Influence of micro- and nanoplastics on mitochondrial function in the cardiovascular system: a review of the current literature
Jazyk angličtina Země Česko Médium print
Typ dokumentu časopisecké články, přehledy
PubMed
39808171
PubMed Central
PMC11827056
DOI
10.33549/physiolres.935500
PII: 935500
Knihovny.cz E-zdroje
- MeSH
- kardiovaskulární nemoci metabolismus MeSH
- kardiovaskulární systém * metabolismus účinky léků MeSH
- lidé MeSH
- mikroplasty toxicita MeSH
- mitochondrie * metabolismus účinky léků MeSH
- nanočástice MeSH
- reaktivní formy kyslíku metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- mikroplasty MeSH
- reaktivní formy kyslíku MeSH
Mitochondria represent pivotal cellular organelles endowed with multifaceted functionalities encompassing cellular respiration, metabolic processes, calcium turnover, and the regulation of apoptosis, primarily through the generation of reactive oxygen species (ROS). Perturbations in mitochondrial dynamics have been intricately linked to the etiology of numerous cardiovascular pathologies, such as heart failure, ischemic heart disease, and various cardiomyopathies. Notably, recent attention has been directed towards the detrimental impact of micro- and nanoplastic pollution on mitochondrial integrity, an area underscored by a paucity of comprehensive investigations. Given the escalating prevalence of plastic particle contamination and the concomitant burden of cardiovascular disease in aging populations, understanding the interplay between mitochondria within the cardiovascular system and micro- and nanoplastic pollution assumes paramount importance. This review endeavors to elucidate the current albeit limited comprehension surrounding this complex interplay. Key words Mitochondria, Nanoplastics, Microplastics, Cardiovascular system, Endothelial function, Oxidative phosphorylation.
Zobrazit více v PubMed
Bhatti JS, Bhatti GK, Reddy PH. Mitochondrial dysfunction and oxidative stress in metabolic disorders - A step towards mitochondria based therapeutic strategies. Biochim Biophys Acta Mol Basis Dis. 2017;1863:1066–1077. doi: 10.1016/j.bbadis.2016.11.010. PubMed DOI PMC
Marin-Garcia J, Akhmedov AT. Mitochondrial dynamics and cell death in heart failure. Heart Fail Rev. 2016;21:123–136. doi: 10.1007/s10741-016-9530-2. PubMed DOI
Prata JC. Airborne microplastics: Consequences to human health? Environ Pollut. 2018;234:115–126. doi: 10.1016/j.envpol.2017.11.043. PubMed DOI
Wallace DC. Mitochondria and cancer. Nat Rev Cancer. 2012;12:685–698. doi: 10.1038/nrc3365. PubMed DOI PMC
Nunnari J, Suomalainen A. Mitochondria: in sickness and in health. Cell. 2012;148:1145–1159. doi: 10.1016/j.cell.2012.02.035. PubMed DOI PMC
Raimundo N. Mitochondrial pathology: stress signals from the energy factory. Trends Mol Med. 2014;20:282–292. doi: 10.1016/j.molmed.2014.01.005. PubMed DOI
Andrady AL. Microplastics in the marine environment. Mar Pollut Bull. 2011;62:1596–1605. doi: 10.1016/j.marpolbul.2011.05.030. PubMed DOI
Allen S, Allen D, Phoenix VR, Le Roux G, Jiménez PD, Simonneau A, Binet S, Galop D. Atmospheric transport and deposition of microplastics in a remote mountain catchment. Nat Geosci. 2019;12:339–344. doi: 10.1038/s41561-019-0335-5. DOI
Besseling E, Redondo-Hasselerharm P, Foekema EM, Koelmans AA. Quantifying ecological risks of aquatic micro- and nanoplastic. Crit Rev Env Sci Tec. 2018;49:32–80. doi: 10.1080/10643389.2018.1531688. DOI
Luo D, Chu X, Wu Y, Wang Z, Liao Z, Ji X, Ju J, et al. Micro- and nano-plastics in the atmosphere: A review of occurrence, properties and human health risks. J Hazard Mater. 2024;465:133412. doi: 10.1016/j.jhazmat.2023.133412. PubMed DOI
Pradel A, Catrouillet C, Gigault J. The environmental fate of nanoplastics: What we know and what we need to know about aggregation. NanoImpact. 2023;29:100453. doi: 10.1016/j.impact.2023.100453. PubMed DOI
Cole M, Lindeque P, Fileman E, Halsband C, Goodhead R, Moger J, Galloway TS. Microplastic ingestion by zooplankton. Environ Sci Technol. 2013;47:6646–6655. doi: 10.1021/es400663f. PubMed DOI
Rochman CM, Tahir A, Williams SL, Baxa DV, Lam R, Miller JT, et al. Anthropogenic debris in seafood: Plastic debris and fibers from textiles in fish and bivalves sold for human consumption. Sci Rep. 2015;5:14340. doi: 10.1038/srep14340. PubMed DOI PMC
Van Cauwenberghe L, Janssen CR. Microplastics in bivalves cultured for human consumption. Environ Pollut. 2014;193:65–70. doi: 10.1016/j.envpol.2014.06.010. PubMed DOI
Browne MA, Dissanayake A, Galloway TS, Lowe DM, Thompson RC. Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L) Environ Sci Technol. 2008;42:5026–5031. doi: 10.1021/es800249a. PubMed DOI
Bastyans S, Jackson S, Fejer G. Micro and nano-plastics, a threat to human health? Emerg Top Life Sci. 2022;6:411–422. doi: 10.1042/ETLS20220024. PubMed DOI
Wright SL, Thompson RC, Galloway TS. The physical impacts of microplastics on marine organisms: a review. Environ Pollut. 2013;178:483–492. doi: 10.1016/j.envpol.2013.02.031. PubMed DOI
Mattsson K, Ekvall MT, Hansson LA, Linse S, Malmendal A, Cedervall T. Altered behavior, physiology, and metabolism in fish exposed to polystyrene nanoparticles. Environ Sci Technol. 2015;49:553–561. doi: 10.1021/es5053655. PubMed DOI
Zhang Q, Xu EG, Li J, Chen Q, Ma L, Zeng EY, Shi H. A Review of Microplastics in Table Salt, Drinking Water, and Air: Direct Human Exposure. Environ Sci Technol. 2020;54:3740–3751. doi: 10.1021/acs.est.9b04535. PubMed DOI
Sivagami M, Selvambigai M, Devan U, Velangani AAJ, Karmegam N, Biruntha M, Arun A, et al. Extraction of microplastics from commonly used sea salts in India and their toxicological evaluation. Chemosphere. 2021;263:128181. doi: 10.1016/j.chemosphere.2020.128181. PubMed DOI
Zhu C, Liu S, Cao Z, Hu B, Yang C, Luo X, Yuan H, Li L. Human dermal exposure to short- and medium-chain chlorinated paraffins: Effect of populations, activities, gender, and haze pollution. J Hazard Mater. 2024;476:135169. doi: 10.1016/j.jhazmat.2024.135169. PubMed DOI
Lee SE, Yi Y, Moon S, Yoon H, Park YS. Impact of Micro- and Nanoplastics on Mitochondria. Metabolites. 2022;12:897. doi: 10.3390/metabo12100897. PubMed DOI PMC
Leslie HA, van Velzen MJM, Brandsma SH, Vethaak AD, Garcia-Vallejo JJ, Lamoree MH. Discovery and quantification of plastic particle pollution in human blood. Environ Int. 2022;163:107199. doi: 10.1016/j.envint.2022.107199. PubMed DOI
Geppner L, Ramer G, Tomasetig D, Grundhöfer L, Küss J, Kaup M, Henjakovic M. A novel enzymatic method for isolation of plastic particles from human blood. Environ Toxicol Pharmacol. 2023;104:104318. doi: 10.1016/j.etap.2023.104318. PubMed DOI
Guo X, Wang L, Wang X, Li D, Wang H, Xu H, Liu Y, et al. Discovery and analysis of microplastics in human bone marrow. J Hazard Mater. 2024;477:135266. doi: 10.1016/j.jhazmat.2024.135266. PubMed DOI
Wang K, Du Y, Li P, Guan C, Zhou M, Wu L, Liu Z, Huang Z. Nanoplastics causes heart aging/myocardial cell senescence through the Ca(2+)/mtDNA/cGAS-STING signaling cascade. J Nanobiotechnology. 2024;22:96. doi: 10.1186/s12951-024-02375-x. PubMed DOI PMC
DeLoid GM, Cao X, Bitounis D, Singh D, Llopis PM, Buckley B, Demokritou P. Toxicity, uptake, and nuclear translocation of ingested micro-nanoplastics in an in vitro model of the small intestinal epithelium. Food Chem Toxicol. 2021;158:112609. doi: 10.1016/j.fct.2021.112609. PubMed DOI PMC
Lennicke C, Cocheme HM. Redox metabolism: ROS as specific molecular regulators of cell signaling and function. Mol Cell. 2021;81:3691–3707. doi: 10.1016/j.molcel.2021.08.018. PubMed DOI
Chen YR, Zweier JL. Cardiac mitochondria and reactive oxygen species generation. Circ Res. 2014;114:524–537. doi: 10.1161/CIRCRESAHA.114.300559. PubMed DOI PMC
Wei J, Wang X, Liu Q, Zhou N, Zhu S, Li Z, Li X, Yao J, Zhang L. The impact of polystyrene microplastics on cardiomyocytes pyroptosis through NLRP3/Caspase-1 signaling pathway and oxidative stress in Wistar rats. Environ Toxicol. 2021;36:935–944. doi: 10.1002/tox.23095. PubMed DOI
Lu T, Li D, Yuan X, Wang Z, Shao Z, Feng X, Yang C, et al. Potential Effects of Orally Ingesting Polyethylene Terephthalate Microplastics on the Mouse Heart. Cardiovasc Toxicol. 2024;24:291–301. doi: 10.1007/s12012-024-09837-6. PubMed DOI
Zhang T, Yang S, Ge Y, Wan X, Zhu Y, Yang F, Li J, et al. Multi-dimensional evaluation of cardiotoxicity in mice following respiratory exposure to polystyrene nanoplastics. Part Fibre Toxicol. 2023;20:46. doi: 10.1186/s12989-023-00557-3. PubMed DOI PMC
Duan Z, Wang J, Zhang H, Wang Y, Chen Y, Cong J, Gong Z, et al. Elevated temperature decreases cardiovascular toxicity of nanoplastics but adds to their lethality: A case study during zebrafish (Danio rerio) development. J Hazard Mater. 2023;458:131679. doi: 10.1016/j.jhazmat.2023.131679. PubMed DOI
Vlacil AK, Bänfer S, Jacob R, Trippel N, Kuzu I, Schieffer B, Grote K. Polystyrene microplastic particles induce endothelial activation. PLoS One. 2021;16:e0260181. doi: 10.1371/journal.pone.0260181. PubMed DOI PMC
Fu Y, Fan M, Xu L, Wang H, Hu Q, Jin Y. Amino-Functionalized Polystyrene Nano-Plastics Induce Mitochondria Damage in Human Umbilical Vein Endothelial Cells. Toxics. 2022;10:215. doi: 10.3390/toxics10050215. PubMed DOI PMC
Choi D, Bang J, Kim T, Oh Y, Hwang Y, Hong J. In vitro chemical and physical toxicities of polystyrene microfragments in human-derived cells. J Hazard Mater. 2020;400:123308. doi: 10.1016/j.jhazmat.2020.123308. PubMed DOI