Heart remodelling affects ECG in rat DOCA/salt model

. 2024 Dec 31 ; 73 (S3) : S727-S753.

Jazyk angličtina Země Česko Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39808174

Myocardial remodelling involves structural and functional changes in the heart, potentially leading to heart failure. The deoxycorticosterone acetate (DOCA)/salt model is a widely used experimental approach to study hypertension-induced cardiac remodelling. It allows to investigate the mechanisms underlying myocardial fibrosis and hypertrophy, which are key contributors to impaired cardiac function. In this study, myocardial remodelling in rat deoxycorticosterone acetate/salt model was examined over a three-week period. The experiment involved 11 male Sprague-Dawley rats, divided into two groups: fibrosis (n=6) and control (n=5). Myocardial remodelling was induced in the fibrosis group through unilateral nephrectomy, deoxyco-rticosterone acetate administration, and increased salt intake. The results revealed significant structural changes, including increased left ventricular wall thickness, myocardial fractional volume, and development of myocardial fibrosis. Despite these changes, left ventricular ejection fraction was preserved and even increased. ECG analysis showed significant prolongation of the PR interval and widening of the QRS complex in the fibrosis group, indicating disrupted atrioventricular and ventricular conduction, likely due to fibrosis and hypertrophy. Correlation analysis suggested a potential relationship between QRS duration and myocardial hypertrophy, although no significant correlations were found among other ECG parameters and structural changes detected by MRI. The study highlights the advantage of the DOCA/salt model in exploring the impact of myocardial remodelling on electrophysiological properties. Notably, this study is among the first to show that early myocardial remodelling in this model is accompanied by distinct electrophysiological changes, suggesting that advanced methods combined with established animal models can open new opportunities for research in this field. Key words Myocardial fibrosis, Remodelling, Animal model, DOCA-salt, Magnetic resonance imaging.

Zobrazit více v PubMed

Mills KT, Stefanescu A, He J. The global epidemiology of hypertension. Nat Rev Nephrol. 2020;16:223–237. doi: 10.1038/s41581-019-0244-2. PubMed DOI PMC

Dictionary M.-W. c. s.v. “hypertension”. [accessed 2024 25. January]. https://www.merriam-webster.com/dictionary/hypertension .

Lenfant C, Chobanian A, Jones D, Roccella E. Seventh report of the Joint National Committee on the prevention, detection, evaluation, and treatment of high blood pressure (JNC 7) resetting the hypertension sails. Hypertension. 2003;41:1178–1179. doi: 10.1161/01.HYP.0000075790.33892.AE. PubMed DOI

Azevedo PS, Polegato BF, Minicucci MF, Paiva SAR, Zornoff LAM. Cardiac Remodeling: Concepts, Clinical Impact, Pathophysiological Mechanisms and Pharmacologic Treatment. Arq Bras Cardiol. 2016;106:62–69. doi: 10.5935/abc.20160005. PubMed DOI PMC

Tsuda T. Clinical Assessment of Ventricular Wall Stress in Understanding Compensatory Hypertrophic Response and Maladaptive Ventricular Remodeling. J Cardiovasc Dev Dis. 2021;8:122. doi: 10.3390/jcdd8100122. PubMed DOI PMC

Laska M, Nováková M, Stracina T. Myocardium Remodelling: From Adaptation Mechanisms to Heart Failure Development. Cor Vasa. 2024;66:53–64. doi: 10.33678/cor.2023.090. DOI

Wang Y, Wang M, Samuel CS, Widdop RE. Preclinical rodent models of cardiac fibrosis. Br J Pharmacol. 2022;179:882–899. doi: 10.1111/bph.15450. PubMed DOI

Conrad CH, Brooks WW, Hayes JA, Sen S, Robinson KG, Bing OHL. Myocardial fibrosis and stiffness with hypertrophy and heart failure in the spontaneously hypertensive rat. Circulation. 1995;91:161–170. doi: 10.1161/01.CIR.91.1.161. PubMed DOI

Qi GM, Jia LX, Li YL, Bian YF, Cheng JZ, Li HH, Xiao CS, Du J. Angiotensin II Infusion-Induced Inflammation, Monocytic Fibroblast Precursor Infiltration, and Cardiac Fibrosis are Pressure Dependent. Cardiovasc Toxicol. 2011;11:157–167. doi: 10.1007/s12012-011-9109-z. PubMed DOI

Kobayashi N, Hara K, Watanabe S, Higashi T, Matsuoka H. Effect of imidapril on myocardial remodeling in L-NAME-induced hypertensive rats is associated with gene expression of NOS and ACE mRNA. Am J Hypertens. 2000;13:199–207. doi: 10.1016/S0895-7061(99)00117-X. PubMed DOI

Farag A, Mandour AS, Hendawy H, Elhaieg A, Elfadadny A, Tanaka R. A review on experimental surgical models and anesthetic protocols of heart failure in rats. Front Vet Sci. 2023;10:1103229. doi: 10.3389/fvets.2023.1103229. PubMed DOI PMC

Zhou H, Chen X, Chen LZ, Zhou X, Zheng GS, Zhang HQ, Huang WJ, Cai JJ. Anti-Fibrosis Effect of Scutellarin via Inhibition of Endothelial-Mesenchymal Transition on Isoprenaline-Induced Myocardial Fibrosis in Rats. Molecules. 2014;19:15611–15623. doi: 10.3390/molecules191015611. PubMed DOI PMC

Basting T, Lazartigues E. DOCA-Salt Hypertension: an Update. Curr Hypertens Rep. 2017;19:32. doi: 10.1007/s11906-017-0731-4. PubMed DOI PMC

Vitous J, Jirík R, Stracina T, Hendrych M, Nádenícek J, Macícek O, Tian Y, et al. T1 mapping of myocardium in rats using self-gated golden-angle acquisition. Magn Reson Med. 2024;91:368–380. doi: 10.1002/mrm.29846. PubMed DOI

Bankhead P, Loughrey MB, Fernandez JA, Dombrowski Y, McArt DG, Dunne PD, McQuaid S, et al. QuPath: Open source software for digital pathology image analysis. Sci Rep. 2017;7:16878. doi: 10.1038/s41598-017-17204-5. PubMed DOI PMC

Sun ZJ, Zhang ZE. Historic perspectives and recent advances in major animal models of hypertension. Acta Pharmacol Sin. 2005;26:295–301. doi: 10.1111/j.1745-7254.2005.00054.x. PubMed DOI

O’Donaughy TL, Brooks VL. Deoxycorticosterone acetate-salt rats - Hypertension and sympathoexcitation driven by increased NaCl levels. Hypertension. 2006;47:680–685. doi: 10.1161/01.HYP.0000214362.18612.6e. PubMed DOI

Gutkind JS, Kurihara M, Saavedra JM. Increased angiotensin-II receptors in brain nuclei of DOCA-salt hypertensive rats. Am J Physiol. 1988;255:H646–H650. doi: 10.1152/ajpheart.1988.255.3.H646. PubMed DOI

Brown L, Duce B, Miric G, Sernia C. Reversal of cardiac fibrosis in deoxycorticosterone acetate salt hypertensive rats by inhibition of the renin-angiotensin system. J Am Soc Nephrol. 1999;10(Suppl 11):S143–S148. PubMed

Grobe JL, Mecca AP, Mao HY, Katovich MJ. Chronic angiotensin-(1–7) prevents cardiac fibrosis in DOCA-salt model of hypertension. Am J Physiol Heart Circ Physiol. 2006;290:H2417–H2423. doi: 10.1152/ajpheart.01170.2005. PubMed DOI

Lovelock JD, Monasky MM, Jeong EM, Lardin HA, Liu H, Patel BG, Taglieri DM, et al. Ranolazine Improves Cardiac Diastolic Dysfunction Through Modulation of Myofilament Calcium Sensitivity. Circ Res. 2012;110:841–850. doi: 10.1161/CIRCRESAHA.111.258251. PubMed DOI PMC

Joukar S. A comparative review on heart ion channels, action potentials and electrocardiogram in rodents and human: extrapolation of experimental insights to clinic. Lab Anim Res. 2021;37:25. doi: 10.1186/s42826-021-00102-3. PubMed DOI PMC

Frangogiannis NG. Cardiac fibrosis: Cell biological mechanisms, molecular pathways and therapeutic opportunities. Mol Aspects Med. 2019;65:70–99. doi: 10.1016/j.mam.2018.07.001. PubMed DOI

Momtaz A, Coulombe A, Richer P, Mercadier JJ, Coraboeuf E. Action potential and plateau ionic currents in moderately and severely DOCA-salt hypertrophied rat hearts. J Mol Cell Cardiol. 1996;28:2511–2522. doi: 10.1006/jmcc.1996.0243. PubMed DOI

Capuano V, Ruchon Y, Antoine S, Sant MC, Renaud JF. Ventricular hypertrophy induced by mineralocorticoid treatment or aortic stenosis differentially regulates the expression of cardiac K+ channels in the rat. Mol Cell Biochem. 2002;237:1–10. doi: 10.1023/A:1016518920693. PubMed DOI

Coulombe A, Momtaz A, Richer P, Swynghedauw B, Coraboeuf E. Reduction of calcium-dependent transient outward potassium current-density in DOCA salt hypertrophied rat ventricular myocytes. Pflugers Arch. 1994;427:47–55. doi: 10.1007/BF00585941. PubMed DOI

Botelho AFM, Joviano-Santos JV, Santos-Miranda A, Menezes-Filho JER, Soto-Blanco B, Cruz JS, Guatimosim C, Melo MM. Non-invasive ECG recording and QT interval correction assessment in anesthetized rats and mice. Pesq Vet Bras. 2019;39:409–415. doi: 10.1590/1678-6160-pvb-6029. DOI

Stracina T, Ronzhina M, Redina R, Novakova M. Golden Standard or Obsolete Method? Review of ECG Applications in Clinical and Experimental Context. Front Physiol. 2022;13:867033. doi: 10.3389/fphys.2022.867033. PubMed DOI PMC

Dohy Z, Vereckei A, Horvath V, Czimbalmos C, Szabo L, Toth A, Suhai FI, et al. How are ECG parameters related to cardiac magnetic resonance images? Electrocardiographic predictors of left ventricular hypertrophy and myocardial fibrosis in hypertrophic cardiomyopathy. Ann Noninvasive Electrocardiol. 2020;25:e12763. doi: 10.1111/anec.12763. PubMed DOI PMC

Kawanishi H, Hasegawa Y, Nakano D, Ohkita M, Takaoka M, Ohno Y, Matsumura Y. Involvement of the endothelin ETB receptor in gender differences in deoxycorticosterone acetate-salt-induced hypertension. Clin Exp Pharmacol Physiol. 2007;34:280–285. doi: 10.1111/j.1440-1681.2007.04580.x. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...