Machine learning validation of the AVAS classification compared to ultrasound mapping in a multicentre study
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, multicentrická studie, srovnávací studie, práce podpořená grantem
PubMed
39833325
PubMed Central
PMC11756420
DOI
10.1038/s41598-025-86456-3
PII: 10.1038/s41598-025-86456-3
Knihovny.cz E-zdroje
- Klíčová slova
- Arteriovenous access, Classification system, Dialysis, Mapping, Random forest, Renal replacement therapy,
- MeSH
- arteriovenózní zkrat MeSH
- Bayesova věta MeSH
- lidé středního věku MeSH
- lidé MeSH
- prospektivní studie MeSH
- ROC křivka MeSH
- senioři MeSH
- strojové učení * MeSH
- ultrasonografie * metody MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
The Arteriovenous Access Stage (AVAS) classification simplifies information about suitability of vessels for vascular access (VA). It's been previously validated in a clinical study. Here, AVAS performance was tested against multiple ultrasound mapping measurements using machine learning. A prospective multicentre international study (NCT04796558) with patient recruitment from March 2021-July 2024. Demographics, risk factors, vessels parameters, types of predicted and created VA (pVA, cVA) were collected. We modelled pVA and cVA using the Random Forest algorithm. Model performance was estimated and compared using Bayesian generalized linear models. ROC AUC with 95% credible intervals was the performance metric. 1151 patients were included. ROC AUC for pVA prediction by AVAS was 0.79 (0.77;0.82) and by mapping was 0.85 (0.83;0.88). ROC AUC for cVA prediction by AVAS was 0.71 (0.69;0.74) and by mapping was 0.8 (0.78;0.83). Using AVAS with other parameters increased the ROC AUC to 0.87 for pVA (0.84;0.89) and 0.82 (0.79;0.84) for cVA. Using mapping with other parameters increased the ROC AUC to 0.88 for pVA (0.86;0.91) and 0.85 (0.83;0.88) for cVA. Multiple mapping measurements showed higher performance at VA prediction than AVAS. However, AVAS is simpler and quicker, so may be preferable for routine clinical practice.
3rd Faculty of Medicine Charles University Prague Czech Republic
AdNa s r o Vascular Surgery Clinic Košice Slovak Republic
Centre for Medical Education Queen's University Belfast Belfast UK
Centre for Vascular and Mini invasive Surgery Hospital AGEL Třinec Podlesí Czech Republic
Department of General Surgery Hospital Professor Doutor Fernando Fonseca Amadora Portugal
Department of Nephrology and Transplantation Medicine Wroclaw Medical University Wroclaw Poland
Department of Physiology Faculty of Medicine Masaryk University Brno Czech Republic
Department of Renal Surgery Queen Elizabeth University Hospital Glasgow UK
Department of Transplant Surgery and Regional Nephrology Unit Belfast City Hospital Belfast UK
Division of Vascular Surgery University Hospital Královské Vinohrady Prague Czech Republic
Faculty of Electrical Engineering Czech Technical University Prague Prague Czech Republic
RL Vascular Surgery and Interventional Radiology Private Practice Salvador Brazil
Zobrazit více v PubMed
Woo, K. T., Choong, H. L., Wong, K. S., Tan, H. B. & Chan, C. M. The contribution of chronic kidney disease to the global burden of major noncommunicable diseases. Kidney Int.81, 1044–1045 (2012). PubMed
Shi, B., Ying, T. & Chadban, S. J. Survival after kidney transplantation compared with ongoing dialysis for people over 70 years of age: A matched-pair analysis. Am. J. Transplant.23, 1551–1560 (2023). PubMed
Tonelli, M. et al. Systematic review: Kidney transplantation compared with dialysis in clinically relevant outcomes. Am. J. Transplant.11, 2093–2109 (2011). PubMed
Hernández, D. et al. Mortality in elderly waiting-list patients versus age-matched kidney transplant recipients: Where is the risk?. Kidney Blood Press. Res.43, 256–275. 10.1159/000487684 (2018). PubMed
Schold, J. D., Srinivas, T. R., Sehgal, A. R. & Meier-Kriesche, H. U. Half of kidney transplant candidates who are older than 60 years now placed on the waiting list will die before receiving a deceased-donor transplant. Clin. J. Am. Soc. Nephrol.4, 1239 (2009). PubMed PMC
Matas, A. J. et al. OPTN/SRTR 2013 annual data report: Kidney. Am. J. Transplant.15, 1–34 (2015). PubMed
Eckardt, K.-U., Kasiske, B. L. & Zeier, M. G. KDIGO clinical practice guideline for the care of kidney transplant recipients. Am. J. Transplant.9(Suppl 3), S1–S155 (2009). PubMed
Bello, A. K. et al. Epidemiology of haemodialysis outcomes. Nat. Rev. Nephrol.18, 378–395 (2022). PubMed PMC
Martin, A. G., Grasty, M. & Lear, P. A. Haemodynamics of brachial arteriovenous fistula development. J. Vasc. Access1, 54–59 (2000). PubMed
Schmidli, J. et al. Editor’s Choice – Vascular Access: 2018 Clinical Practice Guidelines of the European Society for Vascular Surgery (ESVS). Eur. J. Vasc. Endovasc. Surg.55, 757–818 (2018). PubMed
Lok, C. E. et al. KDOQI clinical practice guideline for vascular access: 2019 update. Am. J. Kidney Dis.75, S1–S164 (2020). PubMed
Chlorogiannis, D. D. et al. Pre-operative ultrasound mapping before arteriovenous fistula formation: An updated systematic review and meta-analysis. J. Nephrol.10.1007/s40620-023-01814-6 (2023). PubMed PMC
Baláž, P. et al. The arteriovenous access stage (AVAS) classification. Clin. Kidney J.14, 1747–1751 (2021). PubMed PMC
Lawrie, K. et al. Validation of arterio venous access stage (AVAS) classification: A prospective international multicentre study. Clin. Kidney J.13, 20 (2024). PubMed PMC
Katerina, L., Stephen, O., Petr, W. & Peter, B. VAVASC study: Clinical trial protocol. J. Vasc. Access.24, 792–797 (2023). PubMed
Peralta, R. et al. Development and validation of a machine learning model predicting arteriovenous fistula failure in a large network of dialysis clinics. Int. J. Environ. Res. Public Health18, 12355 (2021). PubMed PMC
Krackov, W., Sor, M., Razdan, R., Zheng, H. & Kotanko, P. Artificial intelligence methods for rapid vascular access aneurysm classification in remote or in-person settings. Blood Purif.50, 636–641 (2021). PubMed
Julkaew, S., Wongsirichot, T., Damkliang, K. & Sangthawan, P. DeepVAQ: an adaptive deep learning for prediction of vascular access quality in hemodialysis patients. BMC Med. Inform. Decis. Mak.24, 1–11 (2024). PubMed PMC
Study Details | Validation of Arterio Venous Access Stage (AVAS) Classification | ClinicalTrials.gov. https://clinicaltrials.gov/study/NCT04796558?term=Validation%20of%20Arterio%20Venous%20Access%20Stage%20Classification&rank=1.
Sidawy, A. N. et al. Recommended standards for reports dealing with arteriovenous hemodialysis accesses. J. Vasc. Surg.35, 603–610 (2002). PubMed
Katerina, L., Stephen, O., Petr, W. & Peter, B. VAVASC study: Clinical trial protocol. J. Vasc. Access10.1177/11297298211042677 (2021). PubMed
R Core Team. R: A Language and Environment for Statistical Computing. Preprint at https://www.R-project.org/ (2024).
Posit team. RStudio: Integrated Development Environment for R. Preprint at http://www.posit.co/ (2024).
Kuhn, M. & Wickham, H. Tidymodels: a collection of packages for modeling and machine learning using tidyverse principles. Preprint at https://www.tidymodels.org (2020).
Multinomial regression — multinom_reg • parsnip. https://parsnip.tidymodels.org/reference/multinom_reg.html.
Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw.33, 1–22 (2010). PubMed PMC
Random forest — rand_forest • parsnip. https://parsnip.tidymodels.org/reference/rand_forest.html.
Wright, M. N. & Ziegler, A. Ranger: A fast implementation of random forests for high dimensional data in C++ and R. J. Stat. Softw.10.18637/jss.v077.i01 (2017).
Boosted trees — boost_tree • parsnip. https://parsnip.tidymodels.org/reference/boost_tree.html.
Chen, T. et al. xgboost: Extreme Gradient Boosting. Preprint at https://CRAN.R-project.org/package=xgboost (2024).
Hand, D. J. & Till, R. J. A simple generalisation of the area under the roc curve for multiple class classification problems. Mach. Learn.45, 171–186 (2001).
Kuhn, M., Wickham, H. & Hvitfeldt, E. recipes: Preprocessing and Feature Engineering Steps for Modeling. Preprint at https://github.com/tidymodels/recipes (2024).
Kuhn, M. tidyposterior: Bayesian Analysis to Compare Models using Resampling Statistics. Preprint at https://CRAN.R-project.org/package=tidyposterior (2023).
Greenwell, B. M. & Boehmke, B. C. Variable importance plots—An introduction to the vip package. R J12, 343–366 (2020).
Friedman, J. H. Greedy function approximation: A gradient boosting machine. Ann. Stat.29, 1189–1232 (2001).
Apley, D. W. & Zhu, J. Visualizing the effects of predictor variables in black box supervised learning models. J. R Stat. Soc. Series B Stat. Methodol.82, 1059–1086 (2020).
Biecek, P. DALEX: Explainers for complex predictive models in R. J. Mach. Learn. Res.19, 1–5 (2018).
Maksymiuk, S., Gosiewska, A. & Biecek, P. Landscape of R packages for eXplainable Artificial Intelligence. ArXiv (2020).
ClinicalTrials.gov
NCT04796558