Heart remodelling affects ECG in rat DOCA/salt model
Jazyk angličtina Země Česko Médium print
Typ dokumentu časopisecké články
PubMed
39808174
PubMed Central
PMC11827063
DOI
10.33549/physiolres.935512
PII: 935512
Knihovny.cz E-zdroje
- MeSH
- deoxykortikosteron-21-acetát * MeSH
- elektrokardiografie * MeSH
- fibróza MeSH
- krysa rodu Rattus MeSH
- kuchyňská sůl škodlivé účinky MeSH
- modely nemocí na zvířatech MeSH
- myokard patologie MeSH
- potkani Sprague-Dawley * MeSH
- remodelace komor * MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- deoxykortikosteron-21-acetát * MeSH
- kuchyňská sůl MeSH
Myocardial remodelling involves structural and functional changes in the heart, potentially leading to heart failure. The deoxycorticosterone acetate (DOCA)/salt model is a widely used experimental approach to study hypertension-induced cardiac remodelling. It allows to investigate the mechanisms underlying myocardial fibrosis and hypertrophy, which are key contributors to impaired cardiac function. In this study, myocardial remodelling in rat deoxycorticosterone acetate/salt model was examined over a three-week period. The experiment involved 11 male Sprague-Dawley rats, divided into two groups: fibrosis (n=6) and control (n=5). Myocardial remodelling was induced in the fibrosis group through unilateral nephrectomy, deoxyco-rticosterone acetate administration, and increased salt intake. The results revealed significant structural changes, including increased left ventricular wall thickness, myocardial fractional volume, and development of myocardial fibrosis. Despite these changes, left ventricular ejection fraction was preserved and even increased. ECG analysis showed significant prolongation of the PR interval and widening of the QRS complex in the fibrosis group, indicating disrupted atrioventricular and ventricular conduction, likely due to fibrosis and hypertrophy. Correlation analysis suggested a potential relationship between QRS duration and myocardial hypertrophy, although no significant correlations were found among other ECG parameters and structural changes detected by MRI. The study highlights the advantage of the DOCA/salt model in exploring the impact of myocardial remodelling on electrophysiological properties. Notably, this study is among the first to show that early myocardial remodelling in this model is accompanied by distinct electrophysiological changes, suggesting that advanced methods combined with established animal models can open new opportunities for research in this field. Key words Myocardial fibrosis, Remodelling, Animal model, DOCA-salt, Magnetic resonance imaging.
Zobrazit více v PubMed
Mills KT, Stefanescu A, He J. The global epidemiology of hypertension. Nat Rev Nephrol. 2020;16:223–237. doi: 10.1038/s41581-019-0244-2. PubMed DOI PMC
Dictionary M.-W. c. s.v. “hypertension”. [accessed 2024 25. January]. https://www.merriam-webster.com/dictionary/hypertension .
Lenfant C, Chobanian A, Jones D, Roccella E. Seventh report of the Joint National Committee on the prevention, detection, evaluation, and treatment of high blood pressure (JNC 7) resetting the hypertension sails. Hypertension. 2003;41:1178–1179. doi: 10.1161/01.HYP.0000075790.33892.AE. PubMed DOI
Azevedo PS, Polegato BF, Minicucci MF, Paiva SAR, Zornoff LAM. Cardiac Remodeling: Concepts, Clinical Impact, Pathophysiological Mechanisms and Pharmacologic Treatment. Arq Bras Cardiol. 2016;106:62–69. doi: 10.5935/abc.20160005. PubMed DOI PMC
Tsuda T. Clinical Assessment of Ventricular Wall Stress in Understanding Compensatory Hypertrophic Response and Maladaptive Ventricular Remodeling. J Cardiovasc Dev Dis. 2021;8:122. doi: 10.3390/jcdd8100122. PubMed DOI PMC
Laska M, Nováková M, Stracina T. Myocardium Remodelling: From Adaptation Mechanisms to Heart Failure Development. Cor Vasa. 2024;66:53–64. doi: 10.33678/cor.2023.090. DOI
Wang Y, Wang M, Samuel CS, Widdop RE. Preclinical rodent models of cardiac fibrosis. Br J Pharmacol. 2022;179:882–899. doi: 10.1111/bph.15450. PubMed DOI
Conrad CH, Brooks WW, Hayes JA, Sen S, Robinson KG, Bing OHL. Myocardial fibrosis and stiffness with hypertrophy and heart failure in the spontaneously hypertensive rat. Circulation. 1995;91:161–170. doi: 10.1161/01.CIR.91.1.161. PubMed DOI
Qi GM, Jia LX, Li YL, Bian YF, Cheng JZ, Li HH, Xiao CS, Du J. Angiotensin II Infusion-Induced Inflammation, Monocytic Fibroblast Precursor Infiltration, and Cardiac Fibrosis are Pressure Dependent. Cardiovasc Toxicol. 2011;11:157–167. doi: 10.1007/s12012-011-9109-z. PubMed DOI
Kobayashi N, Hara K, Watanabe S, Higashi T, Matsuoka H. Effect of imidapril on myocardial remodeling in L-NAME-induced hypertensive rats is associated with gene expression of NOS and ACE mRNA. Am J Hypertens. 2000;13:199–207. doi: 10.1016/S0895-7061(99)00117-X. PubMed DOI
Farag A, Mandour AS, Hendawy H, Elhaieg A, Elfadadny A, Tanaka R. A review on experimental surgical models and anesthetic protocols of heart failure in rats. Front Vet Sci. 2023;10:1103229. doi: 10.3389/fvets.2023.1103229. PubMed DOI PMC
Zhou H, Chen X, Chen LZ, Zhou X, Zheng GS, Zhang HQ, Huang WJ, Cai JJ. Anti-Fibrosis Effect of Scutellarin via Inhibition of Endothelial-Mesenchymal Transition on Isoprenaline-Induced Myocardial Fibrosis in Rats. Molecules. 2014;19:15611–15623. doi: 10.3390/molecules191015611. PubMed DOI PMC
Basting T, Lazartigues E. DOCA-Salt Hypertension: an Update. Curr Hypertens Rep. 2017;19:32. doi: 10.1007/s11906-017-0731-4. PubMed DOI PMC
Vitous J, Jirík R, Stracina T, Hendrych M, Nádenícek J, Macícek O, Tian Y, et al. T1 mapping of myocardium in rats using self-gated golden-angle acquisition. Magn Reson Med. 2024;91:368–380. doi: 10.1002/mrm.29846. PubMed DOI
Bankhead P, Loughrey MB, Fernandez JA, Dombrowski Y, McArt DG, Dunne PD, McQuaid S, et al. QuPath: Open source software for digital pathology image analysis. Sci Rep. 2017;7:16878. doi: 10.1038/s41598-017-17204-5. PubMed DOI PMC
Sun ZJ, Zhang ZE. Historic perspectives and recent advances in major animal models of hypertension. Acta Pharmacol Sin. 2005;26:295–301. doi: 10.1111/j.1745-7254.2005.00054.x. PubMed DOI
O’Donaughy TL, Brooks VL. Deoxycorticosterone acetate-salt rats - Hypertension and sympathoexcitation driven by increased NaCl levels. Hypertension. 2006;47:680–685. doi: 10.1161/01.HYP.0000214362.18612.6e. PubMed DOI
Gutkind JS, Kurihara M, Saavedra JM. Increased angiotensin-II receptors in brain nuclei of DOCA-salt hypertensive rats. Am J Physiol. 1988;255:H646–H650. doi: 10.1152/ajpheart.1988.255.3.H646. PubMed DOI
Brown L, Duce B, Miric G, Sernia C. Reversal of cardiac fibrosis in deoxycorticosterone acetate salt hypertensive rats by inhibition of the renin-angiotensin system. J Am Soc Nephrol. 1999;10(Suppl 11):S143–S148. PubMed
Grobe JL, Mecca AP, Mao HY, Katovich MJ. Chronic angiotensin-(1–7) prevents cardiac fibrosis in DOCA-salt model of hypertension. Am J Physiol Heart Circ Physiol. 2006;290:H2417–H2423. doi: 10.1152/ajpheart.01170.2005. PubMed DOI
Lovelock JD, Monasky MM, Jeong EM, Lardin HA, Liu H, Patel BG, Taglieri DM, et al. Ranolazine Improves Cardiac Diastolic Dysfunction Through Modulation of Myofilament Calcium Sensitivity. Circ Res. 2012;110:841–850. doi: 10.1161/CIRCRESAHA.111.258251. PubMed DOI PMC
Joukar S. A comparative review on heart ion channels, action potentials and electrocardiogram in rodents and human: extrapolation of experimental insights to clinic. Lab Anim Res. 2021;37:25. doi: 10.1186/s42826-021-00102-3. PubMed DOI PMC
Frangogiannis NG. Cardiac fibrosis: Cell biological mechanisms, molecular pathways and therapeutic opportunities. Mol Aspects Med. 2019;65:70–99. doi: 10.1016/j.mam.2018.07.001. PubMed DOI
Momtaz A, Coulombe A, Richer P, Mercadier JJ, Coraboeuf E. Action potential and plateau ionic currents in moderately and severely DOCA-salt hypertrophied rat hearts. J Mol Cell Cardiol. 1996;28:2511–2522. doi: 10.1006/jmcc.1996.0243. PubMed DOI
Capuano V, Ruchon Y, Antoine S, Sant MC, Renaud JF. Ventricular hypertrophy induced by mineralocorticoid treatment or aortic stenosis differentially regulates the expression of cardiac K+ channels in the rat. Mol Cell Biochem. 2002;237:1–10. doi: 10.1023/A:1016518920693. PubMed DOI
Coulombe A, Momtaz A, Richer P, Swynghedauw B, Coraboeuf E. Reduction of calcium-dependent transient outward potassium current-density in DOCA salt hypertrophied rat ventricular myocytes. Pflugers Arch. 1994;427:47–55. doi: 10.1007/BF00585941. PubMed DOI
Botelho AFM, Joviano-Santos JV, Santos-Miranda A, Menezes-Filho JER, Soto-Blanco B, Cruz JS, Guatimosim C, Melo MM. Non-invasive ECG recording and QT interval correction assessment in anesthetized rats and mice. Pesq Vet Bras. 2019;39:409–415. doi: 10.1590/1678-6160-pvb-6029. DOI
Stracina T, Ronzhina M, Redina R, Novakova M. Golden Standard or Obsolete Method? Review of ECG Applications in Clinical and Experimental Context. Front Physiol. 2022;13:867033. doi: 10.3389/fphys.2022.867033. PubMed DOI PMC
Dohy Z, Vereckei A, Horvath V, Czimbalmos C, Szabo L, Toth A, Suhai FI, et al. How are ECG parameters related to cardiac magnetic resonance images? Electrocardiographic predictors of left ventricular hypertrophy and myocardial fibrosis in hypertrophic cardiomyopathy. Ann Noninvasive Electrocardiol. 2020;25:e12763. doi: 10.1111/anec.12763. PubMed DOI PMC
Kawanishi H, Hasegawa Y, Nakano D, Ohkita M, Takaoka M, Ohno Y, Matsumura Y. Involvement of the endothelin ETB receptor in gender differences in deoxycorticosterone acetate-salt-induced hypertension. Clin Exp Pharmacol Physiol. 2007;34:280–285. doi: 10.1111/j.1440-1681.2007.04580.x. PubMed DOI