Effects of Feed Supplementation With Fulvic Acid on the Systemic and Mucosal Protective Mechanisms of Juvenile Rainbow Trout (Oncorhynchus mykiss)
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, randomizované kontrolované studie veterinární
Grantová podpora
This research was funded by GUASNR.
PubMed
39806798
DOI
10.1111/jpn.14100
Knihovny.cz E-zdroje
- Klíčová slova
- antioxidant defence, fulvic acid, gene expression, immune response, trout,
- MeSH
- benzopyrany * farmakologie aplikace a dávkování MeSH
- dieta veterinární MeSH
- fyziologie výživy zvířat MeSH
- krmivo pro zvířata * analýza MeSH
- Oncorhynchus mykiss * fyziologie růst a vývoj MeSH
- potravní doplňky MeSH
- regulace genové exprese účinky léků MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- randomizované kontrolované studie veterinární MeSH
- Názvy látek
- benzopyrany * MeSH
- fulvic acid MeSH Prohlížeč
Rainbow trout (Oncorhynchus mykiss) is an important fish species raised in aquaculture, but it is susceptible to stress, infections diseases. The present study aimed to determine the effects of fulvic acid feed addition on the systemic and mucosal protective mechanisms of juvenile rainbow trout and to elucidate the underlying molecular mechanisms of changes in the gut. Rainbow trout (4.30 ± 0.6 g) diet was supplemented with different levels of fulvic acid: 0% (Control), 0.5%, 1% and 2%. At the end of 8-week feeding trial, growth parameters such as final weight gained weight (%), SGR (F1%) increased, and FCR (all levels) decreased significantly compared to the control group. We found that the activity of lysozyme, glutathione peroxidase, and catalase in the serum were significantly improved, especially after the addition of 0.5% and 1% of fulvic acid. At the same time, the immunoglobulin concentration in the skin mucus was increased with 0.5% supplementation. However, the expression of tnf-α, il-6 and gpx in the intestine was strongly upregulated after supplementation with 2%, indicating oxidative stress and inflammation with this level of fulvic acid inclusion. Furthermore, the mucus lysozyme activity was reduced at this concentration, which can increase the susceptibility to pathogen invasion. The results suggest that adding 0.5%-1% of fulvic acid to the feed of juvenile rainbow trout can help to improve their immune and antioxidative defenses and thereby support the wellbeing of fish.
Zobrazit více v PubMed
Abdel‐Wahab, A. M., A. M. El‐Refaee, and A. A. Ammar. 2012. “Effects of Humic Acid as Feed Additive in Improvement of Nonspecific Immune Response and Disease Resistance in Common Carp (Cyprinus carpio).” Egyptian Journal for Aquaculture 2: 83–90.
Abdollahzadeh, Y., M. Mazandarani, S. H. Hoseinifar, T. Lieke, H. Van Doan, and S. Pourmozaffar. 2025. “Dietary Fulvic Acid Improves Immune, Digestive and Antioxidant Parameters in Juvenile White‐Leg Shrimp (Litopenaeus vannamei) in a Super‐Intensive System.” Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 275: 111011.
Ai, Q., K. Mai, L. Zhang, et al. 2007. “Effects of Dietary beta‐1, 3 Glucan on Innate Immune Response of Large Yellow Croaker, Pseudosciaena Crocea.” Fish & Shellfish Immunology 22: 394–402.
Bezuglova, O., and A. Klimenko. 2022. “Application of Humic Substances in Agricultural Industry.” Agronomy 12: 584.
Brandtzaeg, P. 2009. “Mucosal Immunity: Induction, Dissemination, and Effector Functions.” Scandinavian Journal of Immunology 70: 505–515.
Calabrese, E. J. 2008. “Hormesis: Why it Is Important to Toxicology and Toxicologists.” Environmental Toxicology and Chemistry 27: 1451–1474.
Calabrese, E. J., and L. A. Baldwin. 1997. “The Dose Determines the Stimulation (And Poison): Development of a Chemical Hormesis Database.” International Journal of Toxicology 16: 545–559.
Callewaert, L., and C. W. Michiels. 2010. “Lysozymes in the Animal Kingdom.” Journal of Biosciences 35: 127–160.
Cheng, M.‐L., H.‐Y. Ho, D. T.‐Y. Chiu, and F.‐J. Lu. 1999. “Humic Acid–Mediated Oxidative Damages to Human Erythrocytes: A Possible Mechanism Leading to Anemia in Blackfoot Disease.” Free Radical Biology and Medicine 27: 470–477.
Dostalek, M., K. D. Hardy, G. L. Milne, et al. 2008. “Development of Oxidative Stress by Cytochrome P450 Induction in Rodents Is Selective for Barbiturates and Related to Loss of Pyridine Nucleotide‐Dependent Protective Systems.” Journal of Biological Chemistry 283: 17147–17157.
Dou, H., and S. Wu. 2023. “Dietary Fulvic Acid Supplementation Improves the Growth Performance and Immune Response of Sea Cucumber (Apostichopus japonicas).” Fish & Shellfish Immunology 135: 108662.
Esteban, M. Á. 2012. “An Overview of the Immunological Defenses in Fish Skin.” International Scholarly Research Notices 2012: 853470.
Esteban, M. Á., and R. Cerezuela. 2015. “Fish Mucosal Immunity: Skin.” In Mucosal Health in Aquaculture, edited by B. H. Beck and E. Peatman, 67–92. Cambridge: Academic Press.
FAO. 2022. “The State of World Fisheries and Aquaculture 2018 ‐ Meeting the Sustainable Development Goals.” Rome.
Fast, M., N. Ross, A. Mustafa, et al. 2002. “Susceptibility of Rainbow Trout Oncorhynchus mykiss, Atlantic Salmon Salmo Salar and Coho Salmon Oncorhynchus kisutch to Experimental Infection With Sea Lice Lepeophtheirus salmonis.” Diseases of Aquatic Organisms 52: 57–68.
Gabay, C. 2006. “Interleukin‐6 and Chronic Inflammation.” Arthritis Research & Therapy 8: S3.
Gao, Y., J. He, Z. He, et al. 2017. “Effects of Fulvic Acid on Growth Performance and Intestinal Health of Juvenile Loach Paramisgurnus dabryanus (Sauvage).” Fish & Shellfish Immunology 62: 47–56.
Gao, Y., J. Zhu, H. Bao, V. Hector, B. Zhao, and Z. Chu. 2018. “Effect of Lignite Fulvic Acid on Growth, Antioxidant Ability, and HSP70 of Pacific White Shrimp, Litopenaeus vannamei.” Aquaculture International 26: 1519–1530.
Goetz, F. W., J. V. Planas, and S. MacKenzie. 2004. “Tumor Necrosis Factors.” Developmental and Comparative Immunology 28: 487–497.
Grinde, B. 1989. “Lysozyme From Rainbow Trout, Salmo Gairdneri Richardson, as an Antibacterial Agent Against Fish Pathogens.” Journal of Fish Diseases 12: 95–104.
Guardiola, F. A., A. Bahi, A. M. Jiménez‐Monreal, M. Martínez‐Tomé, M. A. Murcia, and M. A. Esteban. 2018. “Dietary Administration Effects of Fenugreek Seeds on Skin Mucosal Antioxidant and Immunity Status of Gilthead Seabream (Sparus Aurata L.).” Fish & Shellfish Immunology 75: 357–364.
Gubernatorova, E. O., E. A. Gorshkova, O. A. Namakanova, et al. 2018. “Non‐Redundant Functions of IL‐6 Produced by Macrophages and Dendritic Cells in Allergic Airway Inflammation.” Frontiers in Immunology 9: 2718.
Guo, Y., B. Wang, T. Wang, et al. 2021. “Biological Characteristics of IL‐6 and Related Intestinal Diseases.” International Journal of Biological Sciences 17: 204–219.
Hong, S., R. Li, Q. Xu, C. J. Secombes, and T. Wang. 2013. “Two Types of TNF‐α Exist in Teleost Fish: Phylogeny, Expression, and Bioactivity Analysis of Type‐II TNF‐α3 in Rainbow Trout Oncorhynchus mykiss.” Journal of Immunology 191: 5959–5972.
Hoseinifar, S. H., M. Khalili, R. Rufchaei, et al. 2015. “Effects of Date Palm Fruit Extracts on Skin Mucosal Immunity, Immune Related Genes Expression and Growth Performance of Common Carp (Cyprinus carpio) Fry.” Fish & Shellfish Immunology 47: 706–711.
Hoseinifar, S. H., H. Khodadadian Zou, H. Paknejad, A. Hajimoradloo, and H. Van Doan. 2019. “Effects of Dietary White‐Button Mushroom Powder on Mucosal Immunity, Antioxidant Defence, and Growth of Common Carp (Cyprinus carpio).” Aquaculture 501: 448–454.
Hoseinifar, S. H., G. Rashidian, H. Ghafarifarsani, et al. 2021. “Effects of Apple (Malus Pomila) Pomace‐Derived Pectin on the Innate Immune Responses, Expressions of Key Immune‐Related Genes, Growth Performance, and Digestive Enzyme Activity of Rainbow Trout (Oncorhynchus mykiss).” Animals: An Open Access Journal From MDPI 11: 2117.
Hoseinifar, S. H., Y.‐Z. Sun, A. Wang, and Z. Zhou. 2018. “Probiotics As Means of Diseases Control in Aquaculture, a Review of Current Knowledge and Future Perspectives.” Frontiers in Microbiology 9: 2429.
Hoseinifar, S. H., F. Zoheiri, M. Dadar, R. Rufchaei, and E. Ringø. 2016. “Dietary Galactooligosaccharide Elicits Positive Effects on Non‐Specific Immune Parameters and Growth Performance in Caspian White Fish (Rutilus Frisii Kutum) Fry.” Fish & Shellfish Immunology 56: 467–472.
Hseu, Y.‐C., S.‐C. Chen, Y.‐L. Chen, et al. 2008. “Humic Acid Induced Genotoxicity in Human Peripheral Blood Lymphocytes Using Comet and Sister Chromatid Exchange Assay.” Journal of Hazardous Materials 153: 784–791.
Khanzadeh, M., B. Beikzadeh, and S. H. Hoseinifar. 2023. “The Effects of Laurencia caspica Algae Extract on Hemato‐Immunological Parameters, Antioxidant Defense, and Resistance against Streptococcus agalactiae in Nile tilapia (Oreochromis niloticus).” Aquaculture Nutrition 2023, no. 1: 8882736. https://doi.org/10.1155/2023/8882736.
Kimura, A., and T. Kishimoto. 2010. “IL‐6: Regulator of Treg/Th17 Balance.” European Journal of Immunology 40: 1830–1835.
Korn, T., E. Bettelli, M. Oukka, and V. K. Kuchroo. 2009. “IL‐17 and Th17 Cells.” Annual Review of Immunology 27: 485–517.
Krakauer, T., J. Vilcek, and J. Oppenheim. 1999. “Proinflammatory Cytokines: TNF and IL‐1 Families, Chemokines, TGFβ and Others.” In Fundamental Immunology, 4th edn, edited by W. E. Paul, Philadelphia, USA: Lippincott‐Raven, 775–811.
Lieke, T., T. Meinelt, S. H. Hoseinifar, B. Pan, D. L. Straus, and C. E. W. Steinberg. 2019. “Sustainable Aquaculture Requires Environmental‐Friendly Treatment Strategies for Fish Diseases.” Reviews in Aquaculture 12: 943–965.
Lieke, T., C. E. W. Steinberg, S. Bittmann, et al. 2021. “Fulvic Acid Accelerates Hatching and Stimulates Antioxidative Protection and the Innate Immune Response in Zebrafish Larvae.” Science of the Total Environment 796: 148780.
Lieke, T., C. E. W. Steinberg, T. Meinelt, K. Knopf, and W. Kloas. 2022. “Modification of the Chemically Induced Inflammation Assay Reveals the Janus Face of a Phenol Rich Fulvic Acid.” Scientific Reports 12: 5886.
Lieke, T., C. E. W. Steinberg, B. Pan, et al. 2021. “Phenol‐Rich Fulvic Acid as a Water Additive Enhances Growth, Reduces Stress, and Stimulates the Immune System of Fish in Aquaculture.” Scientific Reports 11: 174. https://doi.org/10.1038/s41598-020-80449-0.
Ma, J., B. K. Rubin, and J. A. Voynow. 2018. “Mucins, Mucus, and Goblet Cells.” Chest 154: 169–176.
Magnadóttir, B. 2006. “Innate Immunity of Fish (Overview).” Fish & Shellfish Immunology 20: 137–151.
Meinelt, T., A. Paul, T. M. Phan, et al. 2007. “Reduction in Vegetative Growth of the Water Mold Saprolegnia parasitica (Coker) by Humic Substance of Different Qualities.” Aquatic Toxicology 83: 93–103.
Misra, C. K., B. K. Das, S. C. Mukherjee, and P. Pattnaik. 2006. “Effect of Long Term Administration of Dietary β‐glucan on Immunity, Growth and Survival of Labeo rohita Fingerlings.” Aquaculture 255: 82–94.
Mittal, M., M. R. Siddiqui, K. Tran, S. P. Reddy, and A. B. Malik. 2014. “Reactive Oxygen Species in Inflammation and Tissue Injury.” Antioxidants & Redox Signaling 20: 1126–1167.
Möck, A., and G. Peters. 1990. “Lysozyme Activity in Rainbow Trout, Oncorhynchus mykiss (Walbaum), Stressed by Handling, Transport and Water Pollution.” Journal of Fish Biology 37: 873–885.
Nakagawa, J., T. Iwasaki, and H. Kodama. 2009. “Protection against Flavobacterium Psychrophilum Infection (Cold Water Disease) in Ayu Fish (Plecoglossus altivelis) by Oral Administration of Humus Extract.” Journal of Veterinary Medical Science 71: 1487–1491.
Nedaei, S., A. Noori, A. Valipour, A. A. Khanipour, and S. H. Hoseinifar. 2019. “Effects of Dietary Galactooligosaccharide Enriched Commercial Prebiotic on Growth Performance, Innate Immune Response, Stress Resistance, Intestinal Microbiota and Digestive Enzyme Activity in Narrow Clawed Crayfish (Astacus leptodactylus Eschscholtz, 1823).” Aquaculture 499: 80–89.
Popko, K., E. Gorska, A. Stelmaszczyk‐Emmel, et al. 2010. “Proinflammatory Cytokines Il‐6 and TNF‐α and the Development of Inflammation in Obese Subjects.” European Journal of Medical Research 15: 120–122.
Reinecker, H. C., M. Steffen, T. Witthoeft, et al. 1993. “Enhanced Secretion of Tumour Necrosis Factor‐Alpha, IL‐6, and IL‐1 Beta by Isolated Lamina Propria Mononuclear Cells From Patients With Ulcerative Colitis and Crohn's Disease.” Clinical and Experimental Immunology 94: 174–181.
Roosta, Z., A. Hajimoradloo, R. Ghorbani, and S. H. Hoseinifar. 2014. “The Effects of Dietary Vitamin C on Mucosal Immune Responses and Growth Performance in Caspian Roach (Rutilus Rutilus Caspicus) Fry.” Fish Physiology and Biochemistry 40: 1601–1607.
Saebelfeld, M., L. Minguez, J. Griebel, M. O. Gessner, and J. Wolinska. 2017. “Humic Dissolved Organic Carbon Drives Oxidative Stress and Severe Fitness Impairments in Daphnia.” Aquatic Toxicology 182: 31–38.
Salinas, I. 2015. “The Mucosal Immune System of Teleost Fish.” Biology 4: 525–539.
Sies, H., C. Berndt, and D. P. Jones. 2017. “Oxidative Stress.” Annual Review of Biochemistry 86: 715–748.
Siwicki, A. K., and D. P. Anderson. 1993. “Nonspecific Defense Mechanisms Assay in Fish: II. Potential Killing Activity of Neutrophils and Macrophages, Lysozyme Activity in Serum and Organs and Total Immunoglobulin Ievel in Serum.” In Fish Disease Diagnosis and Prevention Methods, 105–112. Poland, Olsztyn: Wydawnictwo Instytutu Rybactwa Strodladowego.
Song, Q., Y. Xiao, Z. Xiao, et al. 2021. “Lysozymes in Fish.” Journal of Agricultural and Food Chemistry 69: 15039–15051.
Steinberg, C. E. W. 2003. Ecology of Humic Substances in Freshwaters: Determinants From Geochemistry to Ecological Niches. Berlin: Springer.
Stevens, C., G. Walz, C. Singaram, et al. 1992. “Tumor Necrosis Factor‐α, Interleukin‐1β, and Interleukin‐6 Expression in Inflammatory Bowel Disease.” Digestive Diseases and Sciences 37: 818–826.
Tanaka, T., M. Narazaki, and T. Kishimoto. 2014. “IL‐6 in Inflammation, Immunity, and Disease.” Cold Spring Harbor Perspectives in Biology 6: a016295.
Thurman, E. M. 1985. Organic Geochemistry of Natural Waters, 497. Boston, MA: Martinus Nijhoff/Dr. W. Junk Publishers. https://doi.org/10.1007/978-94-009-5095-5.
Yamin, G., R. Falk, R. R. Avtalion, et al. 2017. “The Protective Effect of Humic‐Rich Substances on Atypical Aeromonas Salmonicida Subsp. Salmonicida Infection in Common Carp (Cyprinus carpio L.).” Journal of Fish Diseases 40: 1783–1790.
Yarahmadi, P., H. Ghafari Farsani, A. Khazaei, M. Khodadadi, G. Rashidiyan, and M. A. Jalali. 2016. “Protective Effects of the Prebiotic on the Immunological Indicators of Rainbow Trout (Oncorhynchus mykiss) Infected With Aeromonas Hydrophila.” Fish & Shellfish Immunology 54: 589–597.
Zhang, C., Y. Liu, C. Yao, et al. 2023. “Effects of Supplemental Fulvic Acid on Survival, Growth Performance, Digestive Ability and Immunity of Large Yellow Croaker (Larimichthys Crocea) Larvae.” Frontiers in Physiology 14: 1159320.
Zoheiri, F., S. H. Hoseinifar, M. T. Mozanzadeh, M. Ahangarzadeh, T. Lieke, and H. Van Doan. 2023. “Dietary Fulvic Acid Increased Growth, Stress Tolerance and Disease Resistance Against Vibrio Harveyi in Asian Seabass (Lates calcarifer) Juvenile.” Aquaculture Reports 32: 101738.