gavach C., Brun B., Biochim. Biophys. Acta Biomembr. 1982, 684, 127–132. PubMed
Antonenko Y. N., Rokitskaya T. I., Huczyński A., Biochim. Biophys. Acta Biomembr. 2015, 1848, 995–1004. PubMed
Henderson P. J. F., McGivan J. D., Chappell J. B., Biochem. J. 1969, 111, 521–535. PubMed PMC
McLaughlin S. G., Dilger J. P., Physiol. Rev. 1980, 60, 825–863. PubMed
Wu X., Judd L. W., Howe E. N. W., Withecombe A. M., Soto-Cerrato V., Li H., Busschaert N., Valkenier H., Pérez-Tomás R., Sheppard D. N., Jiang Y.-B., Davis A. P., Gale P. A., Chem 2016, 1, 127–146.
Lizal T., Sindelar V., Isr. J. Chem. 2018, 58, 326–333.
Lisbjerg M., Valkenier H., Jessen B. M., Al-Kerdi H., Davis A. P., Pittelkow M., J. Am. Chem. Soc. 2015, 137, 4948–4951. PubMed
Chen S., Zhang S., Bao C., Wang C., Lin Q., Zhu L., Chem. Commun. 2016, 52, 13132–13135. PubMed
Quesada R., Dutzler R., J. Cystic Fibrosis 2020, 19, S37–S41. PubMed
Hewitt S. H., Macey G., Mailhot R., Elsegood M. R. J., Duarte F., Kenwright A. M., Butler S. J., Chem. Sci. 2020, 11, 3619–3628. PubMed PMC
Mailhot R., Traviss-Pollard T., Pal R., Butler S. J., Chem. Eur. J. 2018, 24, 10745–10755. PubMed PMC
Substituent effects of fluorinated bambusurils on their anion transport
Anion Transport by Bambusuril-Bile Acid Conjugates: Drastic Effect of the Cholesterol Content
Transmembrane transport of fluoride studied by time-resolved emission spectroscopy