Borders of physical self in virtual reality: a systematic review of virtual hand position discrepancy detection
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, systematický přehled
PubMed
39834571
PubMed Central
PMC11743482
DOI
10.3389/fpsyt.2024.1455495
Knihovny.cz E-zdroje
- Klíčová slova
- bodily self-consciousness, body ownership, detection threshold, hand redirection, just noticable difference, point of subjective equality, self-location, virtual reality,
- Publikační typ
- časopisecké články MeSH
- systematický přehled MeSH
INTRODUCTION: Virtual reality (VR) holds significant promise for psychiatric research, treatment, and assessment. Its unique ability to elicit immersion and presence is important for effective interventions. Immersion and presence are influenced by matching-the alignment between provided sensory information and user feedback, and self-presentation-the depiction of a user's virtual body or limbs. Discrepancies between real and virtual hands can affect the sense of presence and thus treatment efficacy. However, the precise impact of positional offsets in healthy individuals remains under-explored. This review assesses how various factors influence the detection thresholds for positional offsets in VR among healthy subjects. METHODS: A comprehensive database search targeted English-language studies on the detection thresholds of virtual hand positional offsets using head-mounted displays (HMDs) with specific tracking capabilities. Data on methodologies, participant demographics, and VR system specifics were extracted. RESULTS: Thirteen studies met the inclusion criteria, revealing significant variability in detection thresholds-from a few millimeters to 42 cm for linear shifts and from 2° to 45° for angular shifts. Sensitivity to these offsets was affected by hand movement direction and magnitude, hand representation realism, and the presence of distractions. VR system specifications, such as resolution and tracking accuracy, also played a significant role. Methodological issues included small sample sizes, inadequate demographic reporting, and inconsistent presence or avatar embodiment measures. CONCLUSION: The results highlight the need to consider identified influencing factors to maximize user presence in VR-based therapies. Variability in VR device capabilities also emphasizes the need for detailed reporting of device properties in research. The individual variability in offset detection further illustrates VR's potential as a tool for studying body ownership and multisensory integration.
Zobrazit více v PubMed
Rothbaum BO, Hodges L, Watson BA, Kessler GD, Opdyke D. Virtual reality exposure therapy in the treatment of fear of flying: A case report. Behav Res Ther. (1996) 34:477–81. doi: 10.1016/0005-7967(96)00007-1 PubMed DOI
Berkman MI. History of Virtual Reality. New York City - USA: Springer International Publishing; (2024) p. 873–81. doi: 10.1007/978-3-031-23161-2169 DOI
Witmer BG, Singer MJ. Measuring presence in virtual environments: A presence questionnaire. Presence: Teleoperators Virtual Environments. (1998) 7:225–40. doi: 10.1162/105474698565686 DOI
Segawa T, Baudry T, Bourla A, Blanc JV, Peretti CS, Mouchabac S, et al. . Virtual reality (vr) in assessment and treatment of addictive disorders: A systematic review. Front Neurosci. (2020) 13:1409. doi: 10.3389/fnins.2019.01409 PubMed DOI PMC
Slater M. Measuring presence: A response to the witmer and singer presence questionnaire. Presence: Teleoperators Virtual Environments. (1999) 8:130–44. doi: 10.1162/105474699566477 DOI
Botvinick M, Cohen J. Rubber hands ‘feel’ touch that eyes see. Nature (1998) 8:756. doi: 10.1038/35784 PubMed DOI
Blanke O. Multisensory brain mechanisms of bodily self-consciousness. Nat Rev Neurosci. (2012) 13:556–71. doi: 10.1038/nrn3292 PubMed DOI
Serino A, Alsmith A, Costantini M, Mandrigin A, Tajadura-Jiménez A, Lopez C. Bodily ownership and self-location: Components of bodily self-consciousness. Consciousness Cogn. (2013) 22:1239–52. doi: 10.1016/j.concog.2013.08.013 PubMed DOI
Gallagher S. Philosophical conceptions of the self: Implications for cognitive science. Trends Cogn Sci. (2000) 4:14–21. doi: 10.1016/S1364-6613(99)01417-5 PubMed DOI
Blanke O, Metzinger T. Full-body illusions and minimal phenomenal selfhood. Trends Cogn Sci. (2009) 13:7–13. doi: 10.1016/j.tics.2008.10.003 PubMed DOI
Vogeley K, Fink GR. Neural correlates of the first-person-perspective. Trends Cogn Sci. (2003) 7:38–42. doi: 10.1016/S1364-6613(02)00003-7 PubMed DOI
Baum K, Hackmann J, Pakos J, Kannen K, Wiebe A, Selaskowski B, et al. . Body transfer illusions in the schizophrenia spectrum: a systematic review. Schizophrenia (2022) 8:103. doi: 10.1038/s41537-022-00314-z PubMed DOI PMC
Bekrater-Bodmann R, Chung BY, Foell J, Gescher DM, Bohus M, Flor H. Body plasticity in borderline personality disorder: A link to dissociation. Compr Psychiatry. (2016) 69:36–44. doi: 10.1016/j.comppsych.2016.05.002 PubMed DOI
Eshkevari E, Rieger E, Longo MR, Haggard P, Treasure J. Increased plasticity of the bodily self in eating disorders. psychol Med. (2012) 42:819–28. doi: 10.1017/S0033291711002091 PubMed DOI
Macpherson MC, Birladeanu A, Miles LK. Examining the relationship between subclinical levels of social anxiety and the rubber hand illusion. Acta Psychologica. (2021) 212:103209. doi: 10.1016/j.actpsy.2020.103209 PubMed DOI
Rabellino D, Burin D, Harricharan S, Lloyd C, Frewen PA, McKinnon MC, et al. . Altered sense of body ownership and agency in posttraumatic stress disorder and its dissociative subtype: A rubber hand illusion study. Front Hum Neurosci. (2018) 12:163. doi: 10.3389/fnhum.2018.00163 PubMed DOI PMC
Cascio CJ, Foss-Feig JH, Burnette CP, Heacock JL, Cosby AA. The rubber hand illusion in children with autism spectrum disorders: Delayed influence of combined tactile and visual input on proprioception. Autism. (2012) 16:406–19. doi: 10.1177/1362361311430404 PubMed DOI PMC
Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. . The prisma 2020 statement: An updated guideline for reporting systematic reviews. BMJ (2021) 2021:372. doi: 10.1136/bmj.n71 PubMed DOI PMC
Deligiannidis L, McConnell DS, Vallee C. Visual and proprioceptive integration of the virtual and real fingertips. 2009 2nd Conference on Human System Interactions (2009) 2:190–5. doi: 10.1109/HSI.2009.5090977 DOI
Zenner A, Kruqer A. Estimating detection thresholds for desktop-scale hand redirection in virtual reality. 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR) (2019) 2019:47–55. doi: 10.1109/VR.2019.8798143 DOI
Burns E, Razzaque S, Panter AT, Whitton MC, McCallus MR, Brooks FP. The hand is more easily fooled than the eye: Users are more sensitive to visual interpenetration than to visual-proprioceptive discrepancy. Presence: Teleoperators Virtual Environ. (2006) 15:1–15. doi: 10.1162/pres.2006.15.1.1 DOI
Benda B, Esmaeili S, Ragan ED. Determining detection thresholds for fixed positional offsets for virtual hand remapping in virtual reality. 2020 IEEE International Symposium on Mixed and Augmented Reality (ISMAR) (2020) 2020:269–78. doi: 10.1109/ISMAR50242.2020.00050 DOI
Clarence A, Knibbe J, Cordeil M, Wybrow M. Investigating the effect of direction on the limits of haptic retargeting. 2022 IEEE International Symposium on Mixed and Augmented Reality (ISMAR) (2022) 2022:612–21 doi: 10.1109/ISMAR55827.2022.00078 DOI
Gonzalez EJ, Follmer S. Investigating the detection of bimanual haptic retargeting in virtual reality. VRST '19: Proceedings of the 25th ACM Symposium on Virtual Reality Software and Technology (2019) 25:1–5. doi: 10.1145/3359996.3364248 DOI
Zenner A, Heqitz KP, Kruger A. Blink-suppressed hand redirection. 2021 IEEE Virtual Reality and 3D User Interfaces (VR) (2021) 2021:75–84. doi: 10.1109/VR50410.2021.00028 DOI
Ogawa N, Narumi T, Hirose M. Effect of avatar appearance on detection thresholds for remapped hand movements. IEEE Trans Visualization Comput Graphics. (2021) 27:3182–97. doi: 10.1109/TVCG.2020.2964758 PubMed DOI
Lee Y, Jang I, Lee D. Enlarging just noticeable differences of visual-proprioceptive conflict in vr using haptic feedback. 2015 IEEE World Haptics Conference (WHC) (2015) 2015:19–24. doi: 10.1109/WHC.2015.7177685 DOI
Ogawa M, Matsumoto K, Aoyama K, Narumi T. Expansion of detection thresholds for hand redirection using noisy tendon electrical stimulation. 2023 IEEE International Symposium on Mixed and Augmented Reality (ISMAR) (2023) 2023:1026–35. doi: 10.1109/ISMAR59233.2023.00119 DOI
Yang X, Zhang Y, Yang X. Redirected placement: Evaluating the redirection of passive props during reach-to-place in virtual reality. VRST '23: Proceedings of the 29th ACM Symposium on Virtual Reality Software and Technology (2023) 29:1–11. doi: 10.1145/3611659.3615688 DOI
Fellbach VDCV. Werkstattbericht 2: Head-mounted displays - messung räumlicher präzision bei vr-trackingsystemen. Fellbach/Stuttgart - Germany: Tech. rep., Virtual Dimension Center (VDC) Fellbach; (2021).
Abdlkarim D, Luca MD, Aves P, Maaroufi M, Yeo SH, Miall RC, et al. . A methodological framework to assess the accuracy of virtual reality hand-tracking systems: A case study with the meta quest 2. Behav Res Methods. (2024) 56:1052–63. doi: 10.3758/s13428-022-02051-8 PubMed DOI PMC
Kohm K, Porter J, Robb A. Sensitivity to hand offsets and related behavior in virtual environments over tim. ACM Trans Appl Percept. (2022) 19:1–15. doi: 10.1145/3561055 DOI
Luckett E. A quantitative evaluation of the htc vive for virtual reality research. (Honors Theses). Department Comput Inf Sci. (2018) 331. Available online at: https://egrove.olemiss.edu/hon_thesis/331 (Accessed June 26, 2024).
Tsakiris M. The multisensory basis of the self: From body to identity to others. Q J Exp Psychol. (2017) 70. doi: 10.1080/17470218.2016.1181768 PubMed DOI PMC
Wang LT. Effects of semi-immersive virtual reality exercise on the quality of life of communitydwelling older adults: Three-month follow-up of a randomized controlled trial. Digital Health. (2024) 10. doi: 10.1177/20552076241237391 PubMed DOI PMC
Turoń-Skrzypińska A, Tomska N, Mosiejczuk H, Rył A, Szylińska A, Marchelek-Myśliwiec M, et al. . Impact of virtual reality exercises on anxiety and depression in hemodialysis. Sci Rep. (2023) 13:12435. doi: 10.1038/s41598-023-39709-y PubMed DOI PMC
Ionta S, Heydrich L, Lenggenhager B, Mouthon M, Fornari E, Chapuis D, et al. . Multisensory mechanisms in temporo-parietal cortex support self-location and first-person perspective. Neuron. (2011) 70:363–74. doi: 10.1016/j.neuron.2011.03.009 PubMed DOI
Insko B, Insko B. Passive haptics significantly enhances virtual environments. (PhD Thesis). Computer. (2001). doi: 10.5555/933178 DOI
Allin S, Matsuoka Y, Klatzky R. Measuring just noticeable differences for haptic force feedback: Implications for rehabilitation. Proceedings 10th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. HAPTICS 2002 (2002) 10:299–302. doi: 10.1109/HAPTIC.2002.998972 DOI
Bartečků E, Hořínková J. Virtual reality in psychiatry: Literature review — virtuální realita v psychiatrii: Přehled literatury. Ceska Slovenska Psychiatr. (2020) 116:150–8. Available online at: http://www.cspsychiatr.cz/detail.php?stat=1334 (Accessed June 26, 2024).
Gescheider G. Psychophysics: Method, Theory, and Application. Abingdon - UK: Taylor & Francis Group; (1985).
Zenner A, Karr C, Feick M, Ariza O, Krüger A. The detectability of saccadic hand offset in virtual reality. VRST '23: Proceedings of the 29th ACM Symposium on Virtual Reality Software and Technology (2023) 29:1–2. doi: 10.1145/3611659.3617223 DOI
Slater M, Steed A, Usoh M. Depth of presence in immersive virtual environments article in presence teleoperators & virtual environments. Presence: Teleoperators Virtual Environments (1994) 3:130–44. doi: 10.1162/pres.1994.3.2.130 DOI
Gonzalez-Franco M, Peck TC. Avatar embodiment. towards a standardized questionnaire. Front Robot AI. (2018) 5:74. doi: 10.3389/frobt.2018.00074 PubMed DOI PMC
Cheng LP, Ofek E, Holz C, Benko H, Wilson AD. Sparse haptic proxy: Touch feedback in virtual environments using a general passive prop. CHI '17: Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems (2017) 2017:3718–28. doi: 10.1145/3025453.3025753 DOI
Roth D, Latoschik ME. Construction of the virtual embodiment questionnaire (veq). IEEE Trans Visualization Comput Graphics. (2020) 26:3546–56. doi: 10.1109/TVCG.2020.3023603 PubMed DOI
Schubert T, Friedmann F, Regenbrecht H. The experience of presence: Factor analytic insights. Presence: Teleoperators Virtual Environments. (2001) 10:266–81. doi: 10.1162/105474601300343603 DOI