A Protocol for GC-MS Profiling of Chiral Secondary Amino Acids
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
- Klíčová slova
- Alkyl chloroformate derivatization, Amino acids, Chiral analysis, GC-MS, Peptide hydrolysates, Quantitative analysis, Secondary amino acids, Serum, Urine,
- MeSH
- aminokyseliny * chemie moč analýza MeSH
- formiáty chemie MeSH
- lidé MeSH
- mikroextrakce kapalné fáze metody MeSH
- plynová chromatografie s hmotnostně spektrometrickou detekcí * metody MeSH
- stereoizomerie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- aminokyseliny * MeSH
- formiáty MeSH
A simple analytical workflow is described for gas chromatographic-mass spectrometric (GC-MS)-based chiral profiling of secondary amino acids (AAs) in biological matrices. The sample preparation is carried out directly in aqueous biological sample extracts and involves in situ heptafluorobutyl chloroformate (HFBCF) derivatization-liquid-liquid microextraction of nonpolar products into hexane phase followed by subsequent formation of the corresponding methylamides from the HFB esters by direct treatment with methylamine reagent solution. The (O, N) HFB-butoxycarbonyl-methylamide AA products (HFBOC-MA) are separated on a Chirasil-L-Val capillary column and quantitatively measured by GC-MS operated in selected ion monitoring (SIM) mode. The protocol includes 12 simple pipetting steps and covers the quantitative analysis of 8 L, D pairs of secondary amino acids, including proline, isomeric 3-, 4-hydroxyprolines, pipecolic acid, nipecotic acid, azetidine-2-carboxylic acid, and cis- and trans-5-hydroxy-L-pipecolic acid using 13C5 -L-proline as an internal standard. The individual analytical steps are commented on and explained, with emphasis on the chiral GC-MS analysis of secondary amino acids in human urine, serum, and peptide hydrolysate samples.
Zobrazit více v PubMed
Opekar S, Zahradnickova H, Vodrazka P, Rimnacova L, Simek P, Moos M (2021) A chiral GC-MS method for analysis of secondary amino acids after heptafluorobutyl chloroformate & methylamine derivatization. Amino Acids 53(3):347–358 PubMed DOI
Langrock T, Garcia-Villar N, Hoffmann R (2007) Analysis of hydroxyproline isomers and hydroxylysine by reversed-phase HPLC and mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 847(2):282–288 PubMed DOI
Levkin PA, Levkina A, Czesla H, Schurig V (2007) Temperature-induced inversion of the elution order of enantiomers in gas chromatography: N-ethoxycarbonyl propylamides and N-trifluoroacetyl ethyl esters of alpha-amino acids on Chirasil-Val-C-11 and Chirasil-Dex stationary phases. Anal Chem 79(12):4401–4409 PubMed DOI
Zahradnickova H, Husek P, Simek P, Hartvich P, Marsalek B, Holoubek I (2007) Determination of D- and L-amino acids produced by cyanobacteria using gas chromatography on Chirasil-Val after derivatization with pentafluoropropyl chloroformate. Anal Bioanal Chem 388(8):1815–1822 PubMed DOI
Gehrke CW, Kuo KCT, Zumwalt RW (1987) Amino acid analysis by gas chromatography, vol II. CRC Press, Boca Raton
Simek P, Husek P, Zahradnickova H (2019) Heptafluorobutyl chloroformate-based sample preparation protocol for nonchiral and chiral amino acid analysis by gas chromatorgraphy-mass spectrometry. In: Alterman MA (ed) Amino acid analysis methods and protocols, vol 2030, 2nd edn. Springer, Silver Spring, pp 237–251 DOI
Husek P (1998) Chloroformates in gas chromatography as general purpose derivatizing agents. J Chromatogr B 717(1–2):57–91 DOI
Opekar S, Kvicala J, Moos M, Pejchal V, Simek P (2021) Mechanism of alkyl chloroformate-mediated esterification of carboxylic acids in aqueous media. J Org Chem 86(23):16293–16299 PubMed DOI
Rimnacova L, Husek P, Simek P (2014) A new method for immediate derivatization of hydroxyl groups by fluoroalkyl chloroformates and its application for the determination of sterols and tocopherols in human serum and amniotic fluid by gas chromatography-mass spectrometry. J Chromatogr A 1339:154–167 PubMed DOI
Husek P, Svagera Z, Hanzlikova D, Rimnacova L, Zahradnickova H, Opekarova I, Simek P (2016) Profiling of urinary amino-carboxylic metabolites by in-situ heptafluorobutyl chloroformate mediated sample preparation and gas chromatography-mass spectrometry. J Chromatogr A 1443:211–232 PubMed DOI
Zahradnickova H, Husek P, Simek P (2009) GC separation of amino acid enantiomers via derivatization with heptafluorobutyl chloroformate and Chirasil-L-Val column. J Sep Sci 32(22):3919–3924 PubMed DOI
Koppenhoefer B, Bayer E (1984) Chiral recognition in the resolution of enantiomers by Glc. Chromatographia 19:123–130 DOI
Abe I, Kawazuma M, Fujimoto N, Nakahara T (1995) N-alkyloxycarbonyl isobutylamides as readily prepared diamide derivatives of amino-acids for separation of enantiomeric isomers by chiral phase capillary gas-chromatography. Chem Lett 4:329–330 DOI
Abe I, Nakahara T (1996) Enantiomer separation of amino acids as their N-alkyloxycarbonyl alkylamide derivatives by chiral phase capillary GC. Hrc J High Resolut Chromatogr 19(9):511–514 DOI
Simek P, Husek P, Zahradnickova H (2012) Heptafluorobutyl chloroformate-based sample preparation protocol for chiral and nonchiral amino acid analysis by gas chromatography. In: Alterman MA, Hunziker P (eds) Amino acid analysis: methods and protocols, vol 828, pp 137–152 DOI
Armstrong DW, Gasper M, Lee SH, Zukowski J, Ercal N (1993) D-amino-acid levels in human physiological fluids. Chirality 5(5):375–378 PubMed DOI
Fujita T, Amuro Y, Hada T, Higashino K (1999) Plasma levels of pipecolic acid, both L- and D-enantiomers, in patients with chronic liver diseases, especially hepatic encephalopathy. Clin Chim Acta 287(1–2):99–109 PubMed DOI
Fujita T, Hada T, Higashino K (1999) Origin of D- and L-pipecolic acid in human physiological fluids: a study of the catabolic mechanism to pipecolic acid using the lysine loading test. Clin Chim Acta 287(1–2):145–156 PubMed DOI
Dettmer K, Stevens AP, Fagerer SR, Kaspar H, Oefner PJ (2012) Amino acid analysis in physiological samples by GC-MS with propyl chloroformate derivatization and iTRAQ-LC-MS/MS. In: Alterman MA, Hunziker P (eds) Amino acid analysis: methods and protocols, vol 828, pp 165–181 DOI